首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under alkaline conditions, amino acids or proteins catalyze the deacetylation of citral, a major aroma component, resulting in methylheptenone and acetaldehyde formation. 3-Hydroxycitronellal is an intermediate in this reaction. Amino acids also catalyze the cis-trans isomerization of the pure isomers of citral, geranial, and neral. Most likely the amino acids are involved in stabilizing intermediates of the isomerization and deacetylation reaction of citral. On the basis of the findings presented, some consequences for the application of citral, or its isomers, in food are discussed.  相似文献   

2.
The influence of fungicide concentration and treatment temperature on residue levels of pyrimethanil (PYR) in comparison with the commonly used fungicide imazalil (IMZ) was investigated in orange fruits following postharvest dip treatments. The dissipation rate of PYR residues was recorded as a function of storage conditions. The fungicide efficacy against green and blue molds caused by Penicillium digitatum and Penicillium italicum, respectively, was evaluated on different citrus varieties following the fungicide application at 20 or 50 degrees C. Residue levels of PYR in Salustiana oranges were significantly correlated with the fungicide dosage, but residue concentrations were notably higher (ca. 13-19-fold) after treatment at 50 degrees C as compared to treatments at 20 degrees C. After treatment at temperatures ranging from 20 to 60 degrees C, PYR and IMZ residues in Salustiana oranges were significantly correlated with dip temperatures. Dissipation rates of PYR during storage were negligible in both Salustiana and Tarocco oranges. Results obtained on wounded, noninoculated Miho satsumas revealed that when treatments were performed at 50 degrees C, PYR or IMZ concentrations needed to achieve the complete control of decay were 8- and 16-fold less than by treatment at 20 degrees C. When fruits were inoculated with either P. digitatum or P. italicum, the application of 400 mg L(-1) PYR at 20 degrees C or 100 mg L(-1) PYR at 50 degrees C similarly reduced green and blue mold development. These results were corroborated by storage trials on Marsh grapefruits and Tarocco oranges. The lowest concentration of PYR required to achieve almost total protection of the fruit against decay accounted for 100 mg L(-1) at 50 degrees C and 400 mg L(-1) at 20 degrees C, respectively. Treatments did not affect fruit external appearance, flavor, and taste. It is concluded that postharvest PYR treatment represents an effective option to control green and blue mold in citrus fruit and that integration of fungicide applications and hot water dips may reduce the possibility of selecting fungicide-resistant populations of the pathogen, as a consequence of increased effectiveness of the treatment.  相似文献   

3.
Following sodium carbonate treatment, accumulation of scoparone (6,7-dimethoxycoumarin) but not scopoletin (6-methoxy-7-hydroxycoumarin) was found in the albedo of wounded fruit from different Citrus sp. and cultivars. Treating wounded mandarin fruit cv. Fairchild with 5% Na(2)CO(3) (SC) lead to a scoparone accumulation in the albedo of 310, 361, and 382 microg g(-1) fresh weight after 7, 10, and 15 days, respectively. Scoparone accumulation was associated with a decrease in decay severity. When oranges cv. Biondo comune wounded and treated with 5% SC were inoculated with Penicillium digitatum or Penicillium italicum conidia 3 days posttreatment, the decay percentage as compared to untreated wounds was reduced by 97.2 and 93.9%, respectively. Observations by scanning electron microscopy of wounded Citrus fruits treated at 20 degrees C with 2, 3, 4, or 5% (w/v) solutions of sodium carbonate showed structural modifications to the albedo as well as damage to 24-48 h old mycelia of P. digitatum, the cause of citrus green mold. Modifications were more evident in orange, lemon, and grapefruit as compared to mandarin fruit. The efficacy of the treatment was strictly related to the SC interaction with the albedo tissue that, in addition to structural changes, significantly increased tissue pH, affecting P. digitatum pathogenicity. The SC remaining as a film on unwounded flavedo had no effect in preventing contact infection by the Penicillia.  相似文献   

4.
Wheat ( Triticum spp.) histones H1, H2, H3, and H4 were extracted, and H1 was further purified. The effect of these histones on specific fungi that may or may not be pathogenic to wheat was determined. These fungi included Aspergillus flavus , Aspergillus fumigatus , Aspergillus niger , Fusarium oxysporum , Fusarium verticillioides , Fusarium solani , Fusarium graminearum , Penicillium digitatum , Penicillium italicum , and Greeneria uvicola . Non-germinated and germinating conidia of these fungi were bioassayed separately. The non-germinated and germinating conidia of all Fusarium species were highly susceptible to the mixture (H1-H4) as well as pure H1, with viability losses of 99-100% found to be significant (p < 0.001) at ≤10 μM or less for the histone mixture and pure H1. F. graminearum was the most sensitive to histone activity. The histones were inactive against all of the non-germinated Penicillium spp. conidia. However, they significantly reduced the viability of the germinating conidia of the Penicillium spp. conidia, with 95% loss at 2.5 μM. Non-germinated and germinating conidia viability of the Aspergillus spp. and G. uvicola were unaffected when exposed to histones up to 10 μM. Results indicate that Fusarium spp. pathogenic to wheat are susceptible to wheat histones, indicating that these proteins may be a resistance mechanism in wheat against fungal infection.  相似文献   

5.
The potential of postharvest dip treatments with fludioxonil (FLU) (a synthetic analogue of the bacterial metabolite of pyrrolnitrin), in controlling postharvest decay caused by Penicillium digitatum and Penicillium italicum of citrus fruit was investigated in comparison with the conventional fungicide imazalil (IMZ). The ultrastructural changes of fruit epicuticular wax was investigated as a function of water dip temperature, and the possible role of these changes was related to residue accumulation under FLU treatment. Residues retained by fruit were determined as a function of fungicide concentration, dip temperature, and fruit storage conditions. Scanning electron microscopy analysis revealed that fruit dipping in water at 30 or 40 degrees C did not cause differences in cuticular wax's ultrastructure in comparison to control fruit, while treatments at 50, 55, or 60 degrees C caused the disappearance of wax platelets, resulting in relatively homogeneous skin surface, due to partial "melting" of epicuticular wax. Residues of FLU in fruit treated at 20 or 50 degrees C were significantly correlated with the doses of fungicide applied. When equal amounts of fungicide were employed, the residue concentrations were notably higher (from 2.6- to 4-fold) in fruit treated at 50 degrees C than in fruit treated at 20 degrees C. The dissipation rate of FLU in "Salustiana" and "Tarocco" oranges was lower in fruit subjected to treatment at 50 degrees C. The minimal FLU concentration for almost complete decay control in artificially wounded fruit during 7-d storage at 20 degrees C was 400 mg/L active ingredient (ai) in fruit treated at 20 degrees C and 100 mg/L ai in fruit treated at 50 degrees C. Results on nonwounded Tarocco oranges subjected to 3 weeks of simulated quarantine conditions at 1 degrees C, plus 6 weeks of standard storage at 8 degrees C and an additional two weeks of simulated marketing period (SMP) at 20 degrees C revealed that almost complete decay control with FLU applications of 100 mg/L at 50 degrees C and 400 mg/L at 20 degrees C resulted in ca. 0.8 mg/kg FLU fruit residues, in agreement with results on wounded citrus fruit. When equal concentrations and temperatures were applied, FLU treatments were as effective as IMZ. In vitro trials showed a low sensitivity to FLU against P. digitatum and P. italicum isolates. MIC values for the complete inhibition of mycelium growth were >or=100 microg/mL, while ED(50) values ranged from 0.1 to 1 microg/mL for P. digitatum and from 1 to >100 microg/mL for P. italicum. The latter result suggests that care should be taken to avoid exclusive application of FLU in a sustainable program for management of fruit decay. However, integrating fungicide application and hot water dip may reduce the possibility of selecting fungicide-resistant populations of the pathogen, by increasing the effectiveness of the treatment.  相似文献   

6.
Ginger oil, obtained by steam distillation of the rhizome of Zingiber officinale Roscoe, is used in the beverage and fragrance industries. Ginger oil displays considerable compositional diversity, but is typically characterized by a high content of sesquiterpene hydrocarbons, including zingiberene, ar-curcumene, beta-bisabolene, and beta-sesquiphellandrene. Australian ginger oil has a reputation for possessing a particular "lemony" aroma, due to its high content of the isomers neral and geranial, often collectively referred to as citral. Fresh rhizomes of 17 clones of Australian ginger, including commercial cultivars and experimental tetraploid clones, were steam distilled 7 weeks post-harvest, and the resulting oils were analyzed by GC-MS. The essential oils of 16 of the 17 clones, including the tetraploid clones and their parent cultivar, were found to be of substantially similar composition. These oils were characterized by very high citral levels (51-71%) and relatively low levels of the sesquiterpene hydrocarbons typical of ginger oil. The citral levels of most of these oils exceeded those previously reported for ginger oils. The neral-to-geranial ratio was shown to be remarkably constant (0.61 +/- 0.01) across all 17 clones. One clone, the cultivar "Jamaican", yielded oil with a substantially different composition, lower citral content and higher levels of sesquiterpene hydrocarbons. Because this cultivar also contains significantly higher concentrations of pungent gingerols, it possesses unique aroma and flavor characteristics, which should be of commercial interest.  相似文献   

7.
The objective of this study was to investigate and compare the in vitro efficacy and in vivo potential of eight distinct short antimicrobial peptides to control the postharvest green mold disease of oranges caused by the fungus Penicillium digitatum. The L-amino acid versions of the four peptides PAF26, PAF38, PAF40, and BM0, previously obtained by combinatorial approaches, were examined. The study included two antibacterial peptides formerly identified by rational design, BP15 and BP76, and it is demonstrated that they also have in vitro antifungal properties. The natural antimicrobial peptides melittin and indolicidin were also selected for comparison, due to their well-known properties and modes of action. In vitro and in vivo results indicated differential behaviors among peptides, regarding the inhibitory potency in growth media, selectivity against distinct microorganisms, fungicidal activity towards nongerminated conidia of P. digitatum, and efficacy in fruit inoculation assays. Interestingly, a high in vitro inhibitory activity did not necessarily associate with an effective control of fruit infection by P. digitatum. The short tryptophan-rich cationic peptides PAF26, PAF38, PAF40, and BM0 were lethal to conidia of P. digitatum, and this property is correlated with better protection in the decay control test.  相似文献   

8.
A method for the inclusion of imazalil (IMZ) in the beta-cyclodextrin (betaCD), structural characterization of the inclusion complex and its antifungal activity against Penicillium digitatum and P. italicum assessed by in vitro and in vivo tests are reported. According to the starting stoichiometry of betaCD with respect to IMZ, an equimolar ratio beta-cyclodextrin-IMZ (betaCD-IMZ) was detected by (1)H NMR. In vitro assays showed that the freshly prepared betaCD-IMZ was as effective as IMZ, although 1- and 4-day-old betaCD-IMZ mixtures were more effective. Studies on Star Ruby grapefruit showed no significant differences in residue uptake between treatments with an IMZ commercially available fungicide (Deccozil) or betaCD-IMZ when equal active ingredient (a.i.) concentrations (250 mg/L) and dip temperatures (20 or 50 degrees C) were used. By contrast, treatments of Tarocco oranges and Di Massa lemons with 250 mg/L betaCD-IMZ at 50 degrees C produced significant differences in residue uptake in comparison with 250 mg/L Deccozil treatments at 50 degrees C. The a.i. degradation rate in grapefruit during postquarantine and simulated marketing period (SMP) at 20 degrees C was not affected by the type of formulation used, whether at 20 or 50 degrees C. Conversely, IMZ in oranges and lemons had greater persistence when applied at 50 degrees C. All fungicide treatments showed a comparable efficacy against decay in grapefruit and oranges, whereas treatment in lemons at 250 mg/L a.i. of heated fungicides had higher suppressive effects against decay than unheated chemicals having equal a.i. concentrations and comparable activity at 1200 mg/L IMZ at 20 degrees C.  相似文献   

9.
The effects of wounding oil glands of lemon [Citrus limon (L.) Burm.] fruit were investigated. Young mature-green lemons demonstrated significantly lower decay incidence than older yellow fruit when their oil glands were punctured in the presence of postharvest wound pathogen Penicillium digitatum Sacc. Contact with the released gland content on the green lemon surface reduced the viability of P. digitatum spores approximately twice. Wounding caused rapid production of limonene hydroperoxides that persisted for only a few minutes. The magnitude depended on the physiological maturity of the fruit; mature-green fruit produced much higher levels than did yellow lemons. Furthermore, wounding of the oil glands or injection of limonene hydroperoxides into the lemon peel elicited the production of the citrus fruit phytoalexins, scoparone and scopoletin, to levels known to be effective in reducing decay caused by P. digitatum. The mature-green fruit produced about twice as much of these phytoalexins as the older yellow fruit. This induced defensive elicitation of phytoalexin production, as well as the direct effects of these antifungal compounds, markedly inhibited the pathogen in mature-green fruits but was ineffective in older yellow ones.  相似文献   

10.
为了寻求一种安全有效的方法防治由意大利青霉(Penicillium italicum)引起的柑橘青霉病,该研究分析了碳酸铵作为通常认为安全的药剂抑制意大利青霉生长的可能作用机制及对脐橙、皇帝柑、沃柑3种不同类型柑橘贮藏品质的影响。结果表明,碳酸铵能抑制意大利青霉孢子萌发和菌丝生长,且呈现剂量依赖效应,在质量浓度分别为 0.4 g/L和0.8 g/L时可完全抑制孢子萌发和菌丝生长。结构观察表明,碳酸铵引起菌丝生长节点稀疏和分支减少;超微结构观察发现菌丝严重皱缩,菌丝线粒体结构异常。生理生化分析表明,碳酸铵处理,引起线粒体的钠/钾离子ATP酶(Na+/ K+-ATPase)、钙离子ATP酶(Ca2+-ATPase)和镁离子ATP酶(Mg2+-ATPase)活性下降,导致还原型谷胱甘肽(Reduced Glutathione,GSH)含量及谷胱甘肽还原酶(Glutathione Reductase,GR)活性降低,活性氧清除体系超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化氢酶(Catalase,CAT)、过氧化物酶(Peroxidase,POD)活性紊乱,促进H2O2积累。添加活性氧清除剂半胱氨酸(Cysteine,Cys)能部分恢复碳酸铵处理的病菌孢子萌发。活体接种表明,16 g/L碳酸铵处理显著减小了柑橘果实接种意大利青霉的病斑直径(P<0.05),减轻果实发病。碳酸铵处理能降低3种类型柑橘果实自然发病率,且对果实失重率、色泽、可溶性固形物、可滴定酸、维生素C、还原糖含量无不良影响。结果表明,碳酸铵通过损伤意大利青霉菌丝线粒体结构和功能,促进活性氧积累来发挥抗真菌活性,碳酸铵可以作为杀菌剂的绿色有效替代方法,研究结果为碳酸铵防治柑橘果实采后腐烂提供参考。  相似文献   

11.
Single-strength orange juice was irradiated with 0, 0.89, 2.24, 4.23, and 8.71 gGy of gamma radiation at 5 degrees C and then stored at 7 degrees C for 21 days. Volatile compounds, isolated by solid-phase microextraction, were separated and identified using a gas chromatograph equipped with a mass selective detector. The majority of the volatile compounds were terpenes, and the most abundant volatile compounds were ethanol and limonene. Most volatile compounds were stable during the 21-day storage period except geranial and neral which decreased over time. Irradiation reduced the concentration of acyclic monoterpenes, such as geranial, neral, myrcene, and linalool 1 and 7 days after irradiation, but did not affect other monoterpenes, sesquiterpenes, or other volatile compounds. The reduction of acyclic monterpenes increased linearly with radiation dose, and correlated with an increase in thiobarbituric acid reactive substrates (TBARS) content. Reduction in the concentration of monoterpenes induced by irradiation was not significant 21 days after irradiation. Our results indicate that acyclic monoterpenes are sensitive to irradiation whereas most other volatile compounds are resistant.  相似文献   

12.
The present study was conducted to investigate the ability of black tea theaflavins to inhibit the off-odor formation from citral under acidic aqueous conditions. Acidic buffer solutions (pH 3.0) containing citral (10 mg/L) and an inhibitor (0-5 mg/L) were stored at 40 degrees C for 2 weeks. The formation of possible off-odorants p-cresol and p-methylacetophenone in the citral solutions was monitored by high-performance liquid chromatography. A mixture of the theaflavins showed inhibitory effects on the formation of both p-cresol and p-methylacetophenone with 50% inhibitory concentrations (IC(50)) of 0.18 and 0.10 mg/L, respectively. Individual theaflavins and a structurally related compound, purpurogallin, also inhibited the formation of both off-odorants, with the lowest IC(50) values for theaflavin 3,3'-digallate (0.17 and 0.06 mg/L for p-cresol and p-methylacetophenone, respectively). On the other hand, a mixture of green tea catechins and its major constituent, (-)-epigallocatechin gallate, showed relatively high IC(50) values for the formation of p-methylacetophenone (1.29 and 1.28 mg/L, respectively) and showed no inhibitory effect on the formation of p-cresol. The results of the sensory evaluation showed that the off-odor intensity of the stored citral solution was significantly decreased by the addition of the theaflavin mixture at concentrations of 0.5 mg/L and above. In addition, the calculation of the odor activity values (OAVs) for the volatile compounds detected by a gas chromatographic analysis indicated that the total OAVs of the major volatile compounds in the citral solution were significantly decreased by the addition of the theaflavins.  相似文献   

13.
The effects of acetaldehyde, benzaldehyde, cinnamaldehyde, ethanol, benzyl alcohol, nerolidol, 2-nonanone, beta-ionone, and ethyl formate vapors on the growth of Rhizopus stolonifer, Penicillium digitatum, Colletotrichum musae, Erwinia carotovora, and Pseudomonas aeruginosa on agar medium were evaluated. The aldehydes were found to be the strongest growth inhibitors and the most lethal to the fungal spores and mycelia and bacterial cells. The average minimum inhibitory concentrations (MICs) of aldehydes that were germicidal to decay microorganisms were 0.28, 0.49, and 0.88 mmol per Petri dish, for cinnamaldehyde, benzaldehyde, and acetaldehyde, respectively. Ethanol also inhibited growth completely, but the MIC, which was 14.6 mmol per Petri dish, was significantly higher than those of the aldehydes. Ethanol can be considered germistatic because the alcohol does not inhibit germination of spores completely; it completely controlled only mycelial growth. The ketones tended to be effective only on P. digitatum and C. musae, whereas ethyl formate was not effective except on P. digitatum. The concentration of a volatile compound in the headspace of the Petri dish and its diffusion into the medium largely determined its efficacy against decay microorganisms.  相似文献   

14.
Some essential oils obtained from the branches of four Pinus species (P. pinea L., P. halepensis Mill., P. pinaster Soil in Ait., and P. nigra Arnold) have been evaluated for their acaricidal activity by aerial diffusion against the stored food mite Tyrophagus putrescentiae (L.). All the essential oils showed a good efficacy, but P. pinea oil and its two constituents 1,8-cineole and limonene were the most effective compounds, showing 100% acaricidal activity at 8 microL; 1,8-cineole showed the same activity at 6 microL.  相似文献   

15.
Thymus pulegioides L. with lemon and carvacrol odor form the major part of plants growing wild in all 10 investigated localities during 1995-1997. The main components of the citral-geraniol chemotype of lemon-scented essential oil are the following (%): geraniol (14.9-30. 8), geranial (trans-citral, 9.7-19.7), beta-caryophylene (6.0-11.4), nerol (4.1-11.8), and neral (cis-citral, 0.1-9.5). The essential oil of carvacrol chemotypes contain more compounds that are characteristic of the thyme genus (%): carvacrol (16.0-22.2), beta-bisabolene (11.1-20.2), beta-caryophyllene (11.1-19.1), gamma-terpinene (5.8-16.2), p-cimene (5.5-10.4), thymol (3.3-9.8), and carvacrol methyl ether (5.6-8.6). The correlation between the odor and composition of the essential oil will help the users of wild thyme to choose the necessary chemotype for their purposes.  相似文献   

16.
The isolated essential oils from seven air-dried plant species were analyzed by gas chromatography-mass spectrometry (GC-MS). Thymus vulgaris (thyme), Origanum vulgare (oregano), and Origanumdictamus (dictamus) essential oils were found to be rich in phenolic compounds representing 65.8, 71.1, and 78.0% of the total oil, respectively. Origanum majorana (marjoram) oil was constituted of hydrocarbons (42.1%), alcohols (24.3%), and phenols (14.2%). The essential oil from Lavandula angustifolia Mill. (lavender) was characterized by the presence of alcohols (58.8%) and esters (32.7%). Ethers predominated in Rosmarinus officinalis (rosemary) and Salvia fruticosa (sage) essential oils, constituting 88.9 and 78.0%, respectively. The radial growth, conidial germination, and production of Penicillium digitatum were inhibited completely by oregano, thyme, dictamus, and marjoram essential oils at relatively low concentrations (250-400 microg/mL). Lavender, rosemary, and sage essential oils presented less inhibitory effect on the radial growth and conidial germination of P. digitatum. Conidial production of P. digitatum was not affected by the above oils at concentrations up to 1000 microg/mL. Apart from oregano oil, all essential oils were more effective in the inhibition of conidial germination than of radial growth. The monoterpene components, which participate in essential oils in different compositions, seem to have more than an additive effect in fungal inhibition.  相似文献   

17.
The essential oil of leaves and peel from the Cretan variety Zambetakis (Citrus limon) was obtained by steam distillation with a Clevenger apparatus. The essential oil was subjected to GC-MS analysis, and 35 substances were identified. The main component in both essential oils was limonene. beta-Pinene, myrcene, neral, geranial, neryl acetate, geranyl acetate, and beta-caryophyllene have been identified in the leaf oil. The peel oil contained gamma-terpinene, beta-pinene, myrcene, neral, and geranial. The quantification of volatile substances was based on the internal standard method, using octyl acetate as internal standard, and expressed in milligrams per kilogram of the essential oil. The high contents of neral and geranial were indicative of the high quality of both essential oils. The aroma profile and quantitative variations among the essential oil components were measured at six different time intervals over a period of greater than one year. Differences between the components of lemon leaves and peel were observed.  相似文献   

18.
Climacteric Fuji apples were treated with 10 microL x L(-1) MCP (1-methylcyclopropene), 2 mmol x L(-1) MJ (methyl jasmonate), or a combination of 10 microL x L(-1) MCP and 2 mmol x L(-1) MJ. Fruit were kept at 20 degrees C for 15 days after treatment. Production of ethylene and other volatile compounds was measured prior to and 3, 7, 11, and 15 days after treatment. Ethylene production decreased 3 days following MJ treatment and then increased. MCP treatment alone or in combination with MJ inhibited ethylene production. MJ and MCP inhibited production of many volatile alcohols and esters. The production of individual alcohols and esters appears to be differentially inhibited by MJ or MCP. MJ and MCP inhibited not only production of alcohols but also formation of esters from alcohols.  相似文献   

19.
Three series of novel macrolactams and macrolactones--12-alkoxyimino-tetradecanlactam, 12-alkoxyiminopentadecanlactam, and 12-alkoxyiminodecanlactone derivatives (7A, 7B, and 7C)--were synthesized from corresponding 12-oxomacrolactams and 12-oxomacrolactone. Their structures were confirmed by 1H NMR and elemental analysis. The Z and E isomers of 7A and 7B were separated, and their configurations were determined by 1H NMR. These compounds showed fair to excellent fungicidal activities against Rhizoctonia solani Kühn. It is interesting that the Z and E isomers of most of the compounds have quite different fungicidal activities. The fact that the compounds have a gradual increase of fungicidal activity in the order of 7A, 7C, and 7B indicated that the macrocyclic derivatives with a hydrogen-bonding acceptor (=N-O-) and a hydrogen-bonding donor (-CONH-) on the ring, and a three methylenes distance (CH2CH2CH2) between these two functional groups, exhibited the best fungicidal activity. The bioassay also showed that 7B not only has good fungicidal activity but also may have a broad spectrum of fungicidal activities.  相似文献   

20.
Microencapsulation of lemon oil was undertaken by kneading with beta-cyclodextrin, at a beta-cyclodextrin to lemon oil ratio of 88:12 (w/w). The resulting paste samples of the complex were vacuum- or spray-dried. Ten selected lemon oil flavor volatiles (alpha-pinene, sabinene, beta-pinene, beta-myrcene, limonene, gamma-terpinene, terpinolene, linalool, neral, and geranial) in the complex were analyzed periodically after 1, 2, 5, 10, 15, 20, and 30 min of kneading time. The results indicated that the levels of these volatiles were not significantly different (P > 0.05) irrespective of mixing time or type of the drying (vacuum- or spray-drying) used. An optimum mixing time was found to be 15 min, at which time the maximum encapsulation of lemon oil (97.7 mg/g of beta-cyclodextrin) was obtained in the complex powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号