首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang  Chengfu  Cai  Yinmei  Zhang  Tao  He  Tengbing  Li  Jie  Li  Xinying  Zhao  Qingxia 《European Journal of Forest Research》2022,141(5):833-843
European Journal of Forest Research - Plants are the main sources of soil organic carbon in forest ecosystems. Photosynthetic C assimilated by plants enters the soil through litter, root litter,...  相似文献   

2.
《Southern Forests》2013,75(2):119-129
The development of a plantation eucalypt wood-based forest products industry in South Africa is outlined. Forest research that has contributed to increasing wood production from the ultimately finite land resource available for industrial plantations is reviewed. The application of this technology to eucalypt plantations by Sappi Forests is described and evidence for resultant increased wood production is presented. Improved silviculture, introduction of alternative species and deployment of genetically superior planting stock coupled to site classification and site-specific application of these technologies have all contributed to measured gains. The continued development and application of appropriate forest technology will be critical to a sustainable future for the industry in South Africa. Issues pertaining to this are discussed.  相似文献   

3.
桉树人工林与天然林土壤养分的对比研究   总被引:8,自引:0,他引:8  
在野外调查取样和室内实验分析的基础上,对人工林与天然林的土壤养分进行比较分析,结果表明人工林土壤表层的有机质、全氮、全磷、全钾含量都明显低于天然林,反映了人工林对养分的旺盛需求和消耗,并且人工林还会造成土壤阳离子交换量的降低和土壤容重的增大。提出变炼山全垦为块状整地、轮栽并适当休闲养地、提高人工林生物多样性、建立复杂的人工林群落等措施,以实现桉树人工林土壤养分平衡与生态系统的良性循环。  相似文献   

4.
The amount and pattern of litterfall and its nutrient returnwere studied in seven natural forests of Schima superba Gardn.and Champ. (SCS), Castanopsis fabri Hance (CAF), Tsoongiodendronodorum Chun (TSO), Cinnamomum chekiangense Nakai (CIC), Altingiagracilipes Hemsl. (ALG), Castanopsis carlesii (Hemsl.) Hayata(CAC) and Pinus massoniana D. Don (PIM), and compared with thatof an adjacent 29-year-old plantation of Chinese fir (Cunninghamialanceolata Lamb.) (CUL) in Jianou, Fujian, China. Mean annualtotal litterfall over 3 years of observations varied from 4.63Mg ha–1 in the CUL to 8.85 Mg ha–1 in the PIM; ofthis litterfall, the leaf contribution ranged from 62 to 73per cent. Litterfall in the CAF, ALG and CAC showed an unimodaldistribution pattern, while for the five other forests, thelitterfall pattern was multi-peak. The rank order of the eightforests, according to nutrient return mass with the exceptionof P, was different from the order when rank was according tototal mass of litterfall. The highest annual N, K and Ca returnsfrom total litterfall were noticed in the TSO, the CAF and theCUL, respectively. The amounts of P and Mg potentially returnedto the soil were the highest in the PIM. The leaf fraction providedgreater potential returns of N, P, K, Ca and Mg to the soilthan other litter fractions. The results of this study demonstratethat natural forests have a greater capability for maintainingsite productivity than the monoculture coniferous plantation,due to higher amount of above-ground litter coupled with greaternutrient returns; therefore conservation of natural forestsis recommended as a practical measure in forest management torealize sustainable development of forestry in mountainous areasof southern China.  相似文献   

5.
Industrial forest managers and conservation biologists agree on at least two things: (1) plantation forests can play a role in conserving biodiversity, and (2) plantations will occupy an increasing proportion of future landscapes. I review literature from around the world on the relationship between biodiversity and plantation management, structure, and yield. The dynamics of plantation ecology and management necessarily differ by landscape, geographic area, ecosystem type, etc. This review provides a broad array of management recommendations, most of which apply to most regions, and many patterns are evident. I suggest a new plantation forest paradigm based on the hypothesis that minor improvements in design and management can better conserve biodiversity, often with little or no reduction in fiber production. There is ample evidence that these methods do benefit biodiversity, and can also entail various economic benefits. Adherence to these recommendations should vary by plantation type, and depending on the proportion of the surrounding landscape or region that is or will be planted. Stand-level variables to consider include socio-economic factors, native community type and structure, crop species composition, and pest dynamics. During establishment, managers should consider innovations in snag and reserve tree management (e.g. leave strips), where mature native trees and/or understory vegetation are left unharvested or allowed to regenerate. Polycultures should be favored over monocultures by planting multiple crop species and/or leaving some native trees unharvested. Native species should generally be favored over exotics. Site-preparation should favor methods that reflect natural disturbances and conserve coarse woody debris. Plantations that have already been established by traditional design can also conserve biodiversity via small modifications to operations. Earlier thinning schedules or longer rotations can strongly affect biodiversity, as can reserve trees left after plantation harvest to remain through a second rotation.  相似文献   

6.
We monitored seasonal variations in net primary production (NPP), estimated by allometric equations from organ dimensions, gross primary production (GPP), estimated by the eddy covariance method, autotrophic respiration (R(a)), estimated by a model, and fruit production in a coconut (Cocos nucifera L.) plantation located in the sub-tropical South Pacific archipelago of Vanuatu. Net primary production of the vegetative compartments of the trees accumulated steadily throughout the year. Fruits accounted for 46% of tree NPP and showed large seasonal variations. On an annual basis, the sum of estimated NPP (16.1 Mg C ha(-1) year(-1)) and R(a) (24.0 Mg C ha(-1) year(-1)) for the ecosystem (coconut trees and herbaceous understory) closely matched GPP (39.0 Mg C ha(-1) year(-1)), suggesting adequate cross-validation of annual C budget methods. However, seasonal variations in NPP + R(a) were smaller than the seasonal variations in GPP, and maximum tree NPP occurred 6 months after the midsummer peak in GPP and solar radiation. We propose that this discrepancy reflects seasonal variation in the allocation of dry mass to carbon reserves and new plant tissue, thus affecting the allometric relationships used for estimating NPP.  相似文献   

7.
Effects of harvest residues on nutrient leaching and soil chemical properties were studied in a lysimeter experiment. Treatments were: (A) forest floor litter and harvest residues, other than branches, incorporated into the soil, (B) as A, but with branches cut in 20 cm long bits and placed on the soil surface, (C) as B, but with bits incorporated into the soil, (D) as B, but with branches chopped into chips, (E) as C, but with branches chopped into chips, (F) forest floor litter and harvest residues on the soil surface, with branches cut in 20 cm long bits, (G) as F, but with branches chopped into chips, and (H) absence of harvest residues (control). Treatments were applied in zero-tension lysimeters containing 25 kg of soil. Leachates were collected for a 6-year period. At the end of the experiment, lysimeters were dismantled and soil was divided in four layers. Residues, other than branches, increased N leaching, as compared with the control. Branches on the soil surface reduced N leaching when cut in chips. Branches incorporated into the soil reduced leaching independently of their size. Organic residues on the soil surface showed similar effect to those incorporated into the soil. However, harvest residues on the soil surface increased leachate volume, and reduced Ca and P losses. Such a placement of residues led to high contents of Ca and P in the 0–5 cm top soil layer. Contents of organic C, total N and base cations were not affected by the treatments.  相似文献   

8.
This study examined the effect of tree species identity and diversity on soil respiration in a 3-year-old tropical tree biodiversity plantation in Central Panamá. We hypothesized that tree pairs in mixed-species plots would have higher soil respiration rates than those in monoculture plots as a result of increased primary productivity and complementarity leading to greater root and microbial biomass and soil respiration. In addition to soil respiration, we measured potential controls including root, tree, and microbial biomass, soil moisture, surface temperature, bulk density. Over the course of the wet season, soil respiration decreased from the June highs (7.2 ± 3.5 μmol CO2/(m2 s−1) to a low of 2.3 ± 1.9 μmol CO2/(m2 s−1) in the last 2 weeks of October. The lowest rates of soil respiration were at the peak of the dry season (1.0 ± 0.7 μmol CO2/(m2 s−1)). Contrary to our hypothesis, soil respiration was 19–31% higher in monoculture than in pairs and plots with higher diversity in the dry and rainy seasons. Although tree biomass was significantly higher in pairs and plots with higher diversity, there were no significant differences in either root or microbial biomass between monoculture and two-species pairs. Path analyses allow the comparison of different pathways relating soil respiration to either biotic or abiotic controls factors. The path linking crown volume to soil temperature then respiration has the highest correlation, with a value of 0.560, suggesting that canopy controls on soil climate may drive soil respiration.  相似文献   

9.
中国人工林地力衰退研究进展   总被引:5,自引:0,他引:5  
文章叙述了人工林衰退的概念、现状、原因及防治措施。  相似文献   

10.
We examined the impacts of a defoliating pest, Mycosphaerella leaf disease (MLD), on rotation-length Eucalyptus globulus plantation productivity under current and future climates by using the ecoclimatic species niche model CLIMEX to generate severity, frequency and seasonality scenarios for MLD for specific E. globulus sites. These scenarios were used as inputs to the process-based forest productivity model CABALA. Climate projections from two global climate models were used to drive CABALA with either no or full acclimation of photosynthesis to elevated atmospheric CO2 assumed. In addition we varied water and nitrogen availability to examine the impacts of different severities of MLD on plantation productivity across environmental gradients. We predicted that, under current climatic conditions, rotation-length reductions in V associated with MLD damage would be no greater than 12%, with an across-site average of 6%. There was considerable between-site variation in predictions that reflected variation in site productivity. Under future climates, we predicted that MLD may reduce rotation length V by as much as 42%, although the reduction averaged across all sites was 11%. The predicted impact of MLD on V was greatest at lower productivity sites. The importance of N and water availability in recovery following MLD attack was highlighted. Uncertainty in model predictions revolved around the climate models used and assumptions of degree of photosynthetic acclimation to elevated CO2. Large differences in predicted impact of MLD were associated with this uncertainty. Our results suggest that the effects of defoliation due to pests on plantation productivity should not be ignored when considering future management of forest plantations. The approach developed here provides managers with a tool to appraise risk and examine possible impacts of management interventions designed to reduce or manage risk.  相似文献   

11.
Although the removal or addition of understory vegetation has been an important forest management practice in forest plantations, the effects of this management practice on soil respiration are unclear. The overall objective of this study was to measure and model soil respiration and its components in a mixed forest plantation with native species in south China and to assess the effects of understory species management on soil respiration and on the contribution of root respiration (Rr) to total soil respiration (Rs). An experiment was conducted in a plantation containing a mixture of 30 native tree species and in which understory plants had been removed or replaced by Cassia alata Linn. The four treatments were the control (Control), C. alata addition (CA), understory removal (UR) and understory removal with C. alata addition (UR + CA). Trenched subplots were used to quantify Rr by comparing Rs outside the 1-m2 trenched subplots (plants and roots present) and inside the trenched subplots (plants and roots absent) in each treatment. Annual soil respiration were modeled using the values measured for Rs, soil temperature and soil moisture. Our results indicate that understory removal reduced Rs rate and soil moisture but increased soil temperature. Regression models revealed that soil temperature was the main factor and soil moisture was secondary. Understory manipulations and trenching increased the temperature sensitivity of Rs. Annual Rs for the Control, CA, UR and UR + CA treatments averaged 594, 718, 557 and 608 g C m−2 yr−1, respectively. UR decreased annual Rs by 6%, but CA increased Rs by about 21%. Our results also indicate that management of understory species increased the contribution of Rr to Rs.  相似文献   

12.
落叶松人工林土壤酸度质量与养分关系研究现状及趋势   总被引:6,自引:0,他引:6  
土壤酸碱性是影响土壤肥力的一个重要因素。国际上土壤学研究发展趋势是开展土壤质量评价理论的研究 ,目前主要仍集中在旱地土壤质量的选择、方法设计和区域范围内对不同土地利用方式下土壤质量演变评估。采用控制土壤酸度质量的方法 ,达到提高养分有效性 ,促进林木速生丰产的调控机理 ,演变规律 ,尚不清楚 ,在国内还是空白 ,用土壤酸度质量这一动态指标评价林地土壤质量符合土壤学现代研究的趋势和方向 ,开展此方面的研究具有重要经济意义  相似文献   

13.
为合理管理退化的喀斯特地区新造人工林,对杜仲林、桤木林、冰脆李林的土壤速效养分和土壤酶活性的季节变化规律进行了研究。结果表明:3种林分土壤速效养分含量和土壤酶活性均表现出明显的季节动态。根据林地速效养分的减少主要由林木吸收所致,可知N肥施用,杜仲、桤木林以9月至次年1月为好,冰脆李林以11月至次年1月为好;P肥施用,杜仲、冰脆李林以7—11月或1—5月为好,桤木林以3—5月或7—9月为好;K肥施用,杜仲、桤木林以9—11月为好,冰脆李林以11月至次年3月为好。3种人工林的脲酶活性表现为春夏季高,冬季低,多酚氧化酶活性表现为春秋季高,冬季低,过氧化氢酶活性表现为秋冬季略高,春夏季略低,而碱性磷酸酶活性的季节变化3种人工林不尽相同。  相似文献   

14.
The impacts of land use on soil biodiversity are still poorly understood, although soil fungi and macrofauna are recognized to provide benefits to ecosystems. Here, we tested whether land use practices used to control shrub density influences the fruiting macromycetes (ectomycorrhizal-forming fungi—ECMF—and saprobes) and soil macrofauna diversity and abundance in Montado ecosystems. To address this influence, we conducted a 2-years’ period monitoring of fungi fruitbodies and macrofauna in sixteen experimental plots in Montado landscape in southern Portugal. A total of 4,881 frutibodies (57 taxa of ECMF and 64 taxa of saprobic fungi) and 3,667 soil invertebrates (73 species and morphospecies) were monitored in the experimental plots. There was greater losses in sporocarps production and taxa composition, particularly the ECMF, in plots where shrub density was controlled by permanent grazing (Ca) or involving cutting practices followed by soil tillage (M), in comparison with cutting practices with no soil tillage (Cu) and the control (C). The ECMF Laccaria laccata and Xerocomus subtomentosus exhibited a close relation with C and Cu plots while the saprobes, e.g., Entoloma conferendum, were associated to Ca and M plots. Most species associated to Cu plots were present in C plots during the 2 years, but not in Cu after the cutting practices (in the second year of sampling). Regarding soil macrofauna, higher values of taxa and species richness were observed in C and Cu plots in the first year of sampling. The ant species Aphaenogaster senilis and several Staphylinid morphospecies exhibited a close relation with M plots, whilst most spider families were directly associated to C and Cu plots. After the shrub cutting practices, higher values of taxa and species richness of soil macrofauna were observed in M and Ca plots; the presence of species with a high competitive ability to colonize disturbed areas faster might explain the results. Contrary to the frutibodies production and diversity, species richness and abundance within soil macrofauna were identical between Cu and C in 2004. Thus, fruiting macromycetes and soil macrofauna diversity and abundance in Montado’s, appear highly sensitive to land use and somewhat reflected a trend of severity to the current shrub management practices.  相似文献   

15.
Harvest impacts on soil carbon storage in temperate forests   总被引:1,自引:0,他引:1  
Forest soil carbon (C) storage is a significant component of the global C cycle, and is important for sustaining forest productivity. Although forest management may have substantial impacts on soil C storage, experimental data from forest harvesting studies have not been synthesized recently. To quantify the effects of harvesting on soil C, and to identify sources of variation in soil C responses to harvest, we used meta-analysis to test a database of 432 soil C response ratios drawn from temperate forest harvest studies around the world. Harvesting reduced soil C by an average of 8 ± 3% (95% CI), although numerous sources of variation mediated this significant, overall effect. In particular, we found that C concentrations and C pool sizes responded differently to harvesting, and forest floors were more likely to lose C than mineral soils. Harvesting caused forest floor C storage to decline by a remarkably consistent 30 ± 6%, but losses were significantly smaller in coniferous/mixed stands (−20%) than hardwoods (−36%). Mineral soils showed no significant, overall change in C storage due to harvest, and variation among mineral soils was best explained by soil taxonomy. Alfisols and Spodosols exhibited no significant changes, and Inceptisols and Ultisols lost mineral soil C (−13% and −7%, respectively). However, these C losses were neither permanent nor unavoidable. Controls on variation within orders were not consistent, but included species composition, time, and sampling depth. Temporal patterns and soil C budgets suggest that forest floor C losses probably have a lesser impact on total soil C storage on Alfisols, Inceptisols, and Ultisols than on Spodosols, which store proportionately large amounts of C in forest floors with long C recovery times (50–70 years). Mineral soil C losses on Inceptisols and Ultisols indicate that these orders are vulnerable to significant harvest-induced changes in total soil C storage, but alternative residue management and site preparation techniques, and the passage of time, may mitigate or negate these losses. Key findings of this analysis, including the dependence of forest floor and mineral soil C storage changes on species composition and soil taxonomic order, suggest that further primary research may make it possible to create predictive maps of forest harvesting effects on soil C storage.  相似文献   

16.

Potassium has important physiological functions in eucalypt plantations, increasing their productivity when applied to soil via mineral fertilizers. There is interest in identifying alternative sources to KCl owing to its high cost and limited reserves. The aim of the study was to test the effect of replacing KCl with NaCl and phonolite rock powder. Two comparisons were made: (1) application of 283 kg ha?1 of KCl compared with that of 2125 kg ha?1 of phonolite rock powder (equivalent to 170 kg ha?1 of K2O in both treatments); (2) application of 139 kg ha?1 of NaCl compared with that of 183 kg ha?1 of KCl (equivalent to 2.33 kmol Na and K, respectively). Radial growth, soil water content, leaf water potential (Ψ), accumulated transpiration, stem volume and biomass increment, as well as water use efficiency (WUE) were evaluated. In the first comparison, both fertilizations presented equal values for all characteristics evaluated. In the second, the accumulated transpiration in trees fertilized with KCl was 17% higher than that in plants fertilized with NaCl. In contrast, the WUE was 20% higher in the trees fertilized with NaCl than in those fertilized with KCl, reflecting the lower water consumption for the same increment in stem volume and biomass. We conclude that phonolite rock powder and NaCl are possible substitutes for conventional K fertilization performed with KCl.

  相似文献   

17.
氮沉降过量会导致一系列严重的全球性生态问题,研究氮沉降对土壤动物群落结构的影响,对于明晰土壤动物群落受大气氮沉降加剧产生的响应机理有重要意义.通过模拟氮沉降试验,研究了不同氮沉降浓度下土壤动物群落特征的变化规律.试验结果表明:甲螨亚目(Oribatida),前气门亚目(Prostigmata),弹尾纲(Collembola),寡毛纲(Oligocllaeta),膜翅目(Hymenoptera)及盲蜘目(Opiliones)6个类群在不同龄级,不同氮沉降梯度下所占比例较高,为典型的优势类群;土壤动物类群丰富度及数量在不同氮沉降梯度下呈现先升后降的趋势;幼龄林土壤动物多样性指数普遍较高,且随氮沉降浓度的增加波动明显,老龄林与之相反;土壤甲螨随着氮沉降增加呈现先增后减的趋势,具有环境指示作用.  相似文献   

18.
为了解不同菌剂对广西3种人工林凋落物分解、土壤呼吸、土壤有机质含量和微生物群落组成的影响,通过室内培养试验,研究配施不同菌剂后土壤呼吸速率、土壤有机质含量、土壤微生物群落及其功能多样性的变化.结果表明,3种菌剂显著增加了土壤呼吸速率,同时增加了土壤有机含量,并且对土壤微生物群落及功能多样性有明显的促进作用.其中,益加益菌剂对凋落物分解及土壤有机质含量提升效果最佳,马尾松添加益加益处理后土壤有机质含量提升了5.48%,桉树增加了4.49%,并且马尾松和桉树处理添加益加益菌剂后,Chao1指数和Shannon指数显著上升.因此,生产实践中推荐使用益加益菌剂可以促进凋落物分解,提高广西人工林的土壤地力,维持人工林的可持续经营.  相似文献   

19.
Soil respiration is controlled by soil temperature, soil water, fine roots, microbial activity, and soil physical and chemical properties. Forest thinning changes soil temperature, soil water content, and root density and activity, and thus changes soil respiration. We measured soil respiration monthly and soil temperature and volumetric soil water continuously in a young ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws.) plantation in the Sierra Nevada Mountains in California from June 1998 to May 2000 (before a thinning that removed 30% of the biomass), and from May to December 2001 (after thinning). Thinning increased the spatial homogeneity of soil temperature and respiration. We conducted a multivariate analysis with two independent variables of soil temperature and water and a categorical variable representing the thinning event to simulate soil respiration and assess the effect of thinning. Thinning did not change the sensitivity of soil respiration to temperature or to water, but decreased total soil respiration by 13% at a given temperature and water content. This decrease in soil respiration was likely associated with the decrease in root density after thinning. With a model driven by continuous soil temperature and water time series, we estimated that total soil respiration was 948, 949 and 831 g C m(-2) year(-1) in the years 1999, 2000 and 2001, respectively. Although thinning reduced soil respiration at a given temperature and water content, because of natural climate variability and the thinning effect on soil temperature and water, actual cumulative soil respiration showed no clear trend following thinning. We conclude that the effect of forest thinning on soil respiration is the combined result of a decrease in root respiration, an increase in soil organic matter, and changes in soil temperature and water due to both thinning and interannual climate variability.  相似文献   

20.
Both climate and land-use changes, including the introduction and spread of allochthonous species, are forecast to affect forest ecosystems. Accordingly, forests will be affected in terms of species composition as well as their soil chemical and biological characteristics. The possible changes in both tree cover and soil system might impact the amount of carbon that is stored in living plants and dead biomass and within the soil itself. Additionally, such alterations can have a strong impact on ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号