首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The goal of this work was to assess soil microbial respiration, determined by the assay of community-level physiological profiling in an oxygen-sensitive microplate (O2-CLPP), in response to endogenous C and several individual C substrates in the soils with different organic C contents (as a function of soil type and management practice). We also used the O2-CLPP to determine the respiratory response of these soils to endogenous C and amended C substrates with N addition. A respiratory quotient (RQ) was calculated based on the ratio of the response to endogenous soil C vs. each C-only substrate, and was related to total organic carbon (TOC). For assessing N availability for microbial activity, the effect of N supplementation on soil respiration, expressed as Nratio, was calculated based on the response of several substrates to N addition relative to the response without N. Soils clustered in 4 groups after a principal component analysis (PCA), based on TOC and their respiratory responses to substrates and endogenous C. These groups reflected differences among soils in their geographic origin, land use and C content. Calculated RQ values were significantly lower in natural forest soils than in managed soils for most C-only substrates. TOC was negatively correlated with RQ (r = - 0.65), indicating that the soils with higher organic matter content increased respiratory efficiency. The N addition in the assay in the absence of C amendment (i.e., only endogenous soil C present) had no effect on microbial respiration in any soil, indicating that these soils were not intrinsically N-limited, but substrate-dependent variation in Nratio within soil groups was observed.  相似文献   

2.
Application of C-rich plant residues can change the soil system from C-limitation for microbial growth to limitation by other nutrients. However, the initial nutrient status of the soil may interact with the added amount of residues in determining limitation. We studied this interactive effect in soils from the Harvard Forest LTER, where annual addition of N since 1988 has resulted in soils with different N-status: No N (Unfertilized), 50 (Low N) and 150 (High N) kg N ha−1. We hypothesized that adding C-rich substrate would change the soil from being C- to being N-limited for bacterial growth and that the extent of N-limitation would be higher with increasing substrate additions, while becoming less evident in soil with increasing N-status. We compared the effect of adding two C-rich substrates, starch (0, 10, 20, 40 mg g−1 soil) and straw (0, 20, 40, 80 mg g−1), incubating the soils for up to 3 and 4 weeks for starch and straw, respectively. Nutrient limitations were studied by measuring bacterial growth 3 days after adding C as glucose and N as NH4NO3 in a full factorial design. Initially bacterial growth in all soils was C-limited. As hypothesized, adding C-rich substrates removed the C-limitation, with lower amounts of starch and straw needed in the unfertilized and Low N soils than in the High N soil. Combinations of different N-status of the soil and amendment levels of starch and straw could be found, where bacterial growth appeared close to co-limited both by available C and N. However, at even higher amendment levels, presumable resulting in N-limitation, bacterial growth still responded less by adding N then C-limited soils by adding C. Thus, in a C-limited soil there appeared to be N available immediate for growth, while in an N-limited soil, easily available C was not immediately available.  相似文献   

3.
Forest soil carbon (C) pools may act as sinks for, or sources of, atmospheric carbon dioxide, while nitrogen (N) fertilization may affect the net exchange of C in forest ecosystems. Since all major C and N processes in soil are driven by soil microorganisms, we evaluated the effects of N fertilization on biomass and bacterial and fungal activity in soils from three Norway spruce forests with different climatic and N availability conditions. N deposition and net N mineralization were higher at the sites in southern Sweden than at the site in northern Sweden. We also studied the extent to which N fertilization altered the nutrient(s) limiting bacterial growth in soil. We found that on average microbial biomass was reduced by ~40% and microbial activity by ~30% in fertilized plots. Bacterial growth rates were more negatively affected by fertilization than fungal growth rates, while fungal biomass (estimated using the phospholipid fatty acid (PLFA) 18:2ω6,9) decreased more than bacterial biomass as a consequence of fertilization. The microbial community structure (indicated by the PLFA pattern) was changed by fertilization, but not in the same way at the three sites. Soil bacteria were limited by a lack of carbon in all forests, with the carbon limitation becoming more evident in fertilized plots, especially in the forests that had previously been the most N-limited ones. This study thus showed that the effects of N fertilization differed depending on the conditions at the site prior to fertilization.  相似文献   

4.
Saprotrophic microorganisms in soils have traditionally been assumed to be carbon (C) limited, since additions of readily assimilable carbohydrates usually result in increased respiration. In many forest soils, however, rapid nitrogen (N) immobilization and increased microbial growth in response to N addition indicate N limitation. Here we test whether this apparent contradiction could be explained by changes in C allocation between microbial growth and respiration (i.e. changed C-use efficiency) under controlled conditions in laboratory microcosms. Respiration, mycelial production and needle mass loss were monitored after application of glucose or ammonium sulphate to Pinus sylvestris needles inoculated with the litter decomposer fungus Mycena epipterygia. Addition of ammonium resulted in a 32% increase in respiration, 31% increase in needle mass loss and increased mycelial production, indicating that both growth and activity of the fungus were N limited. In spite of N limitation, additions of glucose resulted in a 19% increase in respiration but had no effect on mycelial production and led to a 17% decrease in needle mass loss, indicating a reduced C-use efficiency of the fungus. The capacity of individual fungi to adapt their C-use efficiency to C availability implies that additions of labile C could increase respiration even under N-limited conditions.  相似文献   

5.
Microbial growth in soil is mostly limited by lack of carbon (C). However, adding fresh, C-rich litter can induce nitrogen (N) limitation. We studied the effect of alleviating C and N limitation in high-pH (> 8) soils, soils expected to favor bacterial over fungal growth. Nitrogen limitation was induced by incubating soils amended with C-rich substrate (starch or straw) for 4 weeks. Limiting nutrients and the effects of alleviating limitation were then studied by adding C (as glucose) or N (as NH4NO3) and measuring microbial growth and respiration after 4 d. In non-amended, C-limited soils, adding C but not N increased both microbial respiration and bacterial growth. In N-limited, substrate-amended soils, adding C increased respiration, whereas adding N increased both microbial respiration and growth. Inducing N limitation by amending with straw was most easily detected in increased fungal growth after the addition of N, whereas with starch, only bacterial growth responded to alleviating N limitation. Compared to earlier results using a low-pH soil, the effect of substrate used to induce N limitation was more important than pH for inducing bacterial or fungal growth after alleviating N limitation. Furthermore, we found no evidence that alleviating N limitation resulted in decreased respiration concomitant with increased microbial growth in soil, suggesting no drastic changes in C use efficiency.  相似文献   

6.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   

7.
不同施氮水平下土壤的生化性质对干湿交替的响应   总被引:6,自引:1,他引:6  
陈林  张佳宝  赵炳梓  黄平 《土壤学报》2013,50(4):675-683
以中国科学院封丘农业生态试验站水氮耦合长期试验地为研究平台,采集五个施氮水平(施氮0、150、190、230、270 kg hm-2)下表层0 ~ 20 cm土壤并测定其土壤肥力参数(土壤pH、全氮、全磷、全钾、碱解氮、速效磷、速效钾、有机碳).结果表明:施氮降低了土壤pH、速效磷、全钾,增加了全氮、碱解氮、有机碳,除有机碳随施氮水平的增加而增加外,其他肥力参数并未随施氮水平的增加而发生规律性变化.土壤经过0、3、6、10次干湿交替,培养60 d后测定其生物和化学性质(土壤铵态氮、硝态氮、溶解性有机碳、脲酶活性、脱氢酶活性、微生物生物量碳、土壤基本呼吸).双因素方差分析显示干湿交替次数对铵态氮、硝态氮、无机氮、溶解性有机碳、脱氢酶活性、微生物生物量碳和土壤基本呼吸均有极显著作用,而干湿交替次数和施氮水平对除脱氢酶活性以外的其他土壤性质均无交互作用.五个施氮水平下土壤硝态氮、无机氮、溶解性有机碳、脲酶活性、脱氢酶活性和微生物生物量碳均随干湿交替次数增加而增加,土壤基本呼吸随干湿交替次数增加而降低.高施氮水平(施氮超过190 kg hm-2)下土壤性质的变异系数更小并能更好地发生聚类.研究表明当土壤遭遇干湿交替时,高施氮水平下土壤更能维持其生化性质的稳定.  相似文献   

8.
Current approaches for rapid assessment of carbon source utilization by whole soil communities (i.e., community-level physiological profiling or CLPP) provide a limited, biased view of microbial communities with little connection to in situ activities. We developed an alternative CLPP approach based upon fluorometric detection of dissolved oxygen consumption in a microtiter platform which offers flexible manipulation of experimental factors. In the attempt to reduce oxygen re-dissolution, the wells were filled with liquid to very near the top and sealed. We found that filling the wells with 240 vs. 150 μl of sample improved the sensitivity of the system to discern both the response to a substrate amendment as low as 10 mg l−1 and un-amended, endogenous respiration. The preparation of a soil slurry facilitates inoculation into the microplate. Disruption of soil samples had a limited effect on the endogenous respiration in comparison to intact soil microbags in a 24-well microplate. Storage time (up to 33 days) reduced the level of activity in intact soil microbags but not in disrupted samples. A microcosm fertilization experiment was set to study the effects of N availability on the respiratory response in the plates. The use of soil organic carbon (SOC) and amended C-substrates (50 mg l−1) was increased by the addition of nitrogen (N) in the plate, and appeared N-limited shortly after microcosm fertilization. The addition of the eukaryotic inhibitor cycloheximide delayed the initial increase in fluorescence (time to minimum response) of several C sources (casein, acetate, asparagine, coumaric acid), varying among soils, which could be explained by the fungal use of these compounds. However, the extent of the inhibition caused by cycloheximide did not increase at higher fungal to bacteria ratios as estimated by PLFA analysis, indicating that the direct estimation of the fungal biomass from cycloheximide addition is not feasible. This paper provides an optimized, standardized protocol for soil analysis, and sets the basis for further validation studies that will continue to define the underlying capabilities/biases of this approach.  相似文献   

9.
The soil microbial biomass is important such as pool of plant nutrients and is also driving force of the cycling of C, N, P and S in soil. However, the microbial biomass in acid soil has not been fully investigated due to the limitation of methods, i.e. chloroform-fumigation incubation or substrate-induced respiration because of decreased basal mineralization in chloroform-fumigated soil under acid conditions. This paper reviews improvement and application of these methods and vertical distribution of microbial biomass in two kinds of acid soils; namely, Andisols as dominant upland soils in Japan and tropical peat soils as potentially important lowland soils for agriculture, and also discuss on C and N turnover of microbial biomass in Andisols. Microbial succession in acid soil has also not been investigated so much, but, some studies in another important acid soil, i.e. acid sulfate soil, were also reviewed briefly.  相似文献   

10.
The soil microbial biomass is important such as pool of plant nutrients and is also driving force of the cycling of C, N, P and S in soil. However, the microbial biomass in acid soil has not been fully investigated due to the limitation of methods, i.e. chloroform-fumigation incubation or substrate-induced respiration because of decreased basal mineralization in chloroform-fumigated soil under acid conditions. This paper reviews improvement and application of these methods and vertical distribution of microbial biomass in two kinds of acid soils; namely, Andisols as dominant upland soils in Japan and tropical peat soils as potentially important lowland soils for agriculture, and also discuss on C and N turnover of microbial biomass in Andisols. Microbial succession in acid soil has also not been investigated so much, but, some studies in another important acid soil, i.e. acid sulfate soil, were also reviewed briefly.  相似文献   

11.
Changes in microbial community-level physiological profiles (CLPP) were investigated during decomposition of plant materials in maritime Antarctic soils from Alexander Island and Signy Island. For each soil, a series of microcosms were established and half of them amended with Deschampsia antarctica residues and the other half left unamended (controls). Microcosms were destructively sampled at regular intervals and a soil suspension from each microcosm was used to inoculate BIOLOG EcoPlates. The results showed differences between samples due to the treatment (amendment) but no systematic changes due to incubation period. Microbial response in terms of the overall BIOLOG activity in FB soils was greater than in JC and increased in the former during plant decomposition whilst the overall activity of the JC soils remained relatively unchanged. The differences in the microbial community response to plant amendment between FB and JC may be related to the C:N ratio of these soils and to differences in the way in which the different microbial communities respond to sporadic resource inputs.  相似文献   

12.
In an intensely cultivated soil in southern Italy, the effects of municipal waste compost on soil activities (basal respiration, β-glucosidase, and fluorescein diacetate (FDA) hydrolysis), Biolog functional diversity, pH, and electrical conductivity (EC) were estimated in a short period following amendment. Treatment with compost at 30 t ha?1 (dry matter) was compared to mineral fertilization and untreated soil. In these poor soils, organic amendment allowed the rapid recovery of an active and biodiverse soil community. While the addition of compost increased all microbial activities and EC, the pH did not change. Conversely, metabolic activity that was positively correlated to FDA hydrolysis rate initially was enhanced by compost but decreased with time and disappeared at the end of the incubation. Results indicated that waste compost amendments affected microbial activities, both at global and functional levels, favoring a rapid return of biological factors of fertility.  相似文献   

13.
Abstract

The role of intrinsic soil properties and management induced changes in bulk density on legume shoot biomass‐nitrogen (N) turnover to soil mineral N [nitrate (NO3) plus ammonium (NH4)], SMN, through soil microorganisms is poorly understood. In this study, the influence of intrinsic soil properties and changes in bulk density in soils amended with red clover (Trifolium pratense L.) on N immobilization/remineralization was investigated. Time in incubation, soil type, bulk density, and legume amendment had significant influence on the amounts of microbial biomass carbon (C) (MBC), N (MBN), and the SMN measured during incubation. During the first 32 days in incubation, MBC and MBN in the legume‐amended soils were higher than the control whereas an opposite trend existed for SMN. The SMN measured at the end of incubation, i.e., 70 days after incubation, was significantly higher than the unamended control. The ratio of SMN to MBN (SMN:MBN) was < 1.0, in general, during the first 32 days in incubation in legume amended soils, indicating N immobilization in microbial biomass during this period. Forty‐two days after incubation, the SMN:MBN ratios in the legume amended soils were >1.0, indicating remineralization of the immobilized N, derived, at least partially, from the legume. In the unamended control, these ratios were > 1.0 throughout the incubation. Over time, 63% to 76% of the variability in N‐immobilization/remineralization (SMN:MBN) was accounted for clay content, water (WFP) and air (AFP) filled porosities, volume fraction of pores (VFP) <1.5 μm, total N, C to N ratios in soils, bulk density, and legume amendment. The results indicate the influence of intrinsic soil properties and bulk density on microbially mediated legume N turnover to SMN changed over time.  相似文献   

14.
Mangroves receive increasing quantities of nutrients as a result of coastal development, which could lead to significant changes in carbon sequestration and soil subsidence. We hypothesised that mangrove-produced tannins induce a nitrogen (N) limitation on microbial decomposition even when plant growth is limited by phosphorus (P). As a result, increased N influx would lead to a net loss of sequestered carbon negating the ability to compensate for sea level rise in P-limited mangroves. To examine this, we quantified the short- and long-term effects of N and P enrichment on microbial biomass and decomposition-related enzyme activities in a Rhizophora mangle-dominated mangrove, which had been subjected to fertilisation treatments for a period of fifteen years. We compared microbial biomass, elemental stoichiometry and potential enzyme activity in dwarf and fringe-type R. mangle-dominated sites, where primary production is limited by P or N depending on the proximity to open water. Even in P-limited mangroves, microbial activity was N-limited as indicated by stoichiometry and an increase in enzymic activity upon N amendment. Nevertheless, microbial biomass increased upon field additions of P, indicating that the carbon supply played even a larger role. Furthermore, we found that P amendment suppressed phenol oxidase activity, while N amendment did not. The possible differential nutrient limitations of microbial decomposers versus primary producers implies that the direction of the effect of eutrophication on carbon sequestration is nutrient-specific. In addition, this study shows that phenol oxidase activities in this system decrease through P, possibly strengthening the enzymic latch effect of mangrove tannins. Furthermore, it is argued that the often used division between N-harvesting, P-harvesting, and carbon-harvesting exoenzymes needs to be reconsidered.  相似文献   

15.
乔洁  毕利东  张卫建  沈仁芳  张斌  胡锋  刘艳丽 《土壤》2007,39(5):772-776
利用化肥长期定位试验,研究了施肥对土壤微生物生物量、活性及其群落结构的影响.结果表明:与不施肥相比,长期施用化肥不仅增加了土壤微生物生物量,而且导致了土壤微生物群落结构的分异.其中,有机无机配施处理和2倍NPK配施处理显著提高了土壤有机质含量、全N含量、土壤微生物生物量和土壤微生物活性.NPK均衡施肥处理对土壤有机质、土壤微生物生物量及其活性的影响小于非均衡施肥的处理(NP、NK、N、P、K),适当增施K肥有利于提高土壤微生物中真菌的比例.  相似文献   

16.
Arctic soil carbon (C) stocks are threatened by the rapidly advancing global warming. In addition to temperature, increasing amounts of leaf litter fall following from the expansion of deciduous shrubs and trees in northern ecosystems may alter biogeochemical cycling of C and nutrients. Our aim was to assess how factorial warming and litter addition in a long-term field experiment on a subarctic heath affect resource limitation of soil microbial communities (measured by thymidine and leucine incorporation techniques), net growing-season mineralization of nitrogen (N) and phosphorus (P), and carbon turnover (measured as changes in the pools during a growing-season-long field incubation of soil cores in situ). The mainly N limited bacterial communities had shifted slightly towards limitation by C and P in response to seven growing seasons of warming. This and the significantly increased bacterial growth rate under warming may partly explain the observed higher C loss from the warmed soil. This is furthermore consistent with the less dramatic increase in the contents of dissolved organic carbon (DOC) and dissolved organic N (DON) in the warmed soil than in the soil from ambient temperature during the field incubation. The added litter did not affect the carbon content, but it was a source of nutrients to the soil, and it also tended to increase bacterial growth rate and net mineralization of P. The inorganic N pool decreased during the field incubation of soil cores, especially in the separate warming and litter addition treatments, while gross mineralized N was immobilized in the biomass of microbes and plants transplanted into the incubates soil cores, but without any significant effect of the treatments. The effects of warming plus litter addition on bacterial growth rates and of warming on C and N transformations during field incubation suggest that microbial activity is an important control on the carbon balance of arctic soils under climate change.  相似文献   

17.
The soil conditioners anionic polyacrylamide (PAM) and dicyandiamide (DCD) are frequently applied to soils to reduce soil erosion and nitrogen loss, respectively. A 27‐day incubation study was set up to gauge their interactive effects on the microbial biomass, carbon (C) mineralization and nitrification activity of a sandy loam soil in the presence or absence of maize straw. PAM‐amended soils received 308 or 615 mg PAM/kg. Nitrogen (N)‐fertilized soils were amended with 1800 mg/kg ammonium sulphate [(NH4)2SO4], with or without 70 mg DCD/kg. Maize straw was added to soil at the rate of 4500 mg/kg. Maize straw application increased soil microbial biomass and respiration. PAM stimulated nitrification and C mineralization, as evidenced by significant increases in extractable nitrate and evolved carbon dioxide (CO2) concentrations. This is likely to have been effected by the PAM improving microbial conditions and partially being utilized as a substrate, with the latter being indicated by a PAM‐induced significant increase in the metabolic quotient. PAM did not reduce the microbial biomass except in one treatment at the highest application rate. Ammonium sulphate stimulated nitrification and reduced microbial biomass; the resultant acidification of the former is likely to have caused these effects. N fertilizer application may also have induced short‐term C‐limitation in the soil with impacts on microbial growth and respiration. The nitrification inhibitor DCD reduced the negative impacts on microbial biomass of (NH4)2SO4 and proved to be an effective soil amendment to reduce nitrification under conditions where mineralization was increased by addition of PAM.  相似文献   

18.
《Applied soil ecology》2007,35(1):79-93
Microbial diversity in soils is considered important for maintaining sustainability of agricultural production systems. However, the links between microbial diversity and ecosystem processes are not well understood. This study was designed to gain better understanding of the effects of short-term management practices on the microbial community and how changes in the microbial community affect key soil processes. The effects of different forms of nitrogen (N) on soil biology and N dynamics was determined in two soils with organic and conventional management histories that varied in soil microbial properties but had the same fertility. The soils were amended with equal amounts of N (100 kg ha−1) in organic (lupin, Lupinus angustifolius L.) and mineral form (urea), respectively. Over a 91-day period, microbial biomass C and N, dehydrogenase enzyme activity, community structure of pseudomondas (sensu stricto), actinomycetes and α proteobacteria (by denaturing gradient gel electrophoresis (DGGE) following PCR amplification of 16S rDNA fragments) and N mineralisation were measured. Lupin amendment resulted in a two- to five-fold increase in microbial biomass and enzyme activity, while these parameters did not differ significantly between the urea and control treatments. The PCR–DGGE analysis showed that the addition of mineral and organic compounds had an influence on the microbial community composition in the short term (up to 10 days) but the effects were not sustained over the 91-day incubation period. Microbial community structure was strongly influenced by the presence or lack of substrate, while the type of amendment (organic or mineral) had an effect on microbial biomass size and activity. These findings show that the addition of green manures improved soil biology by increasing microbial biomass and activity irrespective of management history, that no direct relationship existed among microbial structure, enzyme activity and N mineralisation, and that microbial community structure (by PCR–DGGE) was more strongly influenced by inherent soil and environmental factors than by short-term management practices.  相似文献   

19.
Microcalorimetric technique was used to investigate the effects of balanced versus nutrient-deficiency fertilization on soil microbial activity in a long-term (19-year) fertilizer experiment. The number of microorganisms in soils was measured by viable cell count, and the power-time curves were recorded for soil samples supplemented with glucose and ammonium sulphate, also with or without sodium dihydrogen phosphate for P-deficiency fertilization. Both the bacterial and the fungal populations were significantly higher (P < 0.05) under balanced fertilization than under nutrient-deficiency fertilization. The microbial activity presented by heat dissipation per cell unit indicated that microorganisms under balanced fertilizer treatments had more efficient metabolism, while decreased microbial activity under nutrient-deficiency treatments was firstly due to soil available P, followed by N and K (P < 0.05). In addition, microbial growth in soils under P-deficiency fertilization was stimulated by adding available P, while the lower growth rate, less peak heat, and longer peak time all indicated the low activity of soil microorganisms. We emphasize the importance of balanced fertilization, as well as the role of available P, in maintaining and promoting soil microbial activity.  相似文献   

20.
Changes in soil microbial biomass, enzyme activities, microbial community structure and nitrogen (N) dynamics resulting from organic matter amendments were determined in soils with different management histories to gain better understanding of the effects of long- and short-term management practices on soil microbial properties and key soil processes. Two soils that had been under either long-term organic or conventional management and that varied in microbial biomass and enzyme activity levels but had similar fertility levels were amended with organic material (dried lupin residue, Lupinus angustifolius L.) at amounts equivalent to 0, 4 and 8 t dry matter lupin ha?1. Microbial biomass C and N, arginine deaminase activity, fluorescein diacetate hydrolysis, dehydrogenase enzyme activity and gross N mineralisation were measured in intervals over an 81-day period. The community structure of eubacteria and actinomycetes was examined using PCR–DGGE of 16S rDNA fragments. Results suggested that no direct relationships existed between microbial community structure, enzyme activities and N mineralisation. Microbial biomass and activity changed as a result of lupin amendment whereas the microbial community structure was more strongly influenced by farm management history. The addition of 4 t ha?1 of lupin was sufficient to stimulate the microbial community in both soils, resulting in microbial biomass growth and increased enzyme activities and N mineralisation regardless of past management. Amendment with 8 t lupin ha?1 did not result in an increase proportional to the extra amount added; levels of soil microbial properties were only 1.1–1.7 times higher than in the 4 t ha?1 treatment. Microbial community structure differed significantly between the two soils, while no changes were detected in response to lupin amendment at either level during the short-term incubation. Correlation analyses for each treatment separately, however, revealed differences that were inconsistent with results obtained for soil biological properties suggesting that differences might exist in the structure or physiological properties of a microbial component that was not assessed in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号