首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The availability of inorganic N has been shown to be one of the major factors limiting primary productivity in high latitude ecosystems. The factors regulating the rate of transformation of organic N to nitrate and ammonium, however, remain poorly understood. The aim of this study was to investigate the nature of the soluble N pool in forest soils and to determine the relative rate of inorganic N production from high and low molecular weight (MW) dissolved organic nitrogen (DON) compounds in black spruce forest soils. DON was found to be the dominant N form in soil solution, however, most of this DON was of high MW of which >75% remained unidentified. Free amino acids constituted less than 5% of the total DON pool. The concentration of NO3 and NH4+ was low in all soils but significantly greater than the concentration of free amino acids. Incubations of low MW DON with soil indicated a rapid processing of amino acids, di- and tri-peptides to NH4+ followed by a slower transformation of the NH4+ pool to NO3. The rate of protein transformation to NH4+ was slower than for amino acids and peptides suggesting that the block in N mineralization in taiga forest soils is the transformation of high MW DON to low MW DON and not low MW DON to NH4+ or NH4+ to NO3. Calculated turnover rates of amino acid-derived C and N immobilized in the soil microbial biomass were similar with a half-life of approximately 30 d indicating congruent C and N mineralization.  相似文献   

2.
Alongside nitrate, dissolved organic nitrogen (DON) represents a significant N loss pathway in many agroecosystems. To better understand the factors controlling DON leaching in soil we followed the vertical movement of 15N-labeled NO3, NH4+, alanine and trialanine in packed soil columns in response to a simulated rainfall event. We show that in autoclaved (sterile) soil where sorption is assumed to be the dominant regulating factor, leaching followed the series NO3 > trialanine > alanine > NH4+. In the non-sterile packed soil columns, the rapid rate of NO3 leaching was unaffected whilst the movement of the amino acid, peptide and NH4+ was almost completely prevented due to microbial immobilization. Our results support the view that (1) DON loss from agricultural soils occurs mainly in the form of recalcitrant compounds (e.g. humic DON) rather than in the form of labile low MW DON (e.g. oligopeptides and amino acids), and (2) that although nitrate was bioavailable, it was not a preferred N form for the C-limited microbial biomass.  相似文献   

3.
Soil organic carbon (SOC) dynamics and nutrient availability determine the soil quality and fertility in a Chinese fir plantation forest in subtropical China. Uniformly 13C-labeled Chinese fir (Cunninghamia lanceolata) and alder (Alnus cremastogyne) leaf litter with or without 100 mg NH4+ or NO3 were added to the soil. The purpose was to investigate the influence of N availability on the decomposition of the litter and native SOC. The production of CO2, the natural abundance of 13C–CO2, and the inorganic N dynamics were monitored. The results showed that Chinese fir (with a high C:N ratio) and alder (with a low C:N ratio) leaf litter caused significant positive priming effects (PEs) of 24% and 42%, respectively, at the end of the experiment (235 d). The PE dynamics showed that positive PE can last for at least 87 d. However, the possible occurrence of a significant negative PE with a sufficient incubation period is difficult to confirm. The application of both NH4+ and NO3 was found to have a stimulating effect on the decomposition of Chinese fir and alder leaf litter in the early stage (0–15 d) of incubation, but an adverse effect in the late stage. Compared with NO3, NH4+ caused a greater decrease in the PE induced by both Chinese fir and alder leaf litter. The effects of NH4+ and NO3 on the PE dynamics had different patterns for different incubation stages. This result may indicate that the stability or recalcitrance of SOC, especially in such plantation forest soils, strongly depends on available leaf litter and application of N to the soil.  相似文献   

4.
A study was carried out to investigate the potential gross nitrogen (N) transformations in natural secondary coniferous and evergreen broad-leaf forest soils in subtropical China. The simultaneously occurring gross N transformations in soil were quantified by a 15N tracing study. The results showed that N dynamics were dominated by NH4+ turnover in both soils. The total mineralization (from labile and recalcitrant organic N) in the broad-leaf forest was more than twice the rate in the coniferous forest soil. The total rate of mineral N production (NH4+ + NO3) from the large recalcitrant organic N pool was similar in the two forest soils. However, appreciable NO3 production was only observed in the coniferous forest soil due to heterotrophic nitrification (i.e. direct oxidation of organic N to NO3), whereas nitrification in broad-leaf forest was little (or negligible). Thus, a distinct shift occurred from predominantly NH4+ production in the broad-leaf forest soil to a balanced production of NH4+ and NO3 in the coniferous forest soil. This may be a mechanism to ensure an adequate supply of available mineral N in the coniferous forest soil and most likely reflects differences in microbial community patterns (possibly saprophytic, fungal, activities in coniferous soils). We show for the first time that the high nitrification rate in these soils may be of heterotrophic rather than autotrophic nature. Furthermore, high NO3 production was only apparent in the coniferous but not in broad-leaf forest soil. This highlights the association of vegetation type with the size and the activity of the SOM pools that ultimately determines whether only NH4+ or also a high NO3 turnover is present.  相似文献   

5.
To improve our knowledge of how nutrient cycling in Mediterranean environments responds to climate change, we evaluated the effects of the continuous changes in soil nitrogen (N) pools during natural wetting and drying events. We measured soil N pools (microbial biomass [MB-N], dissolved organic nitrogen [DON], NH4+ and NO3) and N ion exchange resins at weekly intervals for one year in two contrasting Mediterranean ecosystems. All soil N fractions in both ecosystems showed high intraseasonal and interseasonal variability that was greater in inorganic soil fractions than in organic N soil fractions. MB-N, DON and resin-NH4+ showed increased concentrations during wetting events. Only the soil NO3 and resin-NO3 showed the opposite trend, suggesting a different response to water pulses compared to the other soil variables. Our results show that N pools are continuously changing, and that this high variability is not associated with the total amount of organic matter and labile soil carbon (C) and N soil fractions found in each ecosystem. The highest variability was found for inorganic N forms, which suggests that organic N forms are more buffered in soils exposed to wetting-drying cycles. Our results suggest that the changes in wetting-drying cycles expected with global climate change may have a significant impact on the availability and turnover of organic and inorganic N.  相似文献   

6.
《Applied soil ecology》2010,46(3):225-231
There are plans to vegetate soil of the former lake Texcoco and use wastewater sludge to provide nutrients. However, the Texcoco soil is N depleted, so the amount of N available to the vegetation might be limited and the dynamics of C and N affected. We investigated how emissions of CO2, N2O and N2, and dynamics of mineral N were affected when different types of N fertilizer, i.e. NH4+, NO3, or unsterilized or sterilized wastewater sludge, were added to the Texcoco soil. An agricultural soil served as control. Sewage sludge added to an alkaline saline soil (Texcoco soil) induced a decrease in concentrations of NH4+ and NO3. Addition of sewage sludge increased the CO2 emission rate > two times compared to soil amended with sterilized sludge. The NH4+ concentration was lower when sludge was added to an agricultural soil for the first 28 days and in the Texcoco soil for 56 days compared to soil amended with sterilized sludge. Production of N2O in the agricultural soil was mainly due to nitrification, even when sludge was added, but denitrification was the main source of N2O in the Texcoco soil. Microorganisms in the sludge reduced N2O to N2, but not the soil microorganisms. It was found that microorganisms added with the sludge accelerated organic material decomposition, increased NH4+ immobilization, and induced immobilization of NO3 (in Texcoco soil). These results suggest that wastewater sludge improves soil fertility at Otumba (an agricultural soil) and would favour the vegetation of the Texcoco soil (alkaline saline).  相似文献   

7.
The turnover of organic matter determines the availability of plant nutrients in unfertilized soils, and this applies particularly to the alkaline saline soil of the former Lake Texcoco in Mexico. We investigated the effects of alkalinity and salinity on dynamics of organic material and inorganic N added to the soil. Glucose labelled with 14C was added to soil of the former Lake Texcoco drained for different lengths of time, and dynamics of 14C, C and N were investigated with the Detran model. Soil was sampled from an undrained plot and from three drained for 1, 5 and 8 years, amended with 1000 mg 14C‐labelled glucose kg?1 and 200 mg NH4+‐N kg?1, and incubated aerobically. Production of 14CO2 and CO2, dynamics of NH4+, NO2 and NO3, and microbial biomass 14C, C and N were monitored and simulated with the Detran model. A third stable microbial biomass fraction had to be introduced in the model to simulate the dynamics of glucose, because > 90 mg 14C kg?1 soil persisted in the soil microbial biomass after 97 days. The observed priming effect was mostly due to an increased decay of soil organic matter, but an increased turnover of the microbial biomass C contributed somewhat to the phenomenon. The dynamics of NH4+ and NO3 in the NH4+‐amended soil could not be simulated unless an immobilization of NH4+ into the microbial biomass occurred in the first day of the incubation without an immediate incorporation of it into microbial organic material. The dynamics of C and a priming effect could be simulated satisfactorily, but the model had to be adjusted to simulate the dynamics of N when NH4+ was added to alkaline saline soils.  相似文献   

8.
《Soil biology & biochemistry》2001,33(7-8):1113-1121
In this study, the influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol from north east Scotland was investigated. Firstly, soil cores were incubated at 5, 10 and 15°C for up to 8 weeks. Net mineralisation was observed at all temperatures with larger rates observed at higher temperatures. In contrast, water extractable dissolved organic nitrogen (DON) displayed no clear trend with time and showed little response to temperature. Secondly, intact cores of the same soil, with and without vegetation, were leached with artificial rain for 6 weeks at 6.5 and 15°C. Temperature and the presence of vegetation interacted to have a significant (P<0.01) effect on the concentration of NO3 in leachates; highest concentrations were observed in leachates from cores without vegetation at 15°C, whereas lowest concentrations were observed in leachates from cores with vegetation at 6.5°C. In contrast, concentrations of DON and dissolved organic carbon (DOC) were significantly (P<0.001) higher in leachates from cores with vegetation than without vegetation and were not affected by temperature. The cumulative amounts of DON and DOC leached from the cores with vegetation were 4 and 2.5 times greater, respectively, than those leached from the cores without vegetation. Comparison of soil solution (extracted by centrifugation at 0–5 and 5–10 cm depth) after leaching for 6 weeks, showed that the upper layer contained more than twice the amount of DON than the 5–10 cm layer and that the difference in concentration between the two depths was enhanced in the presence of vegetation. The results indicate that vegetation is an important source of DON and DOC. However, the removal of vegetation did not lead to an increase in the quantity of total dissolved nitrogen (TDN) in soil water, but resulted in a change in the dominant N fraction from DON to NO3. In addition, the results show that DON, in both the incubated and leached cores, did not change as inorganic N was mineralised. This suggests that if water extractable DON was acting as a source of NH4+ or NO3, then it was being replenished by, and in equilibrium with, a large reserve of organic N. Evidence of such a pool was indirect in the form of additional DON (equivalent to 2 g N m−2) being extracted by 0.5 M K2SO4.  相似文献   

9.
A 15N tracing study was carried out to identify microbial and abiotic nitrogen (N) transformations in a south Chilean Nothofagus betuloides forest soil which is characterized by low N inputs and absence of human disturbance. Gross N transformation rates were quantified with a 15N tracing model in combination with a Markov chain Monte Carlo sampling algorithm for parameter estimation. The 15N tracing model included five different N pools (ammonium (NH4+), nitrate (NO3), labile (Nlab) and recalcitrant (Nrec) soil organic matter and adsorbed NH4+), and ten gross N transformation rates. The N dynamics in the N. betuloides ecosystem are characterized by low net but high gross mineralization rates. Mineralization in this soil was dominated by turnover of Nlab, while immobilization of NH4+ predominantly entered the Nrec pool. A fast exchange between the NH4+ and the adsorbed NH4+ pool was observed, possibly via physical adsorption on and release from clay lattices, providing an effective buffer for NH4+. Moreover, high NH4+ immobilization rates into the Nrec pool ensure a sustained ecosystem productivity. Nitrate, the most mobile form of N in the system, is characterized by a slow turnover and was produced in roughly equal amounts from NH4+ oxidation and organic N oxidation. More than 86% of the NO3 produced was immediately consumed again. This study showed for the first time that dissimilatory nitrate reduction to ammonium (DNRA) was almost exclusively (>99%) responsible for NO3 consumption. DNRA rather than NO3 immobilization ensures that NO3 is transformed into another available N form. DNRA may therefore be a widespread N retention mechanism in ecosystems that are N-limited and receive high rainfalls.  相似文献   

10.
Indirect evidence of the nitrogen (N) status of tropical forests strongly suggests that in heavily weathered soils under old-growth lowland tropical forests nitrogen is in relative excess. However, within the lowland forests of the Amazon basin, there is substantial evidence that soil texture influences soil NH4+ and NO3? concentrations and hence possibly N availability and retention in the soil. Here, we evaluate the soil N status of two heavily weathered soils which contrast in texture (sandy versus clay Oxisol). Using 15N pool dilution, we quantified gross rates of soil N cycling and retention. We also measured the δ15N signatures from the litter layer down to 50-cm depth mineral soil and calculated the overall 15N enrichment factor (ε) for each soil type. The clay soil showed high gross N mineralization and nitrification rates and a high overall 15N enrichment factor, signifying high N losses. The sandy soil had low gross rates of N cycling and 15N enrichment factor, manifesting a conservative soil N cycling. Faster turnover rates of NH4+ compared to NO3? indicated that NH4+ cycles faster through microorganisms than NO3?, possibly contributing to better retention of NH4+ than NO3?. However this was opposite to abiotic retention processes, which showed higher conversion of NO3? to the organic N pool than NH4+. Our combined results suggest that clay Oxisol in Amazonian forest have higher N availability than sandy Oxisol, which will have important consequences for changes in soil N cycling and losses when projected increase in anthropogenic N deposition will occur.  相似文献   

11.
Considerable progress has been made in understanding the impacts of soil frost on carbon (C) and nitrogen (N) cycling, but the effects of soil frost on C and N fluxes during snowmelt remain poorly understood. We conducted a laboratory experiment to determine the effects of soil frost on C and N fluxes from forest floor soils during snowmelt. Soil cores were collected from a sugar maple (Acer saccharum)–American beech (Fagus grandifolia) and a red spruce (Picea rubens)–balsam fir (Abies balsamea) forest at the Hubbard Brook Experimental Forest in New Hampshire, U.S.A. Soils were exposed to one of three temperature treatments, including severe (?15 °C), mild (?0.5 °C), and no soil frost (+5 °C) conditions. After one week the soils were incubated at +5 °C and snow was placed on top of the soils to simulate spring snowmelt. NO3? losses were up to 5.5 mg N kg?1 soil greater in the mild soil frost treatment than the severe soil frost treatment. Net losses of NH4+ and DON in leachate were up to 19 and 18 mg N kg?1 soil greater in the no soil frost and mild soil frost treatments, respectively, than the severe soil frost treatment. In contrast, soil frost did not have a significant impact on dissolved organic C or cumulative gaseous fluxes of C and N throughout the snowmelt period. However, the total cumulative flux of C (i.e. dissolved organic C + CO2 + CH4) and N (i.e. dissolved organic N + NH4 + NO3 + N2O) in the severe soil frost treatment were between one quarter and one half that observed in the no soil frost treatment for both forest types. Together, the results of this study show that total fluxes of N in leachate, as well as total cumulative C and N fluxes (gases + leachate), were significantly reduced following severe soil frost. We conclude that the extent to which C and N cycling during snowmelt is altered in response to changes in winter climate depend on both the presence and severity of soil frost.  相似文献   

12.
The contribution of bacteria and fungi to NH4+ and organic N (Norg) oxidation was determined in a grassland soil (pH 6.3) by using the general bacterial inhibitor streptomycin or the fungal inhibitor cycloheximide in a laboratory incubation study at 20°C. Each inhibitor was applied at a rate of 3 mg g?1 oven‐dry soil. The size and enrichment of the mineral N pools from differentially (NH415NO3 and 15NH4NO3) and doubly labelled (15NH415NO3) NH4NO3 were measured at 3, 6, 12, 24, 48, 72, 96 and 120 hours after N addition. Labelled N was applied to each treatment, to supply NH4+‐N and NO3?‐N at 3.15 μmol N g?1 oven‐dry soil. The N treatments were enriched to 60 atom % excess in 15N and acetate was added at 100 μmol C g?1 oven‐dry soil, to provide a readily available carbon source. The oxidation rates of NH4+ and Norg were analysed separately for each inhibitor treatment with a 15N tracing model. In the absence of inhibitors, the rates of NH4+ oxidation and organic N oxidation were 0.0045 μmol N g?1 hour?1 and 0.0023 μmol N g?1 hour?1, respectively. Streptomycin had no effect on nitrification but cycloheximide inhibited the oxidation of NH4+ by 89% and the oxidation of organic N by more than 30%. The current study provides evidence to suggest that nitrification in grassland soil is carried out by fungi and that they can simultaneously oxidize NH4+ and organic N.  相似文献   

13.
The response of terrestrial ecosystems to elevated atmospheric CO2 is related to the availability of other nutrients and in particular to nitrogen (N). Here we present results on soil N transformation dynamics from a N-limited temperate grassland that had been under Free Air CO2 Enrichment (FACE) for six years. A 15N labelling laboratory study (i.e. in absence of plant N uptake) was carried out to identify the effect of elevated CO2 on gross soil N transformations. The simultaneous gross N transformation rates in the soil were analyzed with a 15N tracing model which considered mineralization of two soil organic matter (SOM) pools, included nitrification from NH4+ and from organic-N to NO3 and analysed the rate of dissimilatory NO3 reduction to NH4+ (DNRA). Results indicate that the mineralization of labile organic-N became more important under elevated CO2. At the same time the gross rate of NH4+ immobilization increased by 20%, while NH4+ oxidation to NO3 was reduced by 25% under elevated CO2. The NO3 dynamics under elevated CO2 were characterized by a 52% increase in NO3 immobilization and a 141% increase in the DNRA rate, while NO3 production via heterotrophic nitrification was reduced to almost zero. The increased turnover of the NH4+ pool, combined with the increased DNRA rate provided an indication that the available N in the grassland soil may gradually shift towards NH4+ under elevated CO2. The advantage of such a shift is that NH4+ is less prone to N losses, which may increase the N retention and N use efficiency in the grassland ecosystem under elevated CO2.  相似文献   

14.
The soil nitrogen (N) cycle exhibits a variety of complex biochemical reactions in which N species such as NO2, NO and N2O are produced and consumed by co‐existing processes that respond differently to the local environmental conditions. Key to understanding the soil N cycle in its full complexity is the development and application of methods that allow a quantification of individual pathways and processes that are responsible for the build‐up and/or emission of N compounds. Triplet 15N tracer experiments (TTE) have been developed and applied to allow a source‐related quantification of N species such as NO2, and N2O by different biochemical pathways (e.g. ammonia oxidation and nitrate reduction) that are related to multiple N sources (NH4+, NO3 and Norg). An analysis of a TTE requires the application of either a numerical or analytical model. Because of the ease of application it is desirable to use analytical models. However, available analytical solutions suffer from serious drawbacks concerning the quantification of N fluxes related to soil organic N. In this paper we describe the development and application of a new inverse abundance approach (IAA) to analyse a TTE. Theoretical and experimental data sets of soil N2O release were analysed by the new method. The IAA was also applied to an already existing data set to identify fractions of the soil nitrite pool related to NH4+, NO3 and Norg. We show that the IAA provides a reliable and comprehensive data evaluation of a TTE.  相似文献   

15.
Dissolved organic nitrogen (DON) represents a significant pool of soluble N in many soils and freshwaters. Further, the low molecular weight (LMW) component of DON represents an important source of N for microorganisms and can also be utilized directly by some plants. Our purpose was to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant block in soil N supply in three agricultural grassland soils. The results indicate that the conversion of insoluble organic N to LMW-DON and not LMW-DON to NH4+ or NH4+ to NO3 represents a major constraint to N supply. We hypothesize that there are two distinct DON pools in soil. The first pool comprises mainly free amino acids and proteins and is turned over very rapidly by the microbial community, so it does not accumulate in soil. The second pool is a high molecular weight pool rich in humic substances, which turns over slowly and represents the major DON loss to freshwaters. The results also suggest that in NO3 rich soils the uptake of LMW-DON by soil microorganisms may primarily provide them with C to fuel respiration, rather than to satisfy their internal N demand.  相似文献   

16.
Analysis and behavior of soluble organic nitrogen in forest soils   总被引:2,自引:0,他引:2  

Background, aim, and scope  

A large proportion of soil nitrogen (N; >80%) is present in organic form. Current research on plant N uptake in terrestrial ecosystems has focused mainly on inorganic N such as ammonium (NH4 +) and nitrate (NO3 ), while soluble organic N (SON) has received little attention. In recent years, the increasing evidence showing the direct uptake of various amino acids by plants and the predominance of the organic form in N loss by leaching in many forest ecosystems has drawn attention to critically re-examine the nature and the ecological role of soil SON in terrestrial N cycling. However, little is known about the sources and dynamics, chemical nature, and ecological functions of soil SON in forest ecosystems. This paper reviews recent advances in the areas of research on current techniques for characterizing soil SON and the size, nature, and dynamics of soil SON pools in forest ecosystems.  相似文献   

17.
《Applied soil ecology》2007,35(2):390-403
A plan was developed to apply biosolid to soil of the former lake Texcoco to fertilize the pioneer vegetation. Because, no information exists about how differences in electrolytic conductivity (EC) might affect mineralization of biosolid and dynamics of C and N in soil, 20 soil samples forming a gradient in EC ranging from 22 to 150 dS m−1 were characterized, amended with 500 mg biosolid C kg−1 dry soil and incubated aerobically at 22 ± 2 °C while production of CO2, concentrations of ammonium (NH4+), nitrite (NO2), and nitrate (NO3), and NH3 volatilization were monitored at 22 ± 2 °C for 70 days. Soil characteristics showed large variations with maximum values often >10-times larger than minimum values. The production of CO2 in the unamended soil ranged from 25 to 159 mg CO2-C kg−1 day−1 and NH3 volatilization from 0 to 189 μg NH3-N kg−1 day−1. Application of biosolid increased production of CO2 significantly 1.4-fold and volatilization of NH3 11.5-fold. The EC explained most of the variation in production of CO2, while particle size distribution explained most of the variation in volatilization of NH3. The concentration of NH4+ in the biosolid-amended soil decreased sharply in the first 14 days, with the EC explaining most of the variation found, and remained constant thereafter with a small increase at day 70. Significant increases in the concentration of NO3 were generally found in soil with EC < 64 dS m−1. The EC explained most of the variation in production of CO2, and dynamics of NH4+ and NO3 while clay positively and sand content negatively affected NH3 volatilization. It was found that increases in EC inhibited C and N mineralization in soil of the former lake Texcoco.  相似文献   

18.
Dissolved organic matter (DOM) plays a central role in driving biogeochemical processes in soils, but little information is available on the relation of soil DOM dynamics to microbial activity. The effects of NO3 and NH4+ deposition in grasslands on the amount and composition of soil DOM also remain largely unclear. In this study, a multi-form, low-dose N addition experiment was conducted in an alpine meadow on the Qinghai–Tibetan Plateau in 2007. Three N fertilizers, NH4Cl, (NH4)2SO4 and KNO3, were applied at four rates: 0, 10, 20 and 40 kg N ha−1 yr−1. Soil samples from surface (0–10 cm) and subsurface layers (10–20 cm) were collected in 2011. Excitation/emission matrix fluorescence spectroscopy (EEM) was used to assess the composition and stability of soil DOM. Community-level physiological profile (CLPP, basing on the BIOLOG Ecoplate technique) was measured to evaluate the relationship between soil DOC dynamics and microbial utilization of C resources. Nitrogen (N) dose rather than N form significantly increased soil DOC contents in surface layer by 23.5%–35.1%, whereas it significantly decreased soil DOC contents in subsurface layer by 10.4%–23.8%. Continuous five-year N addition significantly increased the labile components and decreased recalcitrant components of soil DOM in surface layer, while an opposite pattern was observed in subsurface layer; however, the humification indices (HIX) of soil DOM was unaltered by various N treatments. Furthermore, N addition changed the amount and biodegradability of soil DOM through stimulating microbial metabolic activity and preferentially utilizing organic acids. These results suggest that microbial metabolic processes dominate the dynamics of soil DOC, and increasing atmospheric N deposition could be adverse to the accumulation of soil organic carbon pool in the alpine meadow on the Qinghai-Tibetan Plateau.  相似文献   

19.
Temperate forests dominated by Quercus spp. cover large parts of Central Mexico and rural communities depend on these forests for wood and charcoal. The impacts of charcoal production on selected chemical properties including C and N dynamics, and populations of ammonifiers, nitrifiers and denitrifiers were investigated on surface soils (0–15 cm) collected during the dry and rainy season of these forests. Organic C was halved in soil at the kiln sites compared to undisturbed forest soil. Concentrations of exchangeable Ca2+, K+ and Mg2+ increased >1.6 times at kiln sites and pH increased from 4.5 in undisturbed soil to 7.0 at kiln sites. The kiln sites had 1.3 times and 2.4 times lower microbial biomass C and N, respectively, than undisturbed forest sites during the rainy season. Although the effect of charcoal production on NH4+, NO2? and NO3? concentrations was small, the ammonifying, nitrifying and denitrifiers were 16 times lower at the kiln sites than in the undisturbed forest soil. This research found that the charcoal production had a negative effect on the cultivable microorganisms involved in N cycling and the soil microbial biomass C and N compared to undisturbed forest soil. Differences in inorganic N dynamics were more affected by seasonality, i.e. precipitation, than by charcoal production.  相似文献   

20.
Nutrient addition has a significant impact on plant growth and nutrient cycling. Yet, the understanding of how the addition of nitrogen (N) or phosphorus (P) significantly affects soil gross N transformations and N availability in temperate desert steppes is still limited. Therefore, a 15N tracing experiment was conducted to study these processes and their underlying mechanism in a desert steppe soil that had been supplemented with N and P for 4 years in northwestern China. Soil N mineralization was increased significantly by P addition, and N and P additions significantly promoted soil autotrophic nitrification, rather than NH4+-N immobilization. The addition of N promoted dissimilatory NO3 reduction to NH4+, while that of P inhibited it. Soil NO3-N production was greatly increased by N added alone and by that of N and P combined, while net NH4+-N production was decreased by these treatments. Soil N mineralization was primarily mediated by pH, P content or organic carbon, while soil NH4+-N content regulated autotrophic nitrification mainly, and this process was mainly controlled by ammonia-oxidizing bacteria rather than archaea and comammox. NH4+-N immobilization was mainly affected by functional microorganisms, the abundance of narG gene and comammox Ntsp-amoA. In conclusion, gross N transformations in the temperate desert steppe largely depended on soil inorganic N, P contents and related functional microorganisms. Soil acidification plays a more key role in N mineralization than other environmental factors or functional microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号