首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The advantages of androgenesis from Lolium × Festuca hybrids as a means towards enhanced gene expression and capture of rare genetic variation are reviewed. New evidence is presented for the technique’s use in combination with introgression-mapping for targeting Festuca-derived genes for enhanced freezing-tolerance. As a starting point, a dihaploid genotype derived by androgenesis from a Lolium multiflorum × Festuca pratensis amphiploid (2n = 4x = 28) hybrid cultivar is used as female parent in a backcross breeding programme with L. multiflorum (2n = 2x = 14). A derivative of the backcross␣breeding programme was a genotype of L.␣multiflorum (2n = 2x = 14) incorporating a F.␣pratensis introgression on chromosome 4 that was more freezing-tolerant than Lolium. New evidence of the importance in Lolium and Festuca species of the adaptive capabilities of Photosystem II (PSII) in relation to subsequent freezing-tolerance, is presented. Non-photochemical quenching (NPQ) mechanisms for expulsion of excess light energy during cold acclimation are found in F. pratensis but not in L. multiflorum. Screens of a backcross population derived from an initial dihaploid genotype (n + n = 14) produced by androgenesis from a L. multiflorum × F.␣pratensis amphiploid, indicate a direct relationship between cold acclimation induced increases in NPQ and freezing-tolerance. Preliminary evidence of a role for genes found on chromosome 4 of F. pratensis for increased NPQ expression, is presented.  相似文献   

2.
The pentaploid hybrid of Lolium multiflorum and Festuca arundinacea (2n = 5x = 35) combines the high growth rate of L. multiforum with the drought resistance and freezing-tolerance of F. arundinacea. Unfortunately, it also displays the deleterious traits associated with Festuca, namely those associated with high leaf fibre content giving rise to poor palatability and digestibility. To access different combinations of these characters, anther cultures were initiated and regenerated into single embryo derived plants. The anther culture method was very productive since out of a total of 2349 androgenic plants derived from the same parent plant, 57% were green plantlets, although only 507 (22%) subsequently established into plants following transfer to soil. Chromosome counts of randomly selected lines showed that plants with euploid chromosome numbers (14, 21, and 28) would appear to have selective advantage during regeneration. There was wide variation between mature androgenic plants grown under field conditions in plant height, leaf length, leaf width, tiller number and herbage dry matter. The variation between genotypes in response to drought stress was assessed by placing replicate clones under rain-out shelters or under irrigated control conditions in the field. Herbage dry matter under drought was higher in a number of androgenic lines than either parents, but not higher than the pentaploid hybrid. Androgenesis was shown to be a highly effective procedure to expose diverse phenotypic variation all derived from the same Lolium × Festuca hybrid genotype. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
C. Oertel  F. Matzk 《Plant Breeding》1999,118(6):491-496
Crown rust, Puccinia coronata Corda, causes one of the most damaging foliar diseases in Italian ryegrass, Lolium multiflorum Lam. For introgression of crown rust resistance, highly resistant hybrids of the crosses Festuca arundinacea (2n = 6x = 42) ×L. multiflorum (2n = 4x = 28) and reciprocally, L. multiflorum (2n = 2x = 14) ×Festuca pratensis (2n = 4x = 28) and subsequently resistant recombinant individuals were used as female parents and susceptible cultivars of Italian ryegrass as male parents in three successive backcrosses. The BC3 plants were selfed and crossed mutually. Uredospores of seven different crown rust isolates collected from plants of L. multiflorum, Lolium perenne, F. pratensis, F. arundinacea and L. multiflorum × F. pratensis hybrids were applied to identify the resistance or susceptibility of the parental species, backcrossed, selfed and intercrossed progenies. The various crown rust populations revealed a species-specific capability to infect plants of the Lolium-Festuca complex corresponding to the host species from which the spores originated. Selected BC9 plants, however, were found to be completely resistant to all crown rust populations tested. Successful introgression of the resistance was achieved from F. arundinacea as well as from F. pratensis. The resistance represents a dominant character, apparently based on a strong heterologous incompatibility between host and pathogen. In phenotype, bivalent formation during meiosis and in fertility, the novel germplasms are comparable with the L. multiflorum cultivars.  相似文献   

4.
Genomic in situ hybridization (GISH) was used to characterize the chromosome constitutions of individual plants from a set of tetraploid and hexaploid cultivars of Festulolium developed and released in the Czech Republic from hybrids of Lolium multiflorum with Festuca pratensis and F. arundinacea. A simplified GISH protocol readily discriminated parental genomes in the hybrids and facilitated the screening of large numbers of plants per accession. The contribution of parental genomes in the cultivars tested ranged from predominance of chromatin from one of the parents to a more balanced contribution from both parents. However, in none of the cultivars were equal proportions of chromatin from both parents present. The parental contribution to the hybrids was both in the form of complete chromosomes or as chromosome translocations. In hexaploid cultivars from (L. multiflorum × F. arundinacea) × F. arundinacea hybrids the average numbers of complete L. multiflorum chromosomes ranged from 4.95 to 7.5 and the numbers of translocations from 6.33 to 10.21. Two tetraploid cultivars from (L. multiflorum × F. arundinacea) × L. multiflorum hybrids showed a strong prevalence of L. multiflorum chromatin and intergeneric translocations were rare. In the tetraploid cultivar ‘Perun’ of the L. multiflorum × F. pratensis hybrid there were 11.7 chromosomes of L. multiflorum and 14.7 recombined chromosomes on average. Reasons for the domination of one of the parental genomes in hybrid cultivars are not clear and are only partially explained by breeding history. Recombination rates of individual genomes in hybrids involving F. arundinacea were evaluated in double hybridization experiments. The results indicated a strong affinity of the L. multiflorum genome for the F. pratensis genome present in F. arundinacea and little affinity for the F. glaucescens genome. This suggests that introgressions from F. arundinacea into L. multiflorum are primarily limited to the F. pratensis genome which can be more readily accessed in L. multiflorum × F. pratensis hybrids.  相似文献   

5.
Genetic polymorphism within and between three species of forage grasses, perennial ryegrass (Lolium perenne L), meadow fescue (Festuca pratensis Huds.) and tall fescue (Festuca arundinacea Schreb.), was analyzed using restriction fragment length polymorphism (RFLP) markers detected by rice cDNA probes developed at the Rice Genome Research Programme of Japan (RGP). One hundred and ninety‐seven rice cDNA clones were used for hybridization to genomic DNA of forage grasses. Many of the rice cDNA clones produced no visible band or only a smear with no discrete bands. Twenty‐three clones showed high efficiency cross‐hybridization to the genomic DNA of forage grasses. Genetic variation was evaluated for five varieties and one population of forage grasses using 12 polymorphic rice cDNA RFLP probes. Genetic variability within varieties as measured by Rogers’ genetic distance was considerably lower for the F. pratensis variety ‘Tomosakae’ than for the L. perenne and F. arundinacea varieties. To determine the genetic diversity between varieties of different species, cluster analysis was performed using data from the 12 RFLP probes. The two accessions of Lolium perenne were clustered more closely together than the three varieties of F. arundinacea. Two Japanese varieties of F. arundinacea were grouped in the same cluster. The variety‐specific RFLP markers were seen among six accessions of L. perenne, F. pratensis and F. arundinacea. Such variety‐specific RFLP markers would provide very useful tools for breeding programmes such as the intergeneric hybridization of Lolium and Festuca genera.  相似文献   

6.
M. W. Humphreys 《Euphytica》1989,42(1-2):105-116
Summary Using phosphoglucoisomerase (PGI/2) as a genetic marker, it has been shown to be possible to transfer genes from Festuca arundinacea into diploid Lolium multiflorum using the pentaploid hybrid L. multiflorum (4x) x F. arundinacea (6x). The pentaploid hybrid was sufficiently fertile to be used in reciprocal crosses with diploid. L. multiflorum. When used as the male parent, only two backcross generations were then required to reconstitute the diploid genotype. Intergeneric recombinants including a F. arundinacea PGI/2 allele were found among the diploid BC2. Cytological data indicates that although the majority of chromosome associations involve only homologous Lolium chromosomes, associations involving Lolium and Festuca chromosomes also occur.Interpollinating the pentaploid hybrids prior to commencing a backcrossing programme increases the number of cycles of recombination and improves the chance of recovering intergeneric recombinants. The crossing programme described is proposed to be an effective method of introducing F. arundinacea genes into L. multiflorum.  相似文献   

7.
P. W. Wilkins 《Euphytica》1973,22(1):106-113
Summary Drechslera siccans was the commonest of the species of this leaf spot pathogen found on single spaced plants of Lolium perenne at Aberystwyth. D. catenaria and D. dictyoides were also frequently isolated. A wide range of genotypes within the host species L. perenne, L. multiflorum, Festuca arundinacea and F. pratensis, and structural hybrids between F. arundinacea and L. multiflorum, were all equally susceptible to conidial infection by D. siccans in the glasshouse and showed similar development of leaf spot symptoms, even though Festuca spp. are not normally attacked in the field. However, when exposed to infection out of doors there was significant variation in resistance, both between species and often also between genotypes within the same species. As in so many other instances of fungal infection, tetraploidy appeared to confer a higher level of resistance. The degree of resistance of a F. arundinacea × L. multiflorum amphiploid and two succeeding backcross generations to L. multiflorum approximated to that of the more susceptible L. multiflorum parent. By contrast to D. siccans, when plants were inoculated with D. catenaria in the glasshouse, both intervarietal and intravarietal variation in leaf spot development was evident. Resistance to D. siccans appears to depend partly on a limitation of conidial production, and to D. catenaria on restriction of hyphal growth following infection, which may explain the relative discrepancies between field and glasshouse results. The implications for resistance breeding are discussed.  相似文献   

8.
Self-sterile interspecific hybrids between diploid Lolium perenne and either Festuca arundinacea or F. gigantea (both hexaploids) set some seeds when subjected to a heavy pollen cloud from the amphiploids derived from the hybrids. All the progeny were octoploid and were formed from the fertilization of unreduced gametes in the F1 hybrid by amphiploid pollen. The significance of the results in relation to breeding efforts within the Lolium/Festuca complex is discussed.  相似文献   

9.
G. Kleijer 《Plant Breeding》1987,99(2):144-150
Meiotic observations of 56-chromosome plants of the C1, C2 and C3 generations of the amphidiploid Lolium multiflorum × Festuca arundinacea showed that most of the chromosomes paired as bivalents. However, uni- and multivalents were frequently observed. No difference in meiotic regularity and stability could be detected between the different generations. The average chromosome number and; the percentage of 56-chromosome plants decreased with increasing generations. The direct use of the 56-chromosome amphidiploids of L. multiflorum and F. arundinacea in a breeding programme appears to be quite difficult, but these plants can be used in a backcross programme with Lolium and Festuca.  相似文献   

10.
Previous studies reported that some genotypes with introgressed Festuca chromosome segment(s) in Lolium genome showed enhanced winter hardiness compared to Lolium. The aim of this study was to search comprehensively for the Festuca pratensis chromosome regions affecting winter hardiness-related traits when introgressed into the Lolium perenne genome. Association between F. pratensis introgression and winter hardiness-related traits (fall and winter hardiness indexes, early-spring dry matter yield, and freezing tolerance) were screened in the diploid introgression populations (n = 203) that had some F. pratensis chromosome segments introgressed. Eighty-four intron markers corresponding to unique rice genes randomly distributed across the genome were used for genotyping. Winter hardiness of almost all plants in the introgression populations was lower than that of the F. pratensis and triploid hybrid parents, but the average was higher than that of L. perenne. A significant positive effect of F. pratensis introgression on early-spring dry matter yield was detected on chromosome 7. This quantitative trait locus (QTL) was confirmed by linkage analysis using a backcross population with F. pratensis introgression in the target region of chromosome 7. However, the contribution of the newly identified QTL was rather small (6.7–9.6%), suggesting that superior winter hardiness of F. pratensis compared to L. perenne is conferred by multiple small-effect QTLs. We also detected a previously unreported negative effect of Festuca introgression on winter hardiness. Newly obtained QTL information in this study would contribute to the design of Festuca/Lolium hybrid breeding.  相似文献   

11.
Humphreys  M. W.  Ghesquière  M. 《Euphytica》1994,77(3):283-289
Summary AFestuca arundinacea (2n=6x-42) plant with three PGI/2 homoeoalleles marking three homoeologous chromosomes was crossed with aLolium multiflorum plant (2n=4x=28) with a different PGI/2 phenotype to give a pentaploid hybrid (2n=5x=35) with five chromosomes each marked by a different PGI/2 allele. This hybrid plant was backcrossed twice with diploidL. multiflorum (2n=2x=14) with a different PGI/2 phenotype. Numbers of interspecific recombinants involving chromosomes marked by PGI/2 were then determined in both backcross generations. In the BC1, recombinants involving only one PGI/2 allele were found but in the BC2, all three homoeologousF. arundinacea chromosomes carrying the PGI/2 locus recombined withLolium with one in greater frequency and the others in equal but lower frequency. The evidence supports claims made forF pratensis (2n=2x=14) andF. arundinacea var.glaucescens (2n=4x=28) being progenitors forF. arundinacea.  相似文献   

12.
An improved method is reported for polyploid induction in Lolium (ryegrass), and in sterile F1 hybrids between Lolium and Festuca (fescue). Two factors greatly increased the survival rate of colchicine‐treated embryos of Lolium perenne (perennial ryegrass) germinated and cultured in vitro (1) a high concentration of sucrose (100 g/1) in the germination medium and (1), maintenance at a low temperature of 10°C for 2 weeks after treatment. The maximum success rate for chromosome doubling among survivors of perennial ryegrass was 79.1%, and for L. perenne×Festuca arundinacea F1 hybrid embryos it exceeded 40%. The same doubling treatment also works with shoot tip culture in non‐ flowering genotypes obtained by anther culture of L. multiflorum×F. arundinacea hybrids.  相似文献   

13.
In a back-crossing programme involving Lolium multiflorum (the recurrent parent) and Festuca arundinacea, the diploid L. multiflorum phenotype was rapidly recovered with the inclusion, in some progeny, of a small number of genes from the fescue parent. In field drought trials derivatives of these backcross populations were on average less drought resistant than the L. multiflorum parental populations, but 3 % of individuals were as drought resistant as F. arundinacea. After only one cycle of selection and polycrossing these drought-resistant Lolium-like plants, the mean drought resistance of most progeny lines was significantly improved, in some cases to near that of F. arundinacea. Available evidence strongly indicates that this improved drought resistance was due to the transfer of genetic material from Festuca into Lolium. These populations will contribute to variety improvement and to our understanding of the genetics and physiology of drought resistance.  相似文献   

14.
The present study evaluated the individual plants reaction of F2 hybrid generation of C. annuum: ATZ1 × PO and ATZ1 × CDT as well as two interspecific hybrids: C. frutescens × C. annuum ATM1 and C. frutescens × C. chinense on androgenesis conditions in in vitro anther cultures. The experiment was carried out following a modified method of Dumas de Vaulx et al. (Agronomie 1:859–864, 1981). There were demonstrated clear differences in the effectiveness of androgenesis both between the pepper hybrid forms as well as among individual plants of all the genotypes tested. The highest effectiveness of androgenic embryos development was observed for the cultivated form of C. annuum: (ATZ1 × PO)F2. Anthers of most of the plants of this hybrid produced embryos at the level higher than 5%, while in anther cultures of the second C. annuum hybrid (ATZ1 × CDT)F2 almost 3-fold fewer embryos and plants were produced. Anthers isolated from flower buds of interspecific hybrids formed much lower number of embryos. A positive reaction was recorded for five hybrid plants of (C. frutescens × C. annuum ATM1)F2, while in case of (C. frutescens × C. chinense)F2 androgenic embryos were obtained from anthers of two plants. Only in the case of a one of these plants did the effectiveness of androgenesis exceed 5%. The ploidy level of the regenerants was determined by flow cytometry. Among the regenerants there were observed both haploid forms and the plants with the diploid number of chromosomes.  相似文献   

15.
The meiotic behaviour of the hybrid between Festuca gigantea (2n – 6x = 42) and Festuca gigantea (2n = 6x = 42) indicates distinct structural differences between the two species. These differences are also apparent in the degree of chromosome pairing observed in Lolium multiflorum×F. gigantea compared with previous reports on the L. multiflorum×F. arundinacea hybrids. Although the L. multiflorum×F. gigantea 8x amphiploid com Dines the complementary characters of the two species and is agronomically interesting, there are some irregularities in meiotic behaviour that could affect the stability of the amphiploid. Seed fertility in the amphiploid is high and preliminary studies show evidence of a high degree of self-fertility. The pentaploid hybrid between autotetraploid L. multiflorum×F. gigantea is sufficiently fertile to be used as the pollen plant in crosses with diploid L. multiflorum (BC1). Backcrossing the BC3 hybrid to L. multiflorum results in mainly diploid progeny. The possibilities, of using this crossing scheme to introgress F. gigantea characters into L. multiflorum is discussed as an alternative approach to amphiploid breeding as a means o: combining specific complementary characters of the two species.  相似文献   

16.
Wit  F. 《Euphytica》1974,23(1):31-38
Summary Among diploid derivatives of a tetraploid intergeneric hybrid originating from a cross between a diploid F4 hybrid of Lolium perenne x L. multiflorum and an autotetraploid plant of Festuca pratensis as female and male parent, respectively, a great number of male-sterile Lolium plants have been found. The male sterility appears to be based on an interaction of one or two recessive nuclear genes and sterilizing cytoplasm. The data available indicate a high frequency of B types (O types) in perennial ryegrass.  相似文献   

17.
Anther culture of two wide hybrids (Diplotaxis erucoides × Brassica campestris) × B. juncea and (D. berthautii × B. campestris) × B. juncea, their CMS lines and the parent species elicited a range of responses highlighting the importance of the genotype. Androgenesis was expressed in cultured anthers of CMS (D. erucoides) B. juncea (22.8%), in restored pollen fertile plants of this CMS line (1.66%), and in the parent, B. juncea cv Pusa Bold (13.02%). AgNO3 was essential for androgenic response in the CMS lines, and it markedly increased the frequency of androgenesis in the cultivated species. Multiple crops of microspore embryos were obtained from responsive anthers of CMS plants in anther recultures. As high as92% microspore embryos of the CMS line germinated on basal B5medium and formed normal plantlets. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
This paper reports on the first results of feeding value experiments, assessed with sheep, of hybrids between tetraploid Italian ryegrass (Lolium multiflorum, 2n = 4×= 28) and a progenitor of tall fescue, Festuca arundinacea var. glaucescens (2n = 4×= 28). Three hybrid populations resulting from either high, low or no selection for palatability were compared with a variety of Italian ryegrass as control and two varieties of the cultivated hexaploid (2n = 6×= 42) tall fescue, one of which had been selected for high palatability. On average, the hybrid populations were found to be as palatable as the improved tall fescue with voluntary intake (VI), in vivo digestibility of organic matter (DOM), and net energy expressed in fodder units for milk, similar to the best palatable tall fescue and to Italian ryegrass. However, selection for improved palatability among hybrids did not result in any further improvement of other traits, except VI in the hybrid selected for high palatability which significantly exceeded VI of Italian ryegrass. In conclusion, intergeneric hybridization between L. multiflorum and F. arundinacea var. glaucescens led to an immediate increase of feeding value compared with selection for palatability in tall fescue. However, to improve feeding value of hybrids further, similar selection for high palatability appeared questionable and possibly detrimental for other agronomic traits because of complicated inheritance in tetraploid L. multiflorum×F. glaucescens hybrids.  相似文献   

19.
Meadow fescue (Festuca pratensis), Italian ryegrass (Lolium multiflorum), their hybrid Festulolium braunii and perennial ryegrass (Lolium perenne) were grown hydroponically under vegetative (20 °C) and hardening (8 °C, 0 °C) regimes. The relative shoot/root growth ratio K, linear root growth rate and other parameters were estimated. When the temperature was lowered from 20 °C to 8 °C, the relative shoot/root growth ratio K of F. pratensis decreased to 0.6, i.e. much more than that of Lolium, suggesting that at 8 °C F. pratensis shoot growth blockage occurs. Further, by dropping the temperature from 8 °C down to 0 °C, the K ratio of F. pratensis increased significantly, while the linear root growth rate decreased much more markedly than in the other species – it suggests also a blockage of root growth. This growth slowdown of stress‐tolerant F. pratensis shoots and at a lower temperature also of its roots is inadequate to the direct impact of temperature and, thus, indicates a two‐step qualitative reorganization, i.e. transition into a qualitatively new state of stress. This phenomenon does not manifest itself in the less stress‐tolerant Lolium and Festulolium species but is expressed in stress‐tolerators, allowing them to achieve their strategic goal – to survive under extreme conditions.  相似文献   

20.
Summary Intergeneric symmetric and asymmetric somatic hybrids have been obtained by fusion of metabolically inactivated protoplasts from embryogenic suspension cultures of tall fescue (Festuca arundinacea Schreb.) and unirradiated or 10–500 Gy-irradiated protoplasts from non-morphogenic cell suspensions of Italian ryegrass (Lolium multiflorum Lam.). Genotypically and phenotypically different somatic hybrid Festulolium mature flowering plants were regenerated.Species-specific sequences from F. arundinacea and L. multiflorum being dispersed and evenly-represented in the corresponding genomes were isolated and used for the molecular characterization of the nuclear make-up of the intergeneric, somatic Festulolium plants recovered. The irradiation of Italian ryegrass protoplasts with 250 Gy X-rays prior to fusogenic treatment favoured the unidirectional elimination of most or part of the donor chromosomes. Irradiation of L. multiflorum protoplasts with 500 Gy produced highly asymmetric (over 80% donor genome elimination) nuclear hybrids and clones showing a complete loss of donor chromosomes.The RFLP analysis of the organellar composition in symmetric and asymmetric tall fescue (+) Italian ryegrass regenerants confirmed their somatic hybrid character and revealed a bias towards recipient-type organelles when extensive donor nuclear genome elimination had occurred.Approaches aimed at improving persistence of ryegrasses based on asymmetric somatic hybridization with largely sexually-incompatible grass species (F. rubra and Alopecurus pratensis), and at transferring the cytoplasmic male sterility trait by intra- and inter-specific hybridization in L. multiflorum and L. perenne, have been undertaken.Abbreviations cpDNA chloroplast DNA - CMS cytoplasmic male sterility - 2,4-D 2,4-dichlorophenoxy-acetic acid - IOA iodoacetamide - mtDNA mitochondrial DNA - RFLP restriction fragment length polymorphism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号