共查询到20条相似文献,搜索用时 15 毫秒
1.
Francesco Nannoni Giuseppe Protano Francesco Riccobono 《Soil biology & biochemistry》2011,43(12):2359-2367
As, Cd, Cu, Pb, Sb and Zn concentrations were determined in two earthworm species (Allolobophora rosea and Nicodrilus caliginosus) from a mining and industrial area in northern Kosovo and compared with their contents in the bulk soil and the main soil fractions. Earthworm specimens were collected at fifteen sites located at different distances from a Pb–Zn smelter along a gradient of decreasing contamination. Individuals of A. rosea and N. caliginosus showed similar tissue levels of As, Cd, Cu, Pb, Sb and Zn, suggesting that earthworm species belonging to the same eco-physiological group have a similar propensity to uptake and bioaccumulate heavy elements. Cd, Pb, Sb and Zn concentrations in both earthworm species were positively correlated with the respective total soil contents and generally decreased with distance from the smelter. The bioaccumulation factor (BAF) revealed that Cd and Zn were the only elements bioaccumulated by earthworms. The rank order of BAF values for both species was as follows: Cd > > Zn > > Cu > As = Pb = Sb. The absorption of Cd, Pb, Sb and Zn by earthworms mostly depended on the extractable, reducible and oxidable soil fractions, suggesting that the intestine is likely the most important uptake route. The extractable soil fraction constantly influenced the uptake of these heavy elements, whereas the reducible fraction was important mainly for Pb and Zn. The water soluble fraction had an important role especially for the most mobile heavy elements such as Cd and Zn, suggesting that dermal uptake is not negligible. As a whole, the analytical data indicate that soil fractionation patterns influence the uptake of heavy elements by earthworms, and the extractable fraction is a good predictor of heavy element bioavailability to these invertebrates in soil. 相似文献
2.
During the last several decades, colonization of soil by exotic earthworms and their effects on soil properties and biodiversity have been reported in forests of North America. In some northern hardwood stands, acid soils or harsh climate may have prevented earthworm colonization. However, climatic change and the increasing use of liming to restore the vigor of declining sugar maple (Acer saccharum Marsh.) stands, situated on base-poor soils in USA and Canada, could make many of these sites more suitable for earthworm colonization. We tested survival and reproduction of two exotic earthworm species (Lumbricus terrestris and Amynthas hawayanus) in unlimed and limed soils at the northern limit of the northern hardwood forest distribution in Canada. Improving soil parameters of base-poor, acidic soils by liming positively influenced activity, survivability and reproductive output of L. terrestris in this northern hardwood forest. In contrast, the high mortality and low vigor of L. terrestris observed in the unlimed plots show that soils in this area with a pH of 4.3 are not favorable to this species. Our results suggest that A. hawayanus was very active prior to winter at both soil pHs, but was not able to complete its life cycle during one year at this latitude. Both earthworm species significantly reduced organic C and total N, and increased the C/N ratio of the forest floor. Given that forest liming activities are increasing in proximity to human activities, there is high probability that some earthworm species, such as L. terrestris, will invade limed northern hardwood forests in the next decades, with possible consequences for soil organic matter turnover, nutrient cycling and forest biodiversity and dynamics. 相似文献
3.
Soil invertebrates suffer from contamination of the soil by heavy metals. We have studied the effects of contamination by cadmium, zinc and lead on their communities in soils in northern France by comparing polluted land with non‐contaminated sites. We have followed the seasonal variations and effects of soil properties. Saprophagous invertebrates (Diplopoda, Isopoda) and Chilopoda were sampled by pitfall‐trapping from February to November in fairly contaminated areas. In addition, a Berlese extraction of the litter in two very highly contaminated sites was conducted during autumn; animals were also trapped during June in the same locations. The most active period for myriapods was spring (April and May), whereas isopods were abundant from April to the end of summer. No clear relation was found relating dominant species or number of myriapods or isopods to concentration of heavy metal in the little‐contaminated soils. The dominant species seemed not to be related to pollution but to vegetation or soil characteristics. In the most contaminated sites, with metalliferous grassland and a thick undecomposed litter layer, a threshold in contamination values seemed to be reached: no isopods or millipedes were found, but only Chilopoda and Symphyla. 相似文献
4.
Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter 总被引:6,自引:0,他引:6
The bioavailability of heavy metals (Cd, Zn, Pb, Cu) and the abundance of arbuscular mycorrhiza (AM) were studied in two agricultural fields close to a Pb-Zn smelter and three fields outside the pollution zone all cultivated with maize (Zea mays L.). Metal extractability with ethylenediaminetetraacetic acid (EDTA)-NH4OAc and Ca(NO3)2, plant metal uptake, and mycorrhizal parameters (spore number, root colonization) were assessed at two growth stages (six-leaf and maturity). Despite regular liming, the availability of Cd, Zn, and Pb was markedly higher in the two metal-polluted fields than in the three uncontaminated fields. However, the AM abundance was not correlated with metal availability. Root colonization and spore numbers in the metal polluted fields were relatively high, though at plant maturity the former was significantly lower than in one of the uncontaminated fields. The very low AM abundance in the two other unpolluted fields was related to other factors, particular soil and plant P status and soil pH. AM root colonization did not substantially prevent plant metal accumulation, since the metal concentrations in maize grown on the polluted fields strongly exceeded normal values, and for Cd and Pb reached the limits of toxicity for animal feed. 相似文献
5.
植物修复技术具有安全、环保、经济、操作简单等独特优势,符合未来重金属污染土壤修复技术的发展趋势,因而应用前景广阔、发展潜力巨大。然而,修复周期长、超富集植物生物量不足、修复效率低、修复范围有限等缺点限制了植物修复的大规模应用。因此,如何增强植物修复效果逐渐成为一个土壤修复热点问题。螯合强化能显著增加土壤中有效态重金属的含量并提高其迁移转化能力。营养元素的施加则有利于维持植物在重金属胁迫下的生长。对螯合剂和营养元素(N、P、K)强化植物修复的作用方式和强化效果进行了总结,深入分析了内在的作用机制以及影响因素,探讨了强化技术目前存在的问题,并对螯合剂与营养元素联合强化的可行性进行了展望。 相似文献
6.
Plant uptake of metals,transfer factors and prediction model for two contaminated regions of Kosovo 下载免费PDF全文
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants. 相似文献
7.
The competitive desorption/dissolution of kaolin-adsorbed heavy metal mixtures and mixtures of adsorbed Cd with Mg and/or Ca by four chelators (NTA, EDTA, EGTA, and DCyTA) was investigated. Metals were adsorbed on kaolin at pH 7 and the effects of chelator type and concentration on the extent of metal dissolution was studied at a solution pH of 10. EGTA addition. EGTA was the most effective chelator in selectively removing Cd from kaolin in the presence of adsorbed alkaline-earth metals. Approximately 90% of the adsorbed Ca and Mg were retained on the kaolin until almost all (> 80%) of the cadmium was dissolved by EGTA chelator. NTA was the least effective chelator in selectively dissolving Cd from kaolin contaminated with both Cd and Ca (≈ 45% of the adsorbed Cd could not be removed). All four chelators exhibited some desorption/dissolution selectivity for Cd, Cu, and Pb adsorbed on kaolin. When the concentration of chelator in solution was insufficient to dissolve all adsorbed metals, the observed metal ordering for chelation and dissolution was Cd > Cu > Pb (for EGTA), Cd > Pb > Cu (for EDTA and DCyTA), and Cu > Cd > Pb (for NTA). 相似文献
8.
《Soil Science and Plant Nutrition》2013,59(6):701-710
Abstract Athyrium yokoscense, a type of fern that grows vigorously in mining areas in Japan, is well known as a Cd hyperaccumulator as well as a Cu, Pb and Zn tolerant plant. However, no information is available on As accumulation of A. yokoscense, although it often grows on soils containing high levels of both heavy metals and As. In this study, young ferns collected from a mine area were grown in media containing As-spiked soils or mine soil in a greenhouse for 21 weeks. Athyrium yokosense was highly tolerant to arsenate and survived in soils containing up to 500 mg As (V) kg?1. The addition of 100 mg As (V) kg?1 resulted in the highest fern biomass (1.95 g plant?1) among As-spiked soils. Although the As concentration of the fern was lower than other As hyperaccumulators, such as Pteris vittata, A. yokoscense could hyperaccumulate As in mature and old fronds. Arsenic was accumulated most efficiently in old fronds (922 mg kg?1) in the media containing 5 mg As (III) kg?1. Moreover, higher As accumulation was found in the roots of the ferns, with a range from 506 to 2,192 mg kg?1. In addition, in the mine soil with elevated concentrations of As and heavy metals, A. yokoscense not only hyperaccumulated As (242 mg As kg?1 in old fronds), but also accumulated Cd, Pb, Cu and Zn at concentrations much higher than those reported for other terrestrial plants. Athyrium yokoscense accumulated Cd mostly in fronds in high concentrations, up to 1095 mg kg?1, while it accumulated Cu, Zn and Pb mainly in the roots and the concentrations were 375, 2040 and 1165 mg kg?1, respectively. 相似文献
9.
10.
Uptake of Ca, Mg, K, Mn, Fe, Al, Rb, Ph, Cu, Zn, and Cd in vascular plants from a birch forest area near a Cu smelter in northern Norway was investigated. The primary objective was to study metal uptake in plants growing in a strong local acidification gradient. Decreased levels of Mn, Mg, and Ca found in Betula pubescens, Vaccinum myrtillus, and Deschampsia flexuosa near the smelter corresponded to a decrease in base saturation of the soil. This suggests that appreciable soil acidification has taken place. The level of Rb in Vaccinum myrtillus and Sorbus aucuparia increased significantly towards the smelter, probably due to the higher soil acidity. Elevated levels of Cu, Zn, Ph, and Cd in surface soil were found with values up to 2500 mg kg?1 Cu within 1 km from the smelter. These concentrations decreased significantly with distance, but metal contamination was detectable up to 27 km from the smelter along the prevailing wind direction. A corresponding decrease was detected for Cu in the four plant species analyzed. Elevated levels of Zn, Ph, Fe, and Al were found in some, but not all, species. 相似文献
11.
Heavy metal accumulation by two earthworm species and its relationship to total and DTPA-extractable metals in soils 总被引:1,自引:0,他引:1
Jun Dai Thierry Becquer Georges Reversat Johanne Nahmani 《Soil biology & biochemistry》2004,36(1):91-98
The concentrations of Zn, Cd, Pb and Cu in earthworm tissues were compared with the total and DTPA-extractable contents of these heavy metals in contaminated soils. Samples were taken from a pasture polluted by waste from a metallurgic industry over 70 y ago. Three individuals of Aporrectodea caliginosa and Lumbricus rubellus and soil samples were collected at six points along a gradient of increasing pollution. Total metal contents of earthworms, soil, and metals extracted by DTPA from the soil were measured. Total heavy metal contents of the soils ranged from 165.7 to 1231.7 mg Zn kg−1, 2.7 to 5.2 mg Cd kg−1, 45.8 to 465.5 mg Pb kg−1 and 30.0 to 107.5 mg Cu kg−1. Their correlations with metals extracted by DTPA were highly significant. Contents of the metals in earthworm tissues were higher in A. caliginosa than in L. rubellus, with values ranging from 556 to 3381 mg Zn kg−1, 11.6 to 102.9 mg Cd kg−1, 1.9 to 182.8 mg Pb kg−1 and 17.9 to 35.9 mg Cu kg−1 in A. caliginosa, and from 667.9 to 2645 mg Zn kg−1, 7.7 to 26.3 mg Cd kg−1, 0.5 to 37.9 mg Pb kg−1 and 16.0 to 37.6 mg Cu kg−1 in L. rubellus, respectively. Correlations between body loads in earthworms with either total or DTPA-extractable contents of soil metals were significant, except for Cd in L. rubellus and Cu in A. caliginosa. Considering its simple analytical procedure, DTPA-extractable fraction may be preferable to total metal content as a predictor of bio-concentrations of heavy metals in earthworms. Biota-to-Soil Accumulation Factor (BSAF) of these four metals are Cd>Zn>Cu>Pb, with range of mean values between: Cd (6.18-17.02), Zn (1.95-7.91), Cu (0.27-0.89) and Pb (0.08-0.38) in A. caliginosa, and Cd (3.64-6.34), Zn (1.5-6.35), Cu (0.29-0.87) and Pb (0.04-0.13) in L. rubellus. The BSAF of Ca, Fe and Mn are Ca>Mn>Fe, with mean values of: Ca (0.46-1.31), Mn (0.041-0.111), Fe (0.017-0.07) in A. caliginosa and Ca (0.98-2.13), Mn (0.14-0.23), Fe (0.019-0.048) in L. rubellus, respectively. Results of principal component analysis showed that the two earthworm species differ in the pattern of metal bioaccumulation which is related to their ecological roles in contaminated soils. 相似文献
12.
P.H.F. Hobbelen P.J. van den Brink C.A.M. van Gestel 《Soil biology & biochemistry》2006,38(7):1596-1607
The aim of this study was to determine the effects of heavy metal pollution on the structure and functioning of detritivore soil communities that consist of isopods, millipedes and earthworms, in 15 heavily polluted flood plain soils, located in the delta area of the rivers Rhine and Meuse, in the Netherlands. The 15 study sites represent a gradient in Zn, Cu and Cd concentrations. The structural attributes of the detritivore community, which were assessed, were the species richness and densities in the field sites. The functioning of the detritivore community was studied by determining organic matter decomposition using litter bags and feeding activity with the bait-lamina method. Concentrations of Cd, Cu and Zn were measured in soil, pore water and 0.01 M CaCl2 extracts of the soil, in adult earthworms and plant leaves. Results show that metal pollution is not a dominating factor determining the species richness and densities of the selected detritivore groups, although the biomass of the earthworm Lumbricus rubellus was positively and significantly correlated to Zn concentrations in pore water and 0.01 M CaCl2 extracts. Litter decomposition was significantly and positively correlated to detritivore biomass and 0.01 M CaCl2 extractable Cd concentrations in soil and negatively to pH-CaCl2, although the range of pH values was very small. It can be concluded that in spite of high metal levels in the soil, bioavailable concentrations are too low to result in clear negative effects on the structure and functioning of detritivores in the Biesbosch, the Netherlands. 相似文献
13.
Soils collected from areas at different distances from an aluminum smelter were studied to determine the soluble and labile F and soluble Al contents and availabilities to selected plants. Red maple seedlings (Acer rubrum L.) and orchard grass (Dactylis glomerata L.) were grown in pots containing the soils and after 3 mo foliar tissues were sampled and analyzed for the two elements. The soluble and labile contents of soil F as predictors of foliar F were compared. Significant decreases in soluble and labile F and soluble Al in soils were found with increasing distance from the smelter. As F levels in the soils increased, the F in the foliage of both orchard grass and maple increased. As Al in the soil increased, Al in maple foliage increased. Overall, F concentrations in plant foliage were below those considered as background. The results imply that, at least in the soils studied, the soil F content is not an important source of F to plants and therefore to herbivores in the area. Labile F values in the soils were significantly greater than soluble F at all sites, but, contrary to previous studies, soluble F was a better predictor of foliar F than was labile F. 相似文献
14.
Elisa Petranich Alessandro Acquavita Stefano Covelli Andrea Emili 《Journal of Soils and Sediments》2017,17(7):1986-1998
Purpose
The Marano and Grado Lagoon (Italy) has been affected by trace metal(oid) contamination in the last century, especially mercury, from both industrial and long-term mining activities. The uptake and distribution of trace metal(oid)s in halophytes were determined in two selected salt marshes. To evaluate the potential activity of plants as phytoremediation, the bioconcentration and translocation factors (BCF and TF, respectively) were calculated.Materials and methods
In both salt marshes, individuals of Sarcocornia fruticosa L. and Limonium vulgare L., two of the most abundant halophytes in this environment, were sampled. The aboveground biomass (stems and leaves) was collected and sealed in plastic bags. Once the stems were removed, the belowground biomass and the attached rhizo-sediment were sampled using a single gouge auger sampler. The sediment cores obtained were sectioned on field to a maximum depth of 15 cm. The roots were carefully separated from the rhizo-sediment in the laboratory. The sediment, roots, leaves, and stems were freeze-dried, finely ground, and homogenized. Samples were totally decomposed, using a mixture of mineral acids in a closed microwave system, and analyzed for trace metal(oid) content by ICP-AES. The total Hg content in the solid phase was determined by DMA-80.Results and discussion
Metal(oid) concentrations in roots were usually up to one or two orders of magnitude higher than in stems and leaves. The exceptions are Cd and Ni, which levels were not detectable, and Cr in stems of both halophytes where the concentration reached up to four times more than in roots. Commonly, trace metal(oid) contents were higher in stems than in leaves, except for Zn. Considering all BCF data, a sequence of metal(oid)s preferentially transferred from sediment to belowground biomass of the two plants is Cd > Mn > As > Pb. This sequence does not coincide for the two salt marshes, except for Cd, probably due to the different source of metal(oid)s in sediments and/or some site-specific lithogenic properties. Metal(oid)s accumulated from rhizo-sediment were largely retained in roots as shown by TF values <1.Conclusions
The general trend arising from BCF and TF reveals that root tissues accumulate significantly greater amounts of metal(oid)s than the aerial part, thus indicating high plant bioavailability of the substrate metal(oid)s as well as their limited translocation to the aboveground biomass. Our results suggest that both salt marshes investigated act as a sink, and only sporadically as a possible source, for several trace metal(oid)s which are not promptly available for the environment.15.
Magali Rault Batrice Collange Christophe Mazzia Yvan Capowiez 《Soil biology & biochemistry》2008,40(12):3086-3091
In order for cholinesterase (ChE) activity to be used as an effective biomarker in earthworms, the time course of enzyme activity inhibition and recovery must be fully characterized. A laboratory experiment was carried out using parathion as a model organophosphorus pesticide at the recommended dose (1 mg kg−1) and a 10 fold higher dose (10 mg kg−1), on two earthworm species (Allolobophora chlorotica and Aporrectodea caliginosa). ChE activity and weight were measured every week for a 14 day period of exposure to parathion and then for 8 weeks in uncontaminated soil. After 3 days of exposure, the weight of both earthworm species had decreased by 10–15% compared to the control, regardless of the dose used. During the remainder of the exposure period, no differences were observed between the two doses for A. chlorotica; but A. caliginosa showed rapid weight recuperation for the lowest dose applied. After 28 days and over, the control and both exposed species of worms lost similar amounts of weight. ChE inhibition was measured during and after the exposure period. ChE inhibition followed a different time course for the two species investigated. A. chlorotica appeared less sensitive to parathion than A. caliginosa. In this latter species, ChE inhibition was rapid at close to 70% of the control after 3 days, for either dose, and reached 80–90% after 7 days exposure. While A. chlorotica exhibited the same pattern of inhibition for 10 mg kg−1 of parathion, the inhibition process was slower for the recommended dose with 50% inhibition after 7 days of exposure and 70% after 14 days. ChE activity recovery, after transfer to uncontaminated soil, also followed a different pattern for the two species. After exposure to 1 mg kg−1 parathion, ChE activity from A. chlorotica underwent a slow but constant recovery process to regain the control value after 8 weeks in unpolluted conditions. On the other hand, the ChE activity from A. caliginosa remained strongly inhibited. The differential susceptibility to parathion found in this study could be related to differences in the specificity of the total ChE activities between those two species. 相似文献
16.
The labile fraction of heavy metals (HM) in soils is the most important for toxicity for plants and microorganisms. Thus, it is crucial to reduce this fraction in contaminated soils to decrease the negative effect of HM. In a greenhouse experiment, the effects of several additives on the labile fractions of Zn, Cd, Cu, Ni, and Pb were investigated in a soil contaminated during long‐term sewage‐sludge application. The accumulation of HM was studied in the aboveground biomass of wheat (Triticum aestivum L.). The additives used were the clay minerals Na‐bentonite, Ca‐bentonite, and zeolite; the Fe oxides hematite and goethite; the phosphate fertilizers superphosphate and Novaphos. Wheat was planted three times during 5 months, allowed to grow for 7 w, and harvested. Dry matter and HM content of shoots were determined after each harvest. Soil samples were taken after the first and third harvest, and the NH4NO3‐extractable HM contents were determined. After the addition of 2% Na‐bentonite as well as 2% Ca‐bentonite, a strong reduction of the labile HM soil fraction and shoot HM concentration was observed. At the end of the experiment, the labile fraction was reduced due to the addition of Na‐bentonite and Ca‐bentonite by 24% and 31% for Zn, by 37% and 36% for Cd, by 41% and 43% for Cu, by 54% and 61% for Ni, and by 48% and 41% for Pb, respectively. Furthermore, the shoot HM concentrations with the exception of Zn were reduced below the phytotoxicity range. Accordingly, the shoot dry‐matter production was significantly increased. The addition of phosphate fertilizers (notably Novaphos) strongly reduced the bioavailability of Pb for wheat plants. By addition of 0.05% Novaphos, the labile fraction and the shoot concentration of Pb were lowered by 39% and 64%, respectively. However, the addition of Fe oxides and zeolite resulted only in a small reduction in HM bioavailability to wheat plants. Among the studied additives, Na‐bentonite and Ca‐bentonite have the most promising potential to reduce the bioavailability for the studied HM. 相似文献
17.
《European Journal of Soil Biology》2002,38(2):151-153
Earthworms were maintained in two types of soil-filled mesocosm. Type 1, designed for use in soil-inoculation studies, was only 0.15 m deep. Sampling revealed the position at which cocoons were deposited by earthworms in mono-species culture. Whilst adequate for shallow-working worms, larger species may have experienced restricted burrow formation and associated cocoon deposition. Therefore, Type 2 mesocosms (1.0 m deep) were also used. Here, earthworms were found to burrow throughout the soil columns, but cocoons were mainly deposited within 0.25 m of the soil surface (95% overall). The deepest cocoon deposition was at 0.4 m by Lumbricus terrestris, although 45% of the cocoons for this species were located in the upper 0.05 m of the soil, compared with 70% and 71% for Aporrectodea longa and Octolasion cyaneum, respectively. Comparisons between mesocosms showed that their depth affected cocoon distribution in the soil and that differences were also present compared with field-collected results. Reasons for this are discussed, as are implications for soil inoculation with earthworms. If cocoons are viewed as a potential inoculum for soil restoration work, their harvesting and spreading in soil may assist successful colonisation. 相似文献
18.
Irena M. Grze 《Pedobiologia》2009,53(1):65-73
Ants are considered to be relatively resistant to metal pollution, but the effect of metal toxicity on ant communities is poorly understood. This work examined the relationship between ant species diversity and heavy metal pollution at 16 meadow and forest sites along a metal contamination gradient in a mining and smelting region near Olkusz, Poland. Menhinick's index was used to estimate species richness. Pielou's index of evenness (J), Simpson's index of diversity (D) and the slopes of rank-abundance curves were used to estimate of species evenness. Regardless of species composition differences between forest and meadow, the increase in species diversity with increasing metal pollution was very clear in both ecosystems. The more polluted the site, the more species were detected and the more similar in relative abundance they were. Consequently, the extent to which one or a few species dominated a community decreased. This result can be explained by indirect effects of metal pollution, that is, changes in species interactions rather than by changes in abiotic conditions. 相似文献
19.
H. W. De Koning 《Water, air, and soil pollution》1974,3(1):63-70
Air, soil, and vegetation samples taken in the vicinity of a lead smelter were examined for Pb and Cd. The results indicate that the plant is a source of Pb and that this pollution may ose a threat to grazing animals but probably not directly to the local residents. Although Cd results are higher than normal no Cd pollution is directly attributed to the smelter. 相似文献