首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
冻融循环下冷冻非发酵面团品质的变化及机理   总被引:9,自引:5,他引:4  
为了探讨储运销售过程引起的冻融循环对冷冻非发酵面团品质的影响,利用低场核磁共振分析仪(LF-NMR)、质构仪与流变仪等对样品面团水分与蛋白质组分、质构与流变特性进行测定,研究冻融循环下冷冻非发酵面团品质变化。结果表明:5次冻融交替中,失水率显著上升,达至3.14%;总水分中半结合水含量在 F1后整体呈下降趋势,表明冻融循环过程中,半结合水不断散失;至第5次冻融时,醇溶蛋白含量显著下降(P<0.05),谷蛋白与谷蛋白大分子聚合物(GMP)含量至第4次冻融后均显著下降(P<0.05),分别降至2.26%与0.70%;生面坯剪切力显著上升,强韧性则与之相反;熟面坯硬度呈上升再下降趋势,黏性基本呈上升,弹性呈下降趋势;弹性模量G'与黏性模量G'均呈下降趋势,且在第4次时,tanδ(tanδ=G'/G')至最大,表明G'的变化程度比G'大。由此可见,冻融循环致使冷冻非发酵面团品质有所下降。总而言之,冻融循环对冷冻非发酵面团的品质下降产生一定的负面影响。  相似文献   

2.
为了探究胡萝卜抗冻蛋白(Carrot Antifreeze Proteins,CaAFPs)对不同冻融循环下面团性质的影响,该研究将CaAFPs按照0.5%的比例添加到面团中,并以未加入CaAFPs的面团作为对照。通过比较4℃冷藏、-12℃亚冻结冻藏以及-18℃冻藏下3种储藏温度下,以冻融处理为辅助手段,测定不同条件下面团的含水率、失水率、可冻结水含量、质构特性以及pH值等指标的变化趋势,以此来研究CaAFPs对冻融下亚冻结面团性质的影响及机理。结果表明:经过5次冻融循环后,对照组面团的失水率呈现不同程度的上升趋势(P<0.05),加入CaAFPs后,有助于延缓面团水分的散失,各组失水率均有所下降。对照组含水率呈现不同程度下降趋势(P<0.05),加入CaAFPs后,含水率较对照组高(P<0.05)。对照组面团的可冻结水含量呈现不同程度的上升趋势(P<0.05),加入CaAFPs后,对面团的网络结构有一定的保护作用,可冻结水含量均有所下降。对照组硬度、胶着性呈现上升趋势(P<0.05),弹性、黏聚性和咀嚼性呈现下降趋势(P<0.05),加入CaAFP...  相似文献   

3.
不同添加剂改善甜高粱青贮质量及其降解性能比较   总被引:1,自引:1,他引:0  
为提高青贮甜高粱的生物降解特性,克服木质纤维抗降解屏障,该研究比较了纤维素酶(CT组)、木聚糖酶(XT组)、瘤胃液(RT组)和沼液(BT组)4种添加剂对其青贮质量和生物降解性能的动态影响,结合扫描电镜、傅里叶红外光谱和X-衍射等表征方法评估不同添加剂在青贮过程中的强化作用效果。结果表明,整个青贮发酵期间,4种添加剂均能使青贮pH值显著下降至4.3以下(P0.05),乳酸占总有机酸比例始终高于0.58,乳酸与乙酸比值始终高于2.0,均达到优良青贮发酵品质(除90 d时RT组);其中纤维素酶、木聚糖酶在青贮pH值下降、减少氨氮和乙酸含量、增加乳酸含量等方面更具优势。青贮90d时,4个添加剂组的干物质、可溶性碳水化合物、中性洗涤纤维、酸性洗涤木质素和半纤维素的含量均显著低于原料(P0.05),纤维素含量和生物降解潜力均显著高于原料(P0.05);其中BT组的木质纤维组分降解效果最好。结构表征分析发现,青贮过程中添加沼液和瘤胃液均能有效瓦解甜高粱茎秆的抗降解屏障结构,使微观表面出现孔洞和裂缝,纤维素相对结晶度指数显著下降。上述组分和结构的联动变化显著提升了青贮甜高粱的降解能力。BT组和RT组的酶解得率明显高于CT组和XT组,尤其添加沼液长时间(90 d)青贮发酵后的酶解得率最高,生物强化作用效果最好,瘤胃液次之。总之,4种添加剂均能通过有机组分重组优化、木质纤维结构"正向"演变等方式改善甜高粱的青贮质量,提高生物降解能力。结合添加剂成本投入、方便易得、废物利用等因素综合考虑,建议实际生产中选择资源量较为丰富的沼液进行添加,既可同步实现甜高粱跨季贮存与生物强化,也为沼液减排和循环利用提供了一条新途径。  相似文献   

4.
冷冻面团加工技术作为一种面食生产新工艺,是目前较先进的面制品保鲜技术。冷冻处理会对酵母活力、面团品质、面团面筋结构等产生不良影响。为了提高冷冻面团品质,明确不同食品改良剂对后发酵冷冻面团馒头品质的影响,该研究优化了复配增稠剂(卡拉胶、瓜尔豆胶、海藻酸钠)、复配乳化剂(双乙酰酒石酸单双甘油酯、羧甲基纤维素)、复配酶制剂(谷氨酰胺转氨酶、葡萄糖氧化酶)和海藻糖对后发酵冷冻面团馒头品质的作用,通过单因素和响应面试验设计,考察了不同复合改良剂对冷冻面团馒头比容、质构和感官品质的影响。研究表明:海藻糖、酶制剂对冷冻面团馒头比容的影响极其显著(p0.01)。在添加量为0.4%乳化剂、0.8%增稠剂、45 mg/kg酶制剂、2%海藻糖的复配工艺下,冷冻面团馒头的比容达到最佳水3.15 mL/g,其硬度和弹性也达到较优值,分别为926.832 g、0.912 8。同时对未添加和添加复合改良剂冻藏0~2.5个月的冷冻面团进行扫描电镜观察,发现未添加复配改良剂的冷冻面团中大多数小淀粉颗粒裸露在外,颗粒分明,内部组织结构不均匀,而添加复合改良剂的冷冻面团淀粉颗粒镶嵌在面筋网络之间,蛋白网络结构清晰完整,冷冻面团内部组织结构均匀紧密,面团的抗冻性较强。  相似文献   

5.
转谷氨酰胺酶对小麦面粉加工品质的影响研究   总被引:7,自引:3,他引:4  
为了改善小麦面粉的加工品质通过面筋蛋白乳酸溶液透光率和膨胀高度的测定探讨小麦面粉中转谷氨酰胺酶最适添加量,研究了转谷氨酰胺酶对面粉中游离巯基含量、面粉持水性、面粉粉质特性和加工品质的影响.结果表明,转谷氨酰胺酶的最适添加量为1.0‰;在其最适添加量下,面粉中游离巯基含量下降,持水性增加,粉质特性以及成品面条、速冻饺子的品质均得到改善.  相似文献   

6.
为了研究非酿酒酵母胞外酶促进葡萄酒发酵产香的效果,该文在爱格丽葡萄汁酒精发酵12 h后,分别添加优选胶红酵母(Rhodotorula mucilaginosa,RM)胞外酶液,优选发酵毕赤酵母(Pichia fermentans,PF)胞外酶液和商业糖苷酶制剂(almondβ-glucosidase,AG)(10 mU/mL),以不添加酶制剂的酿酒酵母纯发酵为对照,发酵过程中每24 h取样,采用HS-SPME-GC/MS(headspace solid-phase microextraction-gas chromatography/mass spectrometry)监测挥发性成分的生成变化。葡萄酒含糖量低于2 g/L时终止发酵,低温满罐密封储存,次年4月,进行葡萄酒香气仪器和感官量化分析。胞外酶液共测得6种风味酶活性,其中RM酶液中的β-D-葡萄糖苷酶、α-L-鼠李糖苷酶、β-D-木糖苷酶活性均显著(P<0.05)高于PF中的,而α-L-阿拉伯糖苷酶和酯酶在PF酶液中活性更高(P<0.05)。发酵过程中,胞外酶处理显著促进了(P<0.05)品种香气和发酵香气物质的生成,其中RM酶液显著提高了萜烯类物质和苯乙基类化合物含量,其作用效果分别比商业酶处理高41.7%和31.8%,PF酶液显著促进了发酵香气化合物的生成,尤其是脂肪酸乙酯含量约为对照的2倍。酒样感官分析结果显示,两株酵母的胞外酶处理表现出各自增香酿造的优势,其中RM酶液促进温带酸果类香气的效果突出,PF酶液显著提升了柑橘类香气。研究结果为酵母风味酶应用于葡萄酒的增香酿造提供了理论和实践指导。  相似文献   

7.
麦麸酚基木聚糖对发酵面团特性和馒头品质的影响   总被引:3,自引:1,他引:3  
王晓曦  范玲  马森  王瑞  陈成 《农业工程学报》2015,31(17):302-307
为了提高麦麸的附加值、馒头的品质以及增强馒头的营养价值,该试验以小麦粉为原料,采用2个分子量的麦麸酚基木聚糖(820、581 kD),研究不同添加量(0.25%、0.5%、1.0%、2.0%)对发酵面团特性以及馒头品质的影响。结果表明:随着麦麸酚基木聚糖添加量的增加,发酵面团的弹性模量、质子密度A22先增加后下降,黏性模量、质子密度A23增加,弛豫时间T22下降;馒头的亮度下降,红度和黄度增加,比容、黏聚性、回复性先增加后下降,硬度、咀嚼性先下降后上升,黏附性下降,馒头的感官得分先上升后下降。高分子量的麦麸酚基木聚糖,其发酵面团的弹性模量和黏性模量变幅较大,弛豫时间T22、T23较大、质子密度A21较小,低分子量的麦麸酚基木聚糖,其馒头比容和弹性较大,但馒头硬度和咀嚼性相对也较大。麦麸酚基木聚糖添加量在0.5%时,对发酵面团以及馒头品质改善效果最好。添加量在1.0%内,发酵面团特性以及馒头品质均可接受。高分子量的酚基木聚糖对发酵面团以及馒头品质改善效果高于低分子量的酚基木聚糖。研究结果为麦麸酚基木聚糖广泛应用于馒头中,提高馒头品质及营养价值提供理论依据。  相似文献   

8.
以小兴安岭湿地土壤为研究对象,基于冻融模拟试验和室内分析,对比研究了不同冻融环境下土壤溶解性有机碳(DOC)含量变化趋势及其氮素矿化特征。结果表明:无论是(-5)~5℃还是(-25)~5℃冻融处理,天然兴安落叶松湿地、灌丛湿地以及2003年,1992年排水造林后兴安落叶松湿地4种土壤的DOC含量均差异显著(P0.01),且随着冻融次数的增加,土壤DOC含量均呈现先增加后减小的趋势,1次冻融循环后达到最大值,其平均含量分别为580.05 mg/kg,546.11 mg/kg,475.38 mg/kg,423.52mg/kg,表明冻融作用对土壤DOC短期效应明显。冻融次数对2003年排水造林后湿地土壤DOC含量影响极显著(P0.01),而对1992年排水造林后湿地土壤DOC含量影响显著(P0.05)。土壤铵态氮含量先增加后减少,2次冻融循环后达到最大值,其平均含量分别为68.92mg/kg,53.34mg/kg,21.57mg/kg,22.09mg/kg,而土壤硝态氮含量先减少后增加,1次冻融循环后达到最小值,其平均含量分别为4.86mg/kg,3.91mg/kg,10.62mg/kg,10.10mg/kg,但(-25)~5℃比(-5)~5℃冻融处理的氮矿化程度高,表现出冻融循环能够促进氮素矿化,且较大的冻融温差更能加速矿化进程。  相似文献   

9.
为揭示小麦粉面团形成过程水分状态和比例、面团结构的变化,以及这种变化与粉质仪和拉伸仪表征的质量特性之间的关系;认识面团形成过程表征筋力强弱的物质基础和变化机理。选用中筋(宁春4号)和强筋(师栾02-1)小麦品种为试验材料,利用低场核磁共振技术测定粉质仪和面过程、拉伸仪醒发拉伸过程不同时间点面团水分状态和比例的变化;利用红外显微成像技术分析面团形成过程不同取样点蛋白质和淀粉的分布及结构变化。结果表明,面粉原料中主要为弱结合水。面粉在粉质仪加水搅拌形成面团后,水分状态和比例发生显著变化,面团中的水可以分为强结合水(T_(21))、弱结合水(T_(22))和自由水(T_(23))。面团搅拌形成过程中,中筋小麦品种宁春4号面团中的强结合水比例显著降低;师栾02-1的强结合水的弛豫时间在和面终点消失,弱结合水的弛豫时间显著延长,而自由水的比例显著增加(P0.05)。强筋小麦粉强结合水的保持时间较长。拉伸过程加盐和不加盐对同一取样点、同一种水分状态之间的水分弛豫时间和比例无显著影响;宁春4号自由水的弛豫时间在加盐和不加盐处理时都显著缩短(P0.05)。湿面筋含量高、筋力较强面团的蛋白质网络结构致密。粉质仪和面过程强结合水和弱结合水弛豫时间和比例的变化,与面筋含量和强度有关。该结论可为面制品加工过程和面工艺选择与优化等方面提供一定的理论参考。  相似文献   

10.
脱酰胺与双酶协同作用提高小麦面筋蛋白酶解效率   总被引:2,自引:2,他引:0  
为了探讨了不同脱酰胺处理和双酶协同作用方式对小麦面筋蛋白酶解效率及其产物抗氧化活性的影响,该文研究了小麦面筋蛋白在各种预处理方式和酶解条件下的蛋白回收率、水解度、抗氧化性能及肽分子量分布情况。结果显示,单独热处理(90℃,30 min)小麦面筋蛋白对其酶解效率无显著影响,而采用添加0.5 mol/L柠檬酸溶液进行热处理(质量分数为5%,90℃,30 min)可显著(P0.05)提高其蛋白回收率。此外,酶制剂添加顺序及双酶共同水解作用时间对酶解效率均具有较大影响:加入谷氨酰胺酶预先水解对小麦面筋蛋白的深度水解有促进作用;一定时间内的双酶协同作用有利于酶解的进行,但较长时间的双酶作用反而会抑制酶解效率。采用谷氨酰胺酶(质量分数为0.2%)对经柠檬酸加热处理的小麦面筋蛋白作用12 h后再加入胰酶(质量分数为0.6%)共同作用7 h可使蛋白回收率达70.74%,水解度达到9.88%;另外,酶解产物的自由基清除能力ABTS+(2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)+)值与氧化自由基吸收能力(ORAC,oxygen radical absorbance capacity)值分别达到478.95 mmol/g和213.85μmol/g,提示该酶解产物是一种潜在优秀食品抗氧化剂。研究结果可为拓宽小麦面筋蛋白的应用领域,以及高效制备抗氧化活性肽提供方法和理论指导。  相似文献   

11.
Improvement of food processing quality has become a major breeding objective in China. Nineteen Chinese leading winter wheat cultivars with improved quality and two Australian cultivars with high bread and noodle-making qualities were sown in four locations for two years to investigate dough properties, pan bread, and Chinese white salted noodle (CWSN) qualities, and their association with the quantity of protein fractions. The results indicated that genotype, environment, and genotype-by-environment interaction significantly affected most of quality traits and amount of protein fractions. Genotype mainly determined the quantity of gluten protein fractions and pan bread quality parameters, while environment was the most important source of variation for the noodle quality parameters. Chinese cultivars were characterized by acceptable protein content (11.1–13.4%), medium to strong dough strength (maximum resistance 176.9–746.5 BU), medium to poor dough extensibility (166.5–216.4 mm), fair to very good pan bread qualities, and good to very good CWSN qualities. Gliadin contributed more in quantity to protein content (r = 0.80, P < 0.001), however, glutenin and its subgroups were more important to dough strength. The quantity of glutenin, HMW-GS, and LMW-GS were highly and significantly correlated with dough strength-related traits such as farinograph development time, stability, extensigraph maximum resistance, and extension area (r = 0.70–0.91, 0.65–0.89, and 0.70–0.91, respectively; P < 0.001). The quantity of LMW-GS could explain 82.8% of the total variation of dough maximum resistance. The quantity of gliadin and the ratio of HMW-GS to LMW-GS determined dough extensibility (r = 0.75 and r = –0.59, respectively; P < 0.001 and P < 0.01, respectively). Higher quantity of glutenin and lower ratio of gliadin to glutenin resulted in higher bread score with r = 0.70 (P < 0.001) and r = –0.74 (P < 0.001), respectively. However, protein content and its fractions have a moderate undesirable effect on CWSN parameters such as color, firmness, and taste. Therefore, both allelic variation and quantity of storage protein fractions should be considered in breeding cultivars with improved pan bread making quality.  相似文献   

12.
The uniaxial elongational and shear rheology of doughs varying in either the protein content or glutenin‐to‐gliadin ratio were investigated. Increasing the protein content at constant glutenin‐to‐gliadin ratio increased the strain‐hardening properties of the dough, as shown by increasing elongational rupture viscosity and rupture stress. Glutenin and gliadin had a more complex effect on the elongational properties of the dough. Increased levels of glutenin increased the rupture viscosity but lowered the rupture strain, while elevated gliadin levels lowered the rupture viscosity but increased the rupture strain. These observations provide rheological support for the widely inferred role of gliadin and glutenin in shaping bread dough rheology, namely that gliadin contributes the flow properties, and glutenin contributes the elastic or strength properties. The shear and elongational properties of the doughs were quite different, reflecting the dissimilar natures of these two types of flow. Increasing protein content lowered the maximum shear viscosity, while increasing the glutenin‐to‐gliadin ratio increased maximum shear viscosity. Strong correlations between the results of basic and empirical rheology were found. These basic, or fundamental, rheological measurements confirmed prior empirical studies and supported baking industry experience, highlighting the potential of basic rheology for bread and wheat research.  相似文献   

13.
Gluten was isolated from three durum wheat cultivars with a range in strength. Gluten was further fractionated to yield gliadin, glutenin and high molecular weight (HMW) and low molecular weight (LMW) glutenin subunits (GS). The gluten and various fractions were used to enrich a base semolina. Enriched dough samples were prepared at a fixed protein content using a 2‐g micromixograph. Mixing strength increased with addition of gluten. Dynamic and creep compliance responses of doughs enriched with added gluten ranked in order according to the strength of the gluten source. Gliadin addition to dough resulted in weaker mixing curves. Gliadin was unable to form a network structure, having essentially no effect on dough compliance, but it did demonstrate its contribution to the viscous nature of dough (increased tan δ). Source of the gliadin made no difference in response of moduli or compliance. Addition of glutenin to the base semolina increased the overall dough strength properties. Glutenin source did influence both dynamic and compliance results, indicating there were qualitative differences in glutenin among the three cultivars. Enrichment with both HMW‐GS and LMW‐GS increased overall dough strength. Source of HMW‐GS did not affect compliance results; source of LMW‐GS, however, did have an effect. The LMW‐2 proteins strengthened dough to a greater extent than did LMW‐1. Mechanisms responsible for dough viscoelastic properties are described in terms of reversible physical cross‐links.  相似文献   

14.
The effect of genetic substitution of two to four glutenin and gliadin subunits from a Canada Prairie Spring (CPS) cv. Biggar BSR into Alpha 16, another CPS wheat line, was studied for rheological and baking quality. Results from double substitution showed that the presence of a gliadin component from Biggar BSR (BGGL) and low molecular weight glutenin subunit 45 (LMW 45) contributed to improved dough strength characteristics. Presence of BGGL in combination with high molecular weight glutenin subunit 1 (HMW 1) or 17+18 (HMW 17+18) also showed improved dough strength over control Alpha lines. When three or four protein subunits were substituted, even though improved quality performance was observed, it was associated with the negative effect of lowered flour water absorptions in spite of similar protein contents. The study confirms that LMW glutenins, as well as gliadins, play an important role along with HMW glutenins in wheat flour quality. CPS wheat lines with improved dough strength properties can be selected from the double substitution lines with the combination of BGGL/LMW 45 and BGGL/HMW 1.  相似文献   

15.
The effect of genetic variation in the glutenin and gliadin protein alleles of Alpha 16, a Canada Prairie Spring (CPS) wheat line, on the dough mixing, bread, and noodle quality properties were evaluated. The presence of a gliadin component (BGGL) and the low molecular weight glutenin subunit (LMW-GS) 45 found in the selection Biggar BSR were associated with significant increases in dough strength characteristics. The results of the study showed that gliadins, LMW-GS, and high molecular weight glutenin subunits (HMW-GS) can influence bread- and noodle-making properties of wheat flour. Genotype-by-environment interactions were not significant for most of the quality parameters studied, indicating that the differences observed in quality characteristics were mainly due to the effect of genotype.  相似文献   

16.
An indirect enzyme-linked immunosorbent assay (ELISA) has been developed for evaluation of chapati-making quality of wheat varieties. Polyclonal antibodies against gliadin, low molecular weight glutenin (LMG), and high molecular weight glutenin (HMG) were developed and utilized in the ELISA. Twenty-eight Indian wheat varieties were utilized in the ELISA. Out of these antibodies, an antigliadin antibody response was negatively correlated with farinograph water absorption (r = -0.89 at P < 0.01), chapati dough water absorption (r = -0.91 at P < 0.01), overall chapati sensory score (r = -0.95 at P < 0.01), chapati puffed height score (r = -0.95 at P < 0.01), and positively correlated with shear value of chapati (r = 0.76 at P < 0.01). Anti-LMG antibody response was not correlated with any of these parameters, whereas anti-HMG response positively correlated with chapati dough water absorption (r = 0.44 at P < 0.05), farinograph water absorption (r = 0.45 at P < 0.05), and overall chapati sensory score (r = 0.44 at P < 0.05), and negatively correlated with shear value (r = -0.38 at P < 0.05) and chapati puffed height (r = -0.44 at P < 0.05). The results indicate that wheat varieties with good chapati-making quality were having less antigliadin antibody response.  相似文献   

17.
An in vitro method for preparative‐scale production of artificial glutenin polymers utilizes a controlled environment for the oxidation of glutenin subunits (GS) isolated from wheat flour to achieve high polymerization efficiency. The functionality of in vitro polymers was tested in a 2‐g model dough system and was related to the treatment of the proteins before, during, and after in vitro polymerization. When added as the only polymeric component in a reconstituted model dough (built up from gliadin, water solubles, and starch fractions), in vitro polymers could mimic the behavior of native glutenin, demonstrating properties of dough development and breakdown. Manipulating the high molecular weight (HMW)‐GS to a low molecular weight (LMW)‐GS ratio altered the molecular weight distribution of in vitro polymers. In functional studies using the 2‐g mixograph, simple doughs built up from homopolymers of HMW‐GS were stronger than those using homopolymers of LMW‐GS. These differences may be accounted for, at least in part, by different polymer size distributions. The ability to control the size and composition of glutenin polymers shows the potential of this approach for investigating the effects of glutenin polymer size on dough function and flour end‐use quality.  相似文献   

18.
The combination of Rhizopus chinensis lipase (RCL) and transglutaminase (TG) was previously reported to improve the quality of frozen dough bread. In this study, the effects of RCL, TG, and their combination on the modification of glutenin macropolymer (GMP) and rheological properties of dough during frozen storage were investigated. Frozen storage changed both GMP and rheology properties of dough. TG treatment significantly decreased the ratio of high‐molecular‐weight glutenin subunits to low‐molecular‐weight glutenin subunits and GMP content in fresh dough, and GMP particle size increased. The effect of RCL on GMP properties was not significant, but its combination with TG dramatically increased the proportion of the larger particles and weighted average volume (D4.3) in GMP. The treatment with the enzyme combination could have inhibited the depolymerization of GMP, which slowed down the decrease rate of some parameters such as GMP content, proportion of larger particles, D4.3, and release of free amino and thiol groups during frozen storage. The modification of GMP properties by enzyme treatment weakened the effect of the freezing process on rheological properties of dough, especially TG treatment and its combination with RCL. Correlation between GMP particle size and dough properties (dough tensile force and elastic modulus) after freezing and enzyme treatment were confirmed.  相似文献   

19.
The effect of transglutaminase (TG) on glutenin macropolymer (GMP) properties could help to understand changes in bread quality. The aim of the present study was to analyze modifications in GMP and dough properties caused by TG addition. Transglutaminase introduced cross‐links to gluten proteins, mainly high molecular weight glutenins. This effect modified the protein structure and markedly increased dough strength. These changes in the structure of glutenins increased SDS solubility and decreased GMP content and GMP storage modulus. However, TG increased GMP particle size, notably at higher doses. TG affected rheological characteristics of dough in that increasing TG doses decreased tan δ, and increased G'. In all the studies conducted, the TG increased GMP polymer size, but contrary to what was expected, this increase did not involve an increase in GMP content. These results confirmed the effect of TG on dough quality and the great differences found with different TG doses.  相似文献   

20.
Microbial transglutaminase (MTGase), a protein‐glutamine γ‐glutamyl transferase (E.C. 2.3.2.13), catalyzes acyl transfer reactions by introducing a covalent cross‐link between l ‐lysine and l ‐glutamine residues. The use of this enzyme has been proposed as an improver to increase dough strength. The objective of this study was to assess and compare the effect of MTGase on different fractions of dough proteins found in hard, soft, and durum wheat. Three different concentrations of the MTGase (0, 5, and 10U/g of gluten) were tested. Moisture, protein, and dry gluten contents were determined for each concentration in addition to rheological measurements done with the farinograph. Following each treatment, the dough proteins were extracted and analyzed by SE‐HPLC and RP‐HPLC. Soluble polymeric protein, gliadins, albumins, and globulins were quantified in addition to the gliadin subclasses and glutenin subunit types. The combustion procedure was used to determine the amount of insoluble polymeric protein. Differences were observed in susceptibility to MTGase catalysis among the dough proteins of the cultivars studied: the cultivar Cortazar (soft wheat) was the most susceptible. The proteins of this cultivar had a characteristically higher amount of ω and α+β gliadins when compared with the other cultivars. As reported earlier, solubility of high molecular weight glutenin subunits and ω‐gliadins was reduced because of the MTGase treatment. However, all gliadin subclasses, including the γ and α+β gliadins, also participated in cross‐linking. The proteins of the cultivar Altar (durum wheat) were the least susceptible to the effects of MTGase. Albumins and globulins did not show any reduction in solubility, implying that they did not participate in cross‐linking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号