首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modelling the effects of weeds on crop production   总被引:3,自引:0,他引:3  
M. J. KROPFF 《Weed Research》1988,28(6):465-471
In most quantitative studies on interplant competition, static regression models are used to describe experimental data. However, the generality of these models is limited. More mechanistic models for interplant competition, which simulate growth and production of species in mixtures on the basis of the underlying physiological processes, have been developed in the past decade. Recently, simulation models for competition between species for light and water were improved and a detailed version was developed for sugarbeet and fat hen (Chenopodium album L.). The model was validated with data sets of five field experiments, in which the effect of fat hen on sugarbeet production was analysed. About 98% of the variation in yield loss between the experiments (which ranged from –6 to 96%) could be explained with the model. Further analysis with the model showed that the period between crop and weed emergence was the main factor causing differences in yield loss between the experiments. Sensitivity analysis showed a strong interaction between the effect of the variables weed density and the period between crop and weed emergence on yield reduction. Different quantitative approaches to crop-weed competition are discussed in view of their practical applicability. Simulations of experiments, where both the weed density and the period between crop and weed emergence were varied over a wide range, showed a close relation between relative leaf cover of the weeds shortly after crop emergence and yield loss. This relation indicates that relative leaf cover of the weeds accounts for both the effect of weed density and the period between crop and weed emergence. This relation has the potential to be developed into a powerful tool for weed-control advisory systems.  相似文献   

2.
The presence of weeds in crop fields often causes yield reductions. However, the effects of weed diversity have not been fully examined. This study tested the hypothesis that, holding density constant, increased weed species richness would decrease the effects of competition on spring wheat target plant performance. Measurements were taken from circular neighbourhoods (16.5 cm radius) with a single spring wheat plant surrounded by combinations of Setaria viridis , Avena fatua , Kochia scoparia , Thlaspi arvense and spring wheat plants, representing all combinations of neighbour species at four density levels. Using regression models, we found that species richness had no significant direct effect on spring wheat biomass, yield, or relative growth rate and that there were no significant neighbour species interaction terms. For weedy target plants, the presence of negative interaction terms suggested that increasing species richness had negative effects on growth of individual weed species. Additional analysis suggested that increased species richness may limit competitive ability of dominant weeds. Although we found no evidence of a direct effect of weed species richness on crop performance, increased weed species richness had no negative effect on spring wheat performance. Further, species richness of the weed community appears to influence weedy plant performance, which may offer a future opportunity to influence crop performance.  相似文献   

3.
The effect of Agrostemma githago L. and other naturally occurring weeds on biomass production and grain yield was studied in winter wheat and winter barley. Naturally occurring weeds had only a negligible effect on barley, but reduced wheat grain yield by 10% at a quarter of normal crop density. The interaction between the cereals and A. githago was studied in additive series employing different crop densities. Growth of this weed species was strongly dependent on crop density, which was more important for controlling weed growth than it was for obtaining a normal grain yield. Wheat and especially barley had a better competitive ability than A. githago. Wheat and A. githago utilized resources for growth better when grown in mixture than when grown in pure stands as the relative yield totals were significantly larger than unity.  相似文献   

4.
A LUNDKVIST 《Weed Research》2009,49(4):409-416
To assess the effects of timing and frequency of weed harrowing on weed abundance and crop yield, different pre- and post-emergence weed harrowing sequences were applied to spring cereals and peas in field experiments performed during 2003 and 2004 in Sweden. Post-emergence harrowing was performed at crop growth stages 2–3 and 5–6 true leaves respectively. The best weed control was obtained by a combination of pre- and post-emergence harrowing, but these treatments also caused yield losses of 12–14% in spring cereals, while no yield losses were observed in peas. Pre-emergence weed harrowing treatments alone or combined with weed harrowing shortly after crop emergence proved to be most effective against the early emerging annual weed species Sinapis arvensis and Galeopsis spp. Post-emergence harrowing alone in peas had no effect on S. arvensis . The late emerging annual weed species Chenopodium album and Polygonum lapathifolium were most effectively controlled when pre-emergence weed harrowing was combined with one or two weed harrowing treatments after crop emergence.  相似文献   

5.
Predicting the growth and competitive effects of annual weeds in wheat   总被引:1,自引:0,他引:1  
The growth and competitiveness of 12 annual weed species were studied in crops of winter wheat, in which weeds were sown to give a wide range of plant densities. Weed growth patterns were identified; early species which senesced in mid-summer were less competitive than those with a growth pattern similar to that of the crop. Most species had little effect on crop yield in 1987, and this was attributed to a high crop den sity. Crop yield-weed density relationships for all species in 1988 and for Galium aparine in 1987 were well described by a rectangular hyperbola. Species were listed in the following competitive order based on the percentage yield loss per weed m?2: Avena fatua > Matricaria perforata > Galium aparine > Myosotis arvenis > Poa trivialis > Alopecurus myosuroides > Stellaria media > Papaver rhoeas > Lamiumpur-pureum > Veronica persica > Veronica hederi-folia > Viola arvensis. Prediction of yield loss is discussed. The assumptions inherent in using Crop Equivalents (based on relative weights of weed and crop plants), are challenged; with intense competition, weed biomass at harvest failed to replace lost crop biomass, and harvest index was reduced. It is concluded that a competi tive index, derived from yield density relation ships, and expressed as the percentage yield loss per weed m?2, is more likely to reflect the com petitive ability of a species than an index obtained from plant weights in the growing crop.  相似文献   

6.
B Bukun 《Weed Research》2004,44(5):404-412
Field studies were conducted over 4 years in south‐eastern Turkey in 1999–2002 to establish the critical period for weed control (CPWC). This is the period in the crop growth cycle during which weeds must be controlled to prevent unacceptable yield losses. A quantitative series of treatments of both increasing duration of weed interference and of the weed‐free period were applied. The beginning and end of CPWC were based on 5% acceptable yield loss levels which were determined by fitting logistic and Gompertz equations to relative yield data representing increasing duration of weed interference and weed‐free period, estimated as growing degree days (GDD). Total weed dry weight increased with increasing time prior to weed removal. Cotton heights were reduced by prolonged delays in weed removal in all treatments in all 4 years. The beginning of CPWC ranged from 100 to 159 GDD, and the end from 1006 to 1174 GDD, depending on the weed species present and their densities. Practical implications of this study are that herbicides (pre‐emergence residual or post‐emergence), or other weed control methods should be used in Turkey to eliminate weeds from 1–2 weeks post‐crop emergence up to 11–12 weeks. Such an approach would keep yield loss levels below 5%.  相似文献   

7.
W. Koch 《EPPO Bulletin》1974,4(3):339-344
The assessment of economic thresholds of weeds is difficult because there are so many interactions between the various species and the crop. In addition, a precise forecasting of the weather is needed when pre-emergence treatments are performed since the conditions prevailing at that moment will be decisive for the abundance of weeds. Still, there are various possibilities to assess the crop losses resulting from weed competition and attention is drawn to the following two approaches: 1) Long-term assessment in relation to the total weed population in a region, and 2) Competition studies between individual weed species and crop plants in pots or in field experiments. The advantages and disadvantages of the various methods are discussed and the data obtained critically evaluated. It appears that the application of average values to a special situation remains for the moment highly uncertain.  相似文献   

8.
9.
Competition between winter-sown wheat and Viola arvensis Murray or Papaver rhoeas L. was studied in two experiments in two successive years. The effects of varying crop and weed density were modelled in terms of weed biomass over time, weed seed production and crop yield. Biomass model parameters, representing maximum weed biomass and intra- and interspecific competition, were obtained for different assessment dates, enabling biomass levels to be predicted during the two growing seasons. Weed biomass declined, and its maximum level was reached earlier, with increasing crop density. Intraspecific competition was higher in the absence than in the presence of crop, increasing with time and with weed density. Halving the wheat population increased June biomass of V. arvensis by 74% and of P. rhoeas by 63%. Crop yield losses with increasing weed density were greater with low than with medium and high crop populations. P. rhoeas was significantly more competitive than V. arvensis in both years. Weed biomass in 1989 responded more to reductions in crop density following the milder winter of 1988/89 than in the previous year; however crop yields were less affected in 1989 due to summer drought, restricting late weed growth and competition. Weed seed production was related to weed biomass; the progressive lowering of crop density increased seed production, and both species were very prolific in the absence of crop. By combining models, seed production could be derived for a given competitive effect on the crop. Threshold weed populations, based on low weed levels that are not economic to control, could then be equated with the accompanying weed seed production.  相似文献   

10.
Experiments were conducted on linseed ( Linum usiãissimum L.) and autumn-sown field bean ( Vicia faha L.) to test how well the relative leaf area-based yield loss prediction model of Kropff & Spitters could estimate yield loss due to interference from Stellaria media L. (common chick-weed) or barley ( Hordeum vulgare L.) alone or a combination of both S. media and barley . Damage coefficients were calculated for all comparisons. Generally, the model provided a better estimate of yield loss due to interference from barley than from S. media because of both the variability in crop yield response stemming from S. media's plasticity and the generally minor crop yield response to S. media interference. The addition to the model of a parameter accounting for asymptotic yield loss was, generally, not warranted for either S. media or barley in the single-weed species data sets. When both S. media and barley were present as weed species in the crop, the model that fitted the data best for six out of 10 data sets was the one in which a separate damage coefficient was included for both species. There was no evidence that the presence of S. media influenced damage coefficient values for barley. However, in the presence of barley a parameter accounting for asymptotic yield loss was warranted for S. media in the two-weed species model. The combination of the addition of this parameter and the presence or barley affected the values of the damage coefficients for S. media in the two-weed species compared with the single-weed species models. Consequently, it was shown for these two weed species that two-weed species yield loss prediction models parameterized using data from single-weed species experiments generally resulted in different estimates of yield loss in comparison with models parameterized using data from two-weed species experiments.  相似文献   

11.
In Northern Europe, inter-row hoeing has become a popular tactic for controlling weeds in organic cereals. Hoeing is highly effective and can be implemented from crop emergence until stem elongation to maintain a nearly weed-free inter-row zone. However, hoeing has a lesser effect on weeds growing in the intra-row zone, where crop–weed proximity results in heightened competition. In the hoed cereal system, it is investigated whether tall-growing, competitive, cruciferous weeds in the intra-row zone affect crop biomass, yield and thousand kernel weight (TKW). An additive experimental design is employed to enable the fitting of rectangular hyperbolas, describing and quantifying the effects of increasing intra-row surrogate weed density on crop growth parameters. Regressions were studied under the influence of crop (spring barley and spring wheat), row spacing (narrow [12.5 or 15.0 cm] and wide [25.0 cm]) and nitrogen rate (50 and 100 kg NH4-N/ha). Cruciferous surrogate weeds were found to impact crop yield and quality severely. For example, ten intra-row plants/m2 of surrogate weed Sinapis alba reduced grains yields by 7%–14% in spring barley and by 7%–32% in spring wheat with yield losses becoming markedly greater in wheat compared to barley as weed density increases. Compared to wheat, barley limited yield and quality losses and suppressed intra-row weed growth more. Row spacing did not have a consistent effect on crop or weed parameters; in one of six experiments, the 25 cm row spacing reduced yields and increased intra-row weed biomass in wheat. Nitrogen rate did not affect crop or weed parameters. Results warrant the implementation of additional tactics to control intra-row weeds and limit crop losses.  相似文献   

12.
A graphical method of analysis designed to study the efficacy of herbicide mixtures, the additive dose model, was adapted for use in analysing the effect of two-weed species interference on crop yield. It is possible to categorize two-weed species interference as synergistic or antagonistic with regard to the effect on crop yield. It is also possible to quantify the degree to which the effect of species mixture deviates from additivity. Within the analysis, different forms of regression models may be used to estimate interference from one species or another, or for species in combination, provided that the models used are all special cases of the same basic model. This allows for flexibility in summarizing data. The method was demonstrated using data from field experiments in which the influence of Stellaria media  相似文献   

13.
Echinochloa colona and Trianthema portulacastrum are weeds of maize that cause significant yield losses in the Indo‐Gangetic Plains. Field experiments were conducted in 2009 and 2010 to determine the influence of row spacing (15, 25 and 35 cm) and emergence time of E. colona and T. portulacastrum (0, 15, 25, 35, 45 and 55 days after maize emergence; DAME) on weed growth and productivity of maize. A season‐long weed‐free treatment and a weedy control were also used to estimate maize yield and weed seed production. Crop row spacing as well as weed emergence time had a significant influence on plant height, shoot biomass and seed production of both weed species and grain yield of maize in both years. Delay in emergence of weeds resulted in less plant height, shoot biomass and seed production. However, increase in productivity of maize was observed by delay in weed emergence. Likewise, growth of both weed species was less in narrow row spacing (15 cm) of maize, as compared with wider rows (25 and 35 cm). Maximum seed production of both weeds was observed in weedy control plots, where there was no competition with maize crop and weeds were in rows 35 cm apart. Nevertheless, maximum plant height, shoot biomass and seed production of both weed species were observed in 35 cm rows, when weeds emerged simultaneously with maize. Both weed species produced only 3–5 seeds per plant, when they were emerged at 55 DAME in crop rows spaced at 15 cm. Infestation of both weeds at every stage of crop led to significant crop yield loss in maize. Our results suggested that narrow row spacing and delay in weed emergence led to reduced weed growth and seed production and enhanced maize grain yield and therefore could be significant constituents of integrated weed management strategies in maize.  相似文献   

14.
夏玉米地杂草为害的产量损失模型   总被引:1,自引:0,他引:1  
为了明确杂草在对杂草密度与夏玉米产量损失之间的函数关系的影响及反枝苋和马齿苋为害夏玉主的产理损失模型,在田间开展了此项研究。试验结果表明,反枝苋和马齿苋为害均不显著地影响夏玉米的籽粒得和单位面积穗数,造成夏玉米产量损失主要是通过降低每穗的籽粒数要草密度和夏玉米产量损失之间的函数关系因杂草种类不同而异,描述反枝苋密度和夏玉米产量损失之间的关系用双曲线优于S形曲线,而描述马齿苋密度和夏玉米产量损失之间  相似文献   

15.
Inter‐row hoeing is known to control tap‐rooted and erect weed species more effectively in winter wheat than weed harrowing. However, little is known about its effectiveness for use in the spring in winter wheat grown at wide row spacing (240 mm) under the influence of different placement of fertilizer. Two field experiments, one in 1999 and one in 2000, were conducted to study the influence of fertilizer placement, timing of inter‐row hoeing, and driving speed on the weeding effect on different weed species and crop growth. Placement of fertilizer below the soil surface improved crop growth and grain yield in both years compared with placement on the surface, but the more vigorous crop did not give any better suppression of the weeds surviving hoeing. Timing was not important in one experiment, whereas hoeing twice beginning in early April was more effective in the other experiment where weed growth over the winter had been vigorous. Driving speed had no influence on either the weeding effect or the yield, except for one case where increasing speed reduced the control of well‐developed weeds. Compared with unweeded reference treatments, inter‐row hoeing reduced total weed biomass by 60–70% and tap‐rooted and erect weed species in particular by 50–90%. Sowing at 240 mm row spacing yielded less than 120 mm (Danish standard), and inter‐row hoeing for winter wheat needs to be adapted to narrower row spacing to avoid such yield decreases.  相似文献   

16.
Delays of 40 or 60 days in weeding peanuts (Arachis hypogaea L.) gave lower yields and fewer pods per plant but did not affect seed number per pod. Yield, pod number per plant, seeds per pod and mean weight per seed were all less in unweeded plots. In three herbicide trials crop yields were not closely correlated with crop vigour scores made several weeks before crop maturity, or with weediness scores. Correlations between yields and weed dry weights were better, but certain high-yielding herbicide treatments gave poor weed control and in some cases had low crop vigour scores. Most yield differences reflected differences in pod number per plant, with additional smaller compensating or additive effects on the other components. Certain herbicides apparently gave high mean seed weights without diminishing seed numbers per pod. Pre-emergence alachlor was the most promising herbicide, combined with preplant incorporated vernolate if nutgrass was serious. Napropamide and metobromuron merit further testing.  相似文献   

17.
Rasmussen  Rasmussen 《Weed Research》2000,40(2):219-230
Two field experiments investigated the influences of crop seed vigour on the effect of weed harrowing and crop:weed interactions in spring barley. Artificially reduced seed vigour, which was similar to the variation within commercial seed lots, caused a reduction in germination rate, delayed time of emergence and, consequently, caused reduced competitive ability against weeds. During both years, the reduced seed vigour increased the average weed biomass by 169% and 210%, and reduced the average crop yield by 16% and 21%. Without the influence of weeds, the yield reduction was estimated to be 8% and 10%. A three‐times harrowing strategy reduced the weed biomass by 75% and 72% on average. However, it also caused damage to the crop and reduced yield. There was no clear interaction between barley seed vigour and weed harrowing in the experiments but, in one year, reduced seed vigour tended to decrease the effect of weed harrowing and also increased crop damage. Results in both years, however, indicate potential possibilities for successful integrated weed control by adding the use of high seed quality to a weed harrowing strategy.  相似文献   

18.
Summary The effectiveness of crop competition for better weed control and reducing herbicide rates was determined for Avena ludoviciana and Phalaris paradoxa . Four experiments, previously broadcast with seeds of the two weeds in separate plots, were sown with three wheat densities, and emerged weeds were treated with four herbicide doses (0–100% of recommended rate). The measured crop and weed traits were first analysed across experiments for treatment effects. Grain yield and weed seed production data were then analysed using cubic smoothing splines to model the response surfaces. Although herbicide rate for both weeds and crop density for P. paradoxa had significant linear effects on yield, there was a significant non-linearity of the response surface. Similarly, herbicide rate and crop density had significant linear effects on weed seed production, and there was significant non-linearity of the response surface that differed for the weed species. Maximum crop yield and reduction in seed production of P. paradoxa was achieved with approximately 80 wheat plants m−2 and weeds treated with 100% herbicide rate. For A. ludoviciana , this was 130 wheat plants m−2 applied with 75% herbicide rate. Alternatively, these benefits were achieved by increasing crop density to 150 plants m−2 applied with 50% herbicide rate. At high crop density, application of the 100% herbicide rate tended to reduce yield, particularly with the A. ludoviciana herbicide, and this impacted adversely on the suppression of weed seed production. Thus, more competitive wheat crops have the potential for improving weed control and reducing herbicide rates.  相似文献   

19.
Field studies at Bangalore, India, demonstrated that benfiuralin, fluchloralin and profluralin were effective for the selective control of many weed species in field experiments with peanuts (Arachis hypogaea L.‘BH-8-18′). Trifluralin and dinitramine were effective against many weed species but reduced crop stand by about 10%. These two herbicides also reduced the incidence of leaf spot disease (Cercospora arachidicola) and peanut pod yields were similar to clean weeded treatments. Bentazon was ineffective on most weed species and metribuzin was lethal to the crop. Alachlor, nitrofen and chloramben were only partially effective and would require supplemental hand weeding or mechanical tillage to obtain satisfactory weed control.  相似文献   

20.
Cover crops have been shown to be important integrated weed management tools. In addition to directly competing with weeds, cover crops can provide weed suppressive effects following incorporation through release of allelopathic compounds and/or changes to nutrient availability. Incorporation of a cover crop mixture may provide a synergistic or antagonistic effect on weed suppression by further altering nutrient dynamics. To investigate this phenomenon, we evaluated the suppressive effects following incorporation of annual ryegrass, buckwheat, brown mustard, and phacelia sown with and without field pea on germination and growth of several pernicious weed species. Further, we used the additive partitioning model to determine if pea synergistically improved biomass production and weed suppression of cover crops. Our results demonstrate that following incorporation, cover crop residues suppress weed germination and weed biomass production. According to the additive partitioning model, the addition of pea had an antagonistic effect on buckwheat and brown mustard biomass production and decreased buckwheat weed suppression by 8%. In contrast, the addition of field pea greatly enhanced biomass production of phacelia at a reduced seeding rate suggesting a positive biodiversity effect. Limited evidence was found for changes to nutrient availability following cover crop incorporation, however, a dose-dependent effect of cover crop residue on weed suppression suggests allelopathy and/or nutrient availability may have a role on weed seed germination success. Together, our results support the use of incorporated cover crop residues as an integrated weed management tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号