首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of various periods of exposure to suboptimal temperature ('warm breaks'– WB: 14 °C for 4 h, 1 h and 0 h – control in 24 h cycles) during chilling (5 °C) of maize seedlings on the photosynthesis, the photochemical efficiency of photosystem II (Fv/Fm) and on the injuries of the cell membranes of leaves and water content in plants was compared. The measurements were conducted after 1, 3, 7 and 12 chill cycles. It was found that WB of either length distinctly diminished the chill-induced inhibition of net photosynthesis and the decrease of photochemical efficiency of PSII. The protective effect on WB on these parameters was observed shortly after completion of chilling of the plant as well as an after-effect. Daily warming up of the plants also reduced the leakage of electrolytes and diminished the water deficit of the chilled seedlings. The protective effect of WB on the measured parameters of the plants was greater in the chill-sensitive genotype than in the chill-tolerant one, especially when plants were warmed up for 4 h. The results obtained are an indication that short periods of warm weather during cold spring may diminish the injuries of the photosynthetic apparatus, as well as reduce the disturbance of water status of seedlings, contributing in this way to better condition of maize crops.  相似文献   

2.
The effect of short warm breaks (from 15 min to 5 h) during chilling of three chilling-sensitive species (tomato, maize and soybean) was investigated. Injuries, intensity of net photosynthesis and antioxidant enzyme activity were measured. Throughout chilling treatment, plants were warmed by transferring them during the last few hours of the light phase from chilling temperature (5 °C for tomato and maize, 2 °C for soybean) to 20 °C. After warming, seedlings were moved back to chilling conditions. Warm breaks of 5 h almost entirely prevented the appearance of injuries, as measured by changes in leakage of electrolytes and tissue water content, during 12 days of chilling. Even a 15-min warm break ensured a significant decrease in injuries in chilled maize seedlings compared to continuously chilled seedlings. Inhibition of gas exchange and fluorescence in seedlings of two maize genotypes differing in chilling resistance was, to a small extent, prevented by 1-h warm breaks, while 4-h warm breaks reduced inhibition significantly. The length of the warm break (1 or 4 h) had no influence on changes in SOD activity compared to continuously chilled plants, but warm breaks of 4 h produced a significant increase in CAT activity. The possible influence of an alternative pathway in preventing injuries is discussed.  相似文献   

3.
We studied chilling-induced changes of 1-aminocydopropane-1-carboxylic acid (ACC) and of 1-(malonylamino) cyclopropane-1-carboxylic acid (MACC) contents in seedlings of ten maize genotypes with different chilling tolerance. Seedlings at the third leaf stage were chilled at 5°C and at 65% RH. Immediately before and after two and five days of chilling the contents of ACC and of MACC in the third leaf were measured. Water content and – after recovery – the degree of necrotic injuries and the percentage of seedling survival were also determined.
After 2 days of chilling, the ACC content increased in all genotypes investigated. The increase was significantly higher in the sensitive genotypes than in the tolerant ones. There was a significant correlation between ACC content and necrotic injuries of seedlings. Chilling for 5 days increased the ACC content further and the difference between the two groups of genotypes still existed.
The MACC content increased after 5 days of chilling in all genotypes investigated. The increase was greater in the tolerant genotypes than in the sensitive ones. However, the difference in MACC accumulation between the two groups of genotypes investigated was not significant, and thus no correlation between MACC accumulation and chilling susceptibility was found.
The possible causes for the increase of ACC and MACC contents under chilling conditions and the possibility of using the ACC content as an indicator of chilling tolerance in maize breeding are discussed.  相似文献   

4.
Recent studies on chilling tolerance mechanisms in maize revealed a significant positive correlation between genotypic chilling tolerance and chilling‐induced accumulation of the stress hormone abscisic acid (ABA) under controlled growth chamber conditions. Based on this and other results, the hypothesis was developed that chilling tolerance in maize is related to the ability to accumulate large amounts of ABA rapidly, as a protection against chilling injury. The objective of the present study was to test this hypothesis under field conditions during natural cold weather periods in spring, which often cause severe chilling injury in maize fields. In two experiments at two locations in Europe with contrasting climates, eight maize genotypes with different genotypic chilling tolerance were cultivated in spring in the field according to agronomic practice for maize. Before and at the end of cold weather periods, ABA levels and water contents were determined in the third leaves. It was found that chilling‐tolerant genotypes accumulated higher amounts of ABA during the chilling period than chilling‐sensitive genotypes. A significant positive correlation between chilling tolerance and the levels of ABA in the leaves was found. These results support the above‐mentioned hypothesis. In contrast to earlier studies performed under growth chamber conditions, the water content in chilled leaves was mostly higher than in non‐chilled leaves. The increase in ABA is therefore not attributable to chilling‐induced water deficit, but probably to the low temperature itself.  相似文献   

5.
The relations between the extent of injuries in seedlings caused by a few day-long exposures to chill (5°C) and the leakage of K+, Mg2+ and Ca2+ ions from the leaves as well as the electric potential in seven maize hybrids, were investigated. The permeability of cells to ions was defined based on their absolute concentration in a water diffusate (Ct) and concentration expressed in relation to the total ion content in the leaves (IL index).
At lowered temperature the hybrids of higher resistance to chilling temperature were characterized by a lower value of the IL index for K+ and Mg2+ ions than the chill-sensitive hybrids. On the other hand, absolute concentration of the ions (Ct) Mg2+ and Ca2+ leaking from the leaves before chill exposure of the seedlings was positively and highly correlated with the extent of injuries in hybrids caused by 4 day-long exposures to chill. This observation is evidence that the chill injuries were predetermined through increased cell permeability to the mentioned ions at room temperature.
Changes in the electric potential of leaves in conditions of lowered temperature preceded the injuries of leaves, which became apparent after a longer period of exposure to chill. Thus, as the leakage of Mg2+ and Ca2+ ions occurs, changes in the electric potential may supply early information about the predisposition of the particular maize hybrids to chilling injuries. Leakage measurements of Mg2+ and Ca2+ ions from the leaves at room temperature may find application in the selection of chill-tolerant maize genotypes.  相似文献   

6.
As maize is a chilling-sensitive crop, low temperatures during the early stages of development can be injurious to crop growth and development. Prime mechanism behind chilling-induced damage is oxidative stress. This study was undertaken to improve the chilling tolerance in hybrid maize by seed priming with KCl. For priming, seeds of the maize hybrid Hycorn 8288 were soaked in 50, 100 and 150 mg l−1 aerated solution of KCl for 24 h and then re-dried close to original weight. Primed and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Seed priming improved the performance of maize under both normal and stress conditions. It was found that the chilling tolerance in maize is well associated with the enhanced capacity of the anti-oxidative system. Priming with KCl significantly improved the chilling tolerance mainly by the activation of antioxidants including catalase, superoxide dismutase and ascorbate peroxidase enzymes. KCl treatments also improved the germination rate and time, root and shoot length, and fresh and dry weights of seedlings compared with control. Soluble sugars and α-amylase activity determined as general metabolic indicators of stress were also improved by seed priming with KCl. Other possible bases of chilling tolerance in maize included maintenance of high tissue water contents, reduced electrolyte leakage and carbohydrate metabolism. Seed treatment with 100 mg l−1 KCl was the best treatment to improve the performance of hybrid maize both under normal and chilling stress conditions.  相似文献   

7.
为了探讨外源NO供体(硝普钠, SNP)对水分亏缺下玉米叶片碳同化关键酶及抗氧化系统的影响及其调控机制, 在20% PEG-6000模拟水分亏缺胁迫下, 研究了SNP对玉米品种驻玉309幼苗叶片光合碳同化核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)和Rubisco活化酶(RCA)活性及其基因表达、抗氧化酶活性及其同工酶谱变化的影响。结果表明, 在水分亏缺胁迫下, SNP显著上调玉米叶片rbc L、rbc S、rca β基因的相对表达量, 尤其是叶片rbc S基因的相对表达量增加1.86倍, 叶片Rubisco、RCA活性分别提高32.7%和14.67%; 叶片超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性及其同工酶谱带的宽度和亮度显著增强, 而ROS积累量明显降低。说明在PEG水分亏缺胁迫下, SNP能显著提升玉米幼苗叶片光合碳同化能力及抗氧化酶活性, 降低ROS积累及其对细胞膜造成的损伤, 提高玉米的抗干旱性。  相似文献   

8.
Changes were determined in electrolyte leakage (EL), ATP content in leaves and intensity of net photosynthesis (FJ in maize seedlings as a result of continued exposure to low temperatures for several days or, after a cold night (5 °C, 9 h), alternating application of 5 °C and 20 °C temperatures during the lit phase of the day (h of chilling during day/night: 0/9, 5/9, 10/9, 15/9).
At continuous exposure to low temperatures, permanent reduction of ATP content occurred between days 7 and 10, while EL increased significantly between days 4 to 7 (depending on experimental conditions). Of three leaves differing in age, most injuries were found in the oldest leaf. An increased intensity of irradiation from 150 to 500 μE. m−2.s−1 caused an earlier decrease in the ATP content and a further increase in electrolyte leakage. ATP content showed a 24 h rhythm, it increased at the end of the night and decreased at the end of the day. The rhythm was particularly noticeable in the control plants (20 °C), as well as, however to a lesser extent, in plants exposed to daily fluctuating chilling temperatures. It has also been observed that higher temperatures occurring in day time may diminish electrolyte leakage induced by previous low temperatures
The intensity of Fn determined at 20 °C, 4 h after withdrawal of chilling, decreased with the prolongation of the chilling period during the day.
Thus, it may be assumed that the EL and Fn values as indicators of the plants' sensitivity are in better agreement with the induced chill doses than the ATP content in leaves, which to a greater extent depends on the interaction between chilling and other experimental factors, such as irradiation intensity or the sequence of light and darkness.  相似文献   

9.
低温胁迫下籽用西瓜幼苗生理变化与耐冷性的研究   总被引:3,自引:0,他引:3  
杨燕  王萍  赵清岩  张岩 《华北农学报》2012,27(3):156-160
以三叶一心期的籽用西瓜幼苗为材料,采用10℃低温胁迫的方法,研究了黑籽瓜兰州大片(wb10)和红籽瓜巢湖红(wb7)随着处理天数的延长幼苗的耐冷性、光合特性、生理特性的变化规律,以探讨籽用西瓜耐低温的生理机制,从而为籽用西瓜的引种栽培和抗寒品种选育提供理论依据。结果表明:不同品种籽用西瓜幼苗的叶绿素含量、Pn、Tr、Gs、Ci随低温胁迫时间的延长而逐渐降低;Pro、MDA、相对电导率随低温胁迫时间的延长而升高。两品种的冷害指数存在一定差异,耐冷性表现为wb10>wb7。低温胁迫下,耐冷性较强的wb10幼苗叶片中的叶绿素含量、Pn、Tr、Gs、Ci均高于耐冷性较弱的wb7,而耐冷性较强的wb10幼苗叶片中MDA含量、脯氨酸含量、相对电导率均低于wb7。综合试验中各项指标认为,耐冷性与品种的来源、类型及在低温下植株的冷害指数、光合特性和细胞膜稳定性有关。  相似文献   

10.
脱落酸对低温胁迫下玉米幼苗生长和光合特性的影响   总被引:1,自引:0,他引:1  
田礼欣  杨晔  左师宇  刘旋  魏湜  孙磊  李晶 《作物杂志》2018,34(6):76-152
脱落酸(ABA)是作物生产中广泛应用的一种植物激素。探究ABA对低温胁迫下玉米幼苗光合特性的影响,为阐明低温胁迫下玉米幼苗叶片光合结构的防御保护机制提供理论依据。以玉米品种“久龙5号”为试验材料,采用盆栽试验,探讨了低温胁迫0、2、4、6、8d下不同浓度脱落酸对玉米幼苗生长及光合特性的影响。结果表明,低温胁迫显著抑制玉米幼苗的正常生长,导致SPAD值下降,叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、PSⅡ光化学最大效率(Fv/Fm)和潜在光化学效率(Fv/Fo)水平下降,初始荧光(Fo)显著升高。外源喷施适当浓度的ABA能够显著缓解由低温胁迫导致的玉米叶片Pn、Tr和Gs下降幅度,提高Fv/Fm和Fv/Fo,降低Fo水平。由此可见,外源施加适当浓度的ABA能提高幼苗叶片的光合能力,提高PSⅡ反应中心活性,促进物质积累,提高玉米幼苗的耐冷性。同时,外源施加ABA存在一定的浓度效应,即“低促高抑”。本研究所设计浓度范围中15mg/L ABA浓度对光合抑制缓解效果最显著。  相似文献   

11.
The aim of this study was to determine whether the resistance and/or sensitivity to drought stress, can be attributed to the level of phenolic compounds in the leaves of maize genotypes. The experiments were carried out on seedlings of three maize genotypes characterized by different levels of drought resistance. Experiments with three periods of drought were conducted (8, 11 and 14 days), to obtain plants with different levels of water potential in leaves, which induced changes in the total phenolic content and ferulic acid, and l ‐phenylalanine ammonia‐lyase (PAL) activity. Only for the drought‐resistant genotype Tina, was the low water potential found to be correlated with the high level of the total phenolic content and ferulic acid, which is the main source of blue fluorescence emissions. Moreover, only for Tina were the highest intensities of blue fluorescence emission correlated with the low water potential in leaves. The phenolic compounds present in leaf tissues can protect the deeper situated mesophyll, by absorbing light reaching the leaf and transforming it into a blue fluorescence. Phenolic compounds can, in this way, function as photoprotectors limiting the excitation of chlorophyll during conditions of water deficit in leaves.  相似文献   

12.
硫素对不同基因型大豆皂甙含量的影响   总被引:1,自引:1,他引:0  
为了探讨施硫量对不同基因型大豆皂甙含量的影响,寻找不同基因型大豆品种最佳施硫水平,以期提高大豆皂甙的含量,改善大豆品质。选用在黑龙江省种植面积较大的‘黑农48’(高蛋白)、‘黑农37’(中间型)和‘黑农44’(高油)3种大豆作为试验材料。采用盆栽种植,每个品种设4个处理组(即每kg土壤分别施单质硫0、0.02、0.04、0.06 g,即S1、S2、S3、S4)。采用有机溶剂提取法,对成熟大豆籽粒皂甙的含量进行测定。结果表明:‘黑农48’在S2条件下皂甙含量最高,‘黑农44’和‘黑农37’均在S3水平下皂甙含量最高,但‘黑农37’S1~S3水平表现不明显。过高硫素含量会降低大豆皂甙含量,不同基因型大豆对硫素敏感度不同,合理适量的施用硫肥能有效地提高大豆皂甙的含量。  相似文献   

13.
The effects of short-term exposure of seedlings to suboptimal temperature (14 °C for 1 or 4 h in 24 h cycles) during chilling (5 °C for 12 days) on the water status and intensity of photosynthesis of tolerant (TG) and chilling-sensitive (SG) maize genotypes were studied. Daily warming for 1 or 4 h resulted in a decrease in the hydration of the seedlings to 31.1 % and 61.5 % (SG) and 14.8 % (TG) and 39.1 % (SG), respectively, in comparison with the continuously chilled control. During warming for 4 h, both genotypes absorbed water from soil in amounts that partly compensated for its loss through transpiration, after the plants had been moved to the lower temperature. A protective effect of shorter warming (1 h) on the hydration of the seedlings was a result of a strong, stomatal limitation of transpiration during the initial days of chilling. Warming for 1 or 4 h also increased the ability of TG stomata to close in reaction to water deficit in chilling conditions. The effect of increased temperature delayed the decrease of PN in leaves and limited RGR inhibition of the seedling mass caused by chilling. Daily warming of plants at the seedling phase (14 and 20 °C for 1 or 4 h) reduced the unfavourable effect of chilling (5 °C for a period of 8 days) on the final yield, the filling of caryopses and their number in a cob after growth in natural conditions.  相似文献   

14.
Plant growth and development is hampered by various environmental stresses including chilling. We investigated the possibility of improving chilling tolerance in hybrid maize by glycinebetaine (GB) seed treatments. Maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 mg l?1 (p.p.m.) aerated solution of GB for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Germination and seedling growth was significantly hindered under chilling stress. Moreover, chilling stress significantly reduced the starch metabolism and relative water contents (RWC), and increased the membrane electrolyte leakage. However, activities of antioxidants (catalase, superoxide dismutase and ascorbate peroxidase) were increased under stress conditions. Seed treatments with GB improved the germination rate, root and shoot length, seedling fresh and dry weights, leaf and root scores, RWC, soluble sugars, α‐amylase activity and antioxidants significantly compared with untreated seeds under optimal and stress conditions. Induction of chilling tolerance was attributed to maintenance of high tissue water contents, reduced membrane electrolyte leakage, and higher antioxidant activities and carbohydrate metabolism. Seed treatment with 100 mg l?1 GB was the best treatment for improving the performance of hybrid maize under normal and stress conditions compared with control and other levels used.  相似文献   

15.
亚精胺对小麦幼苗耐冷性的影响   总被引:4,自引:2,他引:4  
古红梅  刘怀攀 《种子》2003,(4):26-28
文中对亚精胺(spermidine,Spd)在耐冷性不同的小麦品种中的作用进行了研究。研究发现,耐冷品种周麦16号在冷胁迫处理时,其叶片中的Spd含量明显大于不耐冷的温麦6号。用Spd合成的抑制剂MGBG处理周麦16号,则导致Spd含量下降和耐冷性降低,外源Spd又可逆转MGBG对周麦16号在冷胁迫下的伤害。外源Spd可以明显提高温麦6号的叶片内Spd含量,并相应提高其耐冷性。以上结果表明,冷胁迫下,Spd可以提高小麦幼苗的耐冷性。  相似文献   

16.
土壤容重对玉米苗期生长的影响   总被引:21,自引:0,他引:21  
在控制水分、肥料的条件下,用盆栽试验研究土壤容重对玉米苗期生长的影响。结果表明,土壤容重对玉米苗期生长影响显著。随着土壤容重的变化,玉米根系及地下部都随之发生一定的变化。在一定范围上,随着土壤容重的增加,玉米的根长逐渐容短,而其直径则逐渐变粗。同时根干重及株高等均与土壤容重及株高等均与土壤容重呈显著或极显著的线性回归关系,表现为负相关。而就法上部干重及T/R值(冠/根比植)来讲,则呈现二次曲线关系  相似文献   

17.
The effect of separate chilling (5°C for 2 and 4 days) on the shoots and roots of two maize hybrid seedlings on the electric potential, the composition of fatty acids and the ATPase activity in the microsomes of non-chilled leaves and roots (20°C) was investigated. It has been found that the low temperatures induced on the non-chilled organs gave similar changes to organs exposed to a reduced temperature. The changes consisted of a parallel depolarization of leaf and root membranes and similarly a decrease in the ATPase activity as well as changes in the unsaturation of the membranes' fatty acids. The reduction of the acid content 18:2 was particularly significant, which in the leaf microsomes correlated with a drop in the ATPase activity.
The similarity between the reactions of the chilled and non-chilled parts of the plant gives evidence of a communication' between the organs which may facilitate a coordinated reaction of the entire organism to stress. The background for these phenomena could be die action potential of die chilled parts of seedlings which, in the non-chilled parts, might produce changes in the structure of biomembranes and in the activity of enzymes.  相似文献   

18.
The optimum temperature for maize germination is between 25 and 28 °C. Poor and erratic germination at suboptimal temperature is the most important hindrance in its early sowing. This study was conducted to induce chilling tolerance in hybrid maize (Zea mays L.) by seed priming with salicylic acid (SA) and to unravel the background biochemical basis. For seed priming, maize hybrid (Hycorn 8288) seeds were soaked in 50, 100 and 150 ppm (mg l?1) aerated solutions of SA for 24 h and were dried back. Treated and untreated seeds were sown at 27 °C (optimal temperature) and at 15 °C (chilling stress) under controlled conditions. Performance of maize seedlings was hampered under chilling stress. But seed priming with SA improved the seedling emergence, root and shoot length, seedling fresh and dry weights, and leaf and root score considerably compared with control both at optimal and chilling temperatures. However, priming in 50 mg l?1 SA solution was more effective, followed by priming in 100 mg l?1 SA solution. Seed priming with SA improved the chilling tolerance in hybrid maize mainly by the activation of antioxidants (including catalase, superoxide dismutase and ascorbate peroxidase). Moreover, maintenance of high tissue water contents and reduced membrane permeability also contributed towards chilling tolerance.  相似文献   

19.
The effect of 0, 0.05 or 0.1 mm abscisic acid treatment on chilling tolerance and salicylic acid‐related responses was investigated in young maize seedlings (Zea mays L., hybrid Norma). Although the pre‐treatment of maize seedlings with abscisic acid slightly decreased the chlorophyll content, it also reduced the level of chilling injury caused by 6 days of cold treatment at 5 °C. Under normal growth conditions, increased levels of bound salicylic acid and of bound ortho‐hydroxycinnamic acid were observed in the leaves during abscisic acid treatment. In the roots, abscisic acid did not affect the free and bound salicylic acid levels, but increased the amount of free and bound ortho‐hydroxycinnamic acid. The activity of glutathione‐S‐transferase increased on the 3rd day of abscisic acid treatment, whereas it did not change when followed by cold stress, compared with the control leaves. In the roots, the activities of glutathione reductase, glutathione‐S‐transferase and ascorbate peroxidase increased during the abscisic acid treatment, and those of glutathione‐S‐transferase and ascorbate peroxidase were also stimulated when abscisic acid pre‐treatment was followed by cold stress, compared with the control roots. Our results suggest that an overlap may exist between the abscisic acid‐induced cold acclimation and the salicylic acid‐related stress response.  相似文献   

20.
Pollen formation in rice ( Oryza sativa L.) is highly vulnerable to environmental stresses such as heat, chilling and drought. In rice plants exposed to drought during male reproductive development, the most obvious damage often observed is a decline in the number of engorged pollen and grain set. This has been well characterized in rice under chilling and to a lesser extent under drought stress. Moreover, detailed literature on the immediate effects of drought on developing young microspores in rice is still limited. Here, we report findings from experiments on rice plants exposed to water deficit for three consecutive days during early stages of anther development. When the osmotic potential of the growing medium was equal to or less than −0.5 MPa, as induced by polyethylene glycol, the leaf water potential was significantly lowered and grain set was reduced. A strong correlation between grain set and viable young microspores (P < 0.001, r2 = 0.8223) indicates that water deficit immediately reduced fertility of rice plants at the time of exposure. This result suggests a new underlying mechanism of water deficit-induced pollen abortion in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号