首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of six Zn sources (Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-glucoheptonate) was studied by applying different Zn levels to a representative Calcic Haploxeralf neutral soil (the predominant clay is montmorillonite) in incubation and greenhouse experiments. Zinc soil behavior was evaluated by sequential DTPA and Mehlich-3 extraction procedures. In the incubation experiment, the highest percentage recovery values of Zn applied to soil occurred in the water-soluble plus exchangeable fraction (29%) in fertilization with 20 mg of Zn kg(-1) of Zn-EDTA fertilizer. In the greenhouse experiment with maize (Zea mays L.), a comparison of different Zn carriers showed that the application of six fertilizers did not significantly increase the plant dry matter yield among fertilizer treatments. The highest yield occurred when 20 mg of Zn kg(-1) was applied as Zn-EDDHA fertilizer (79.4 g per pot). The relative effectiveness of the Zn sources in increasing Zn concentration in plants was in the following order: Zn-EDTA (20 mg kg(-1)) > Zn-EDDHA (20 mg kg(-1)) approximately Zn-EDTA (10 mg kg(-1)) > Zn-EDDHA (10 mg kg(-1)) approximately Zn-phenolate (both rates) approximately Zn-polyflavonoid (both rates) approximately Zn-lignosulfonate (both rates) approximately Zn-glucoheptonate (both rates) > untreated Zn. The highest amounts of Zn taken up by the plants occurred when Zn was applied as Zn-EDTA fertilizer (20 mg kg(-1), 7.44 mg of Zn per pot; 10 mg kg(-1) Zn rate, 3.93 mg of Zn per pot) and when Zn was applied as Zn-EDDHA fertilizer (20 mg kg(-1) Zn rate, 4.66 mg Zn per pot). After the maize crop was harvested, sufficient quantities of available Zn remained in the soil (DTPA- or Mehlich-3-extractable Zn) for another harvest.  相似文献   

2.
The movement and availability of Zn from six organic Zn sources in a Typic Xerorthent (calcareous) soil were compared by incubation, column assay, and in a greenhouse study with maize (Zea mays L.). Zinc soil behavior was studied by sequential, diethylenetriaminepentaacetate, and Mehlich-3 extractions. In the incubation experiment, the differences in Zn concentration observed in the water soluble plus exchangeable fraction strongly correlated with Zn uptake by plants in the greenhouse experiment. Zinc applied to the surface of soil columns scarcely moved into deeper layers except for Zn-ethylenediaminetetraacetate (EDTA) that showed the greatest distribution of labile Zn throughout the soil and the highest proportion of leaching of the applied Zn. In the upper part of the column, changes in the chemical forms of all treatments occurred and an increase in organically complexed and amorphous Fe oxide-bound fractions was detected. However, the water soluble plus exchangeable fraction was not detected. The same results were obtained at the end of the greenhouse experiment. Significant increases were found in plant dry matter yield and Zn concentration as compared with the control treatment without Zn addition. Increasing Zn rate in the soil increased dry matter yield in all cases but Zn concentration in the plant increased only with Zn-EDTA and Zn-ethylenediaminedi-o-hydroxyphenyl-acetate (EDDHA) fertilizers. Higher Zn concentration in plants (50.9 mg kg(-)(1)) occurred when 20 mg Zn kg(-)(1) was added to the soil as Zn-EDTA. The relative effectiveness of the different Zn carriers in increasing Zn uptake was in the order: Zn-EDTA > Zn-EDDHA > Zn-heptagluconate >/= Zn-phenolate approximately Zn-polyflavonoid approximately Zn-lignosulfonate.  相似文献   

3.
A study of soil columns was conducted to evaluate Zn movement potential in two reconstructed soil profiles. Zn-phenolate, Zn-EDDHA, Zn-EDTA, Zn-lignosulfonate, Zn-polyflavonoid, and Zn-heptagluconate were applied in the upper zone of the column. The different physicochemical properties of the two soils and the micronutrient source may influence Zn leaching, the distribution of Zn among soil fractions, and the Zn available to the plant in the depth of the layers. In Aquic Haploxeralf soil, the application of six fertilizers produced little migration and very small leaching of Zn in the soil profiles. In Calcic Haploxeralf soil, Zn-EDTA migrated and was distributed throughout the soil columns. This Zn chelate produces a loss of Zn by leaching, which was 36% of the added Zn. In the latter soil, Zn leached very little with the other five fertilizer treatments. The same as for these organic Zn complexes, the retention of added Zn indicated the potential of metal accumulation in the A(p) horizons of the two soil profiles. A large portion of applied Zn was available to plants [diethylenetriaminepentaacetic acid (DTPA) and Mehlich-3 extractable Zn] in the depths reached by the different commercial formulations. The relationship between the two methods was highly significant (Mehlich-3-Zn = 1.25 + 1.13 DTPA-Zn, R(2) = 99.19%). When Zn was added as Zn-EDTA, the amounts of the most labile fractions (water-soluble plus exchangeable and organically complexed Zn) increased throughout the entire profile column in comparison with the control columns, although in the B(t) horizon of the Aquic Haploxeralf soil they increased only slightly.  相似文献   

4.
The objective of this study was to compare the mobility, leaching, availability, and relative effectiveness of Zn from Zn-polyhydroxyphenylcarboxilate (Zn-PHP), Zn-HEDTA (Zn-N-2-hydroxyethyl-ethylenediaminetriacetate), Zn-EDDHSA [Zn-ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate)], Zn-EDTA (Zn-ethylenediaminetetraacetate), Zn-S,S-EDDS (Zn-ethylenediaminedisuccinate), and Zn-EDTA-HEDTA sources by applying different Zn rates (5 and 10 mg kg(-1)) to a calcareous soil under greenhouse conditions. A lysimeter experiment was carried out for 60 days and using navy bean (Phaseolus vulgaris L.) as an indicator plant. The Zn available to the plant and easily leachable Zn were determined in soil by different single extractions, while the distribution of Zn in the soil was assessed by sequential speciation. The utilization of applied Zn by the navy bean was greatest when the Zn treatments were Zn-EDTA, Zn-EDTA-HEDTA, Zn-HEDTA, and Zn-EDDHSA. Both total Zn in the plants and soluble Zn in the plant dry matter (extracted with 1 mM 2-morpholino-ethanesulfonic acid) were positive and significantly correlated with the following: the amounts of Zn extracted with the three single extractions used to estimate soil available Zn and the amounts of Zn in the water soluble plus exchangeable and organically complexed fractions. The Zn-HEDTA, Zn-EDDHSA, Zn-EDTA-HEDTA, Zn-S,S-EDDS, and Zn-EDTA sources significantly increased the mobility of micronutrients through the soil with respect to the control and Zn-PHP source. The maximum Zn concentration obtained in the leachate fractions was 65 mg L(-1) (13% of Zn applied) for the Zn-S,S-EDDS chelate applied at a rate of 10 mg Zn kg(-1) soil. In the course of the crop, the soil pH + pe parameter increased significantly with experimental time.  相似文献   

5.
The effect of different levels of K application on the transformation of native as well as applied Zn fractions in a rice-growing soil was studied under two moisture regimes viz. waterlogged and alternate waterlogged and saturation. Application of K caused an increase in the water-soluble plus exchangeable, organically complexed and carbonates, and other acid-soluble mineral fractions of native soil Zn. Application of K also caused an increase in the transformation of applied Zn into all the above three fractions of the element in soil. The above effects of K were more pronounced in soil under waterlogged than under alternate waterlogged and non-waterlogged moisture regimes. The results of a greenhouse experiment showed that K application caused an increase in Zn uptake and per cent utilization of both native and added Zn by rice. This was attributed to the increase in the water-soluble plus exchangeable and organically complexed forms of Zn in soil due to K application.  相似文献   

6.
锌源和施锌方法对石灰性土壤锌组分及锌肥利用率的影响   总被引:2,自引:1,他引:1  
【目的】选用合适的锌肥以及合理的施肥方式不仅可以提高小麦籽粒锌营养品质,还可以提高石灰性土壤的锌肥利用率。因此,研究不同锌源和施肥方式对石灰性土壤中锌组分含量以及锌肥利用率的影响具有重要意义。【方法】采用盆栽试验,设置两种锌源(水溶态锌肥Zn SO4·7H2O和螯合态锌肥Zn-EDTA)全层混匀均施和表面条施两种方式,调查了土壤中交换态Zn(Ex-Zn)、松结有机态Zn(LOM-Zn)、碳酸盐结合态Zn(Carb-Zn)、氧化锰结合态Zn(Ox Mn-Zn)、紧结有机态Zn(TOM-Zn)5种形态锌的含量,分析了小麦对锌肥的利用率。【结果】全层混匀均施与表面条施,两种锌肥均增加了小麦籽粒和秸秆Zn含量,全层均施Zn SO4·7H2O处理的籽粒Zn含量比对照提高43%,均施和表面条施Zn-EDTA的籽粒Zn含量分别比对照提高57%和75%;Zn-EDTA均施和条施的锌肥利用率分别为6.5%和5.3%,Zn SO4·7H2O均施和条施的锌肥利用率分别为3.6%和1.3%。小麦收获后,条施Zn SO4·7H2O和Zn-EDTA的施锌区有效锌含量分别为9.25和1.97 mg/kg,分别为均施处理的2倍和1.8倍;与对照相比,Zn SO4·7H2O和Zn-EDTA条施及均施的4个处理均增加了土壤中各形态锌的含量,并且4个处理与对照土壤中各形态Zn含量的规律一致,即:松结有机态碳酸盐结合态紧结有机态氧化锰结合态交换态。均施Zn SO4·7H2O和Zn-EDTA 2个处理的交换态Zn含量分别为0.12和0.13 mg/kg,条施分别为0.38和0.54 mg/kg;均施处理松结有机态Zn含量分别为5.26和1.56 mg/kg;不同处理碳酸盐结合态Zn含量变化趋势与松结有机态Zn含量基本一致;条施Zn SO4·7H2O施肥区氧化锰结合态Zn含量为对照的4倍,不同处理的土壤中紧结有机态Zn含量变化规律与氧化锰结合态Zn含量变化规律相似。相关分析表明,土壤交换态Zn、松结有机态Zn和碳酸盐结合态Zn含量均与有效锌含量呈显著正相关关系,与不施锌肥相比,Zn-EDTA施入土壤后,小麦收获后松结有机态Zn和碳酸盐结合态Zn含量明显增加,而紧结有机态Zn则相对减少。【结论】潜在缺锌石灰性土壤上施用螯合态锌肥Zn-EDTA能显著增加土壤中潜在有效的锌组分以及锌肥利用率,而且施用螯合态锌肥后,较高的有效锌含量可以维持至小麦收获后,有效提高了锌肥利用率。与均施处理相比,条施这种集中施用的施肥方法可以增加近根系土壤中有效性较高的锌形态含量。  相似文献   

7.
Zinc contamination of groundwater from fertilizers applied to pulse crops is a potential problem, but the use of different types of organic chelates can minimize the contamination potential while still adequately feeding the crops. The objective of this study was to compare the leaching, distribution in fractions and availability, and relative effectiveness of Zn from six organic Zn fertilizers (zinc-ethylenediaminetetraacetate- N-2-hydroxyethylethylenediaminetriacetate (Zn-EDTA-HEDTA), Zn-HEDTA, zinc- S, S'-ethylenediaminedisuccinate (Zn- S, S-EDDS), zinc-polyhydroxyphenylcarboxylate, Zn-EDTA, and zinc-ethylenediaminedi(2-hydroxy-5-sulfophenylacetate) (Zn-EDDHSA)) applied to a navy bean ( Phaseolus vulgaris, L.) crop cultivated by applying different Zn levels, in a weakly acidic soil under greenhouse conditions. Zinc soil behavior was evaluated by diethylenetriaminepentaacetic acid-triethanolamine (DTPA-TEA), DTPA-ammonium bicarbonate (DTPA-AB), Mehlich-3, and BaCl 2 extractions and sequential fractionation. In all the fertilizer treatments, the percentage of labile Zn that remained in the soil was high with respect to the quantity of Zn applied, with values respectively ranging from 42 to 80% for Zn-EDDHSA and Zn-EDTA sources. A positive correlation with a high level of significance existed between the micronutrient concentration in the navy bean crop (total and soluble) and labile Zn fractions, available Zn, and easily leachable Zn ( r ranged from 0.89 to 0.95, P < 0.0001). The relatively high quantity of total Zn leached by applying Zn-EDTA and Zn-S,S-EDDS sources (11.9 and 6.0%, respectively, for the rate 10 mg of Zn kg(-1) of soil) poses a potential pollution risk for neighboring waters. It would seem recommendable to apply Zn-HEDTA or Zn-EDDHSA sources, even applied at the low rate (5 mg of Zn kg(-1) of soil), because they produced available Zn concentrations in the soil that were above the critical concentration and also produced high Zn concentrations in plants (139 and 106 mg of Zn kg(-1) of dry matter, respectively).  相似文献   

8.
Solutions of Zn, Cu and Mn chelates of EDTA, DTPA and EDDHA were reacted separately with a calcareous soil for periods up to 28 days. DTPA was an effective chelate for Zn and Cu; more than 77 and 55% of the added Zn and Cu, respectively, remained soluble after 28 days of reaction with the soil. The stability of Zn-EDTA and Cu-EDTA was relatively less than those of the respective DTPA chelates, whereas Zn-EDDHA and Cu-EDDHA were highly unstable in the soil. The loss of soluble Mn from Mn-EDTA, Mn-DTPA and Mn-EDDHA additions to soil was very rapid and completed in about one week. It was found that adsorption of Zn-EDDHA, Cu-EDDHA and Mn-EDDHA molecules by the soil was the main process removing Zn, Cu and Mn from solution. Whereas, replacement of the metal in the metal-chelate molecule by Ca ion from the soil was a more serious factor affecting the stability of DTPA and EDTA chelates of Zn, Cu, and Mn.  相似文献   

9.
【目的】在潜在缺锌石灰性土壤上,特别是种植小麦并以此为主粮的地区,缺锌问题日益受到人们的关注。提高小麦籽粒锌含量以满足人体锌需求,对于改善人体锌营养不良的现状具有重要意义。【方法】以ZnSO4和Zn-EDTA为锌源,布置了2个为期两年的田间定位试验。试验均采用裂区设计,即主因子为喷施锌肥,设喷施与不喷2个主处理;副因子为土施方法,设不施锌、均施、条施3个副处理。在第1季试验基础上,第2季不再土施锌肥,调查了小麦籽粒锌含量、土壤有效锌含量及锌组分含量,分析了第1季锌肥的后效。【结果】第2季单独喷施ZnSO4小麦籽粒Zn含量提高了11.13 mg/kg,提高幅度为33%,而喷Zn-EDTA无明显效果。不喷Zn时,第1季均施和条施的ZnSO4在第2季均表现出一定后效,小麦籽粒锌含量比对照分别提高了6.05、3.51 mg/kg,提高幅度为20%和11%;喷Zn时,第2季均施和条施ZnSO4处理的小麦籽粒锌含量增加了28.59和21.59 mg/kg,增幅100%和76%,表现出显著富锌作用,但增加幅度比单独喷施要小很多。第1季土施的两种锌肥在第2季小麦收获后DTPA-Zn仍维持在1 mg/kg以上,即不喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.99和1.65 mg/kg,均施和条施Zn-EDTA的有效锌含量分别为1.23和1.01 mg/kg;喷Zn时,均施和条施ZnSO4处理的土壤有效锌含量分别为1.44和2.22 mg/kg,均施和条施Zn-EDTA处理的有效锌含量分别为1.16和1.10 mg/kg。土壤各锌组分含量均表现为:松结有机态Zn > 碳酸盐结合态Zn > 氧化锰结合态Zn > 紧结有机态Zn > 交换态Zn。具体而言,第1季均施和条施ZnSO4,第2季结束后交换态Zn(Ex-Zn)、松结有机态Zn(Wbo-Zn)、碳酸盐结合态Zn(Car-Zn)含量均显著提高,其提高幅度分别为184%和116%;75%和85%;53%和43%。而均施和条施Zn-EDTA仅Ex-Zn、Wbo-Zn含量显著提高,其提高幅度分别为232%和132%;18%和10%。均施Zn-EDTA处理的锌肥利用率为0.27%,条施为0.70%,后者约为前者的3倍;而条施与均施ZnSO4无差异。【结论】在潜在缺锌石灰性土壤上,单独喷施ZnSO4显著提高了小麦籽粒锌含量,而喷施Zn-EDTA效果不显著;土施ZnSO4和Zn-EDTA,不论条施或均施,虽然会使有效锌(DTPA-Zn)及较高活性锌形态(Ex-Zn、Wbo-Zn)长时间维持较高含量,但对第2季小麦籽粒富锌的后效有限;土施基础上配合喷施ZnSO4对小麦籽粒锌的含量效果最令人满意。  相似文献   

10.
Abstract

Maize (Zea mays L.) was greenhouse cultivated with doses of 5, 10, and 15 ppm of zinc (Zn) in order to test the effectiveness of laboratory‐prepared coated and uncoated Zn fertilizers with commercial Zn‐EDTA and Zn‐ligno‐sulphonate (LS). Large increases were achieved both in crop yield and in Zn uptake in all cases while a large part of the Zn applied remained in the soil in easily plant‐available forms. Positive significant correlations were obtained between available Zn and the first three sequentially extracted fractions (water soluble plus exchangeable, organically complexed and that associated to amorphous sesquioxides) and also between the variables, yield, Zn concentration, and plant Zn uptake. Zinc uptake by the maize plants can be fairly accurately predicted from its sequential fractioning in the soil using an equation obtained by multiple regression analysis. Consideration of the amounts of Zn remaining as available (DTPA extractable) in the soil and results of a plant analysis let us conclude that under the conditions of our tests, Zn‐EDTA is a better Zn source than Zn‐LS. In addition, coating of Zn‐EDTA products with rosin improves their performance.  相似文献   

11.
This study was conducted to determine the chemical distribution and plant availability of Cd, Zn and Ni in eight metal-polluted soils in southern Ontario, Canada. There were altogether 30 different soil samples because two of the soils had received various sewage sludge treatments. The soils were sequentially extracted with 1 m ammonium acetate to remove soluble plus exchangeable metals, with 0.125 m Cu(II) acetate to remove complexed metals, and with 1 m HNO3 to dissolve chemisorbed or occluded metals and precipitates such as oxides and carbonates. Expressed as a percentage of the metal so extracted, exchangeable Cd and Zn and Ni; complexed Cd and Zn>Ni and Ni>Zn>Cd in the acid-soluble pool. With a few exceptions (soils with high organic matter content or low pH) at least 50 per cent of the extracted metal was in the acid-soluble pool. The percentage of metal complexed was significantly correlated with organic matter content. The percentage of metal in the acid-soluble fraction was significantly correlated with soil pH. Preliminary findings based on the results with two soils suggested that for Cd and Zn plant availability was correlated with the concentrations of exchangeable, complexed or acid-soluble pools of Cd and Zn.  相似文献   

12.
Soils developed on sulphide-bearing shale (alum shale) in Norway contain naturally high amount of heavy metals. We conducted a greenhouse pot experiment to study the effect of four rates (0, 2, 4, and 8%) and three sources (cow manure, pig manure and peat soil) of organic matter in partitioning and distribution, extractability and plant uptake of Cd, Cu, Ni and Zn in an alum shale soil. Sequential extraction scheme was used to determine the distribution patterns of metals in the soil. DTPA was used for extracting the metals from the soil. Wheat (Triticum aestivum) was used as a test crop to study the plant uptake of metals. The highest amount of Cd was present in the exchangeable fraction, irrespective of the rate and source of organic matter applied. Copper, Ni, and Zn, on the other hand, were present only in small quantities in this fraction. The largest fraction of Cu was associated with organic matter and the amounts present in the oxide, carbonate and exchangeable fractions were very small. Nickel and Zn were found mainly in the residual fraction. Increasing rates of cow and pig manure decreased the amounts of Cd and Ni associated with the exchangeable fraction whereas, the addition of peat soil at the same rate increased the amounts of these metals associated with this fraction. This effect of organic matter was primarily associated with the change in soil pH caused by different organic matter sources. The DTPA-extractable metals were decreased with increasing rates of organic matter application, irrespective of its source. Grain and straw yields of wheat were decreased with increasing rates of organic matter. The application of organic matter increased the Cu and Zn concentrations in both grain and straw. The concentration of all metals was lower in plants grown in the cow manure amended soil as compared to those grown in the soil amended with either pig manure or peat soil. These results sugggest that the source of organic matter was a determining factor for metal distribution in the soil and for metal uptake by plants. In this study cow manure slightly increased the soil pH and thus was more effective than either pig manure or peat soil in reducing the plant uptake of metals but in general the efficiency of the organic material in reducing heavy metal uptake was small.  相似文献   

13.
Abstract

The experiment was carried out to evaluate the effects of fungicides [with or without zinc (Zn)] and different Zn fertilizer application methods (no fertilizer; soil application; shoot application; soil plus shoot application) on the soluble and total Zn in the dry matter of potato shoots. Zinc fertilizer was applied to the shoots at 20 and 45 days after plant emergence (DAE), immediately before plant sampling. At 25 DAE, Zn fungicide increased soluble and total Zn in the fourth leaf. The same occurred, at 45 DAE, with the Zn fertilizer applied to the shoots. It were not observed significant increases on both soluble and total Zn contents in the fourth leaf of plants that received soil Zn fertilization. Even in the leaves with 262 mg Zn kg‐1, there was no phytotoxicity symptoms. The total Zn concentration at 20 DAE was the best index correlated to potato tuber yield reaching 50.9 mg Zn kg‐1 in the fourth leaf of plants at the highest marketable tuber yield treatment. Plant nutrient element contents [phosphorus (P), calcium (Ca), magnesium (Mg), copper (Cu), iron (Fe), and manganese (Mn)] were not affected by the treatments.  相似文献   

14.
高量施锌肥对玉米Zn吸收和积累及产量的影响   总被引:1,自引:0,他引:1  
在田间试验条件下,研究正常施锌(10kg/hm2,25kg/hm2 ZnSO4.7H2O)和超高量施锌处理(50kg/hm2,100kg/hm2,150kg/hm2 ZnSO4.7H2O),对玉米各个生育期植株锌吸收和积累以及产量的影响,以期为玉米增产、品质改善和合理施锌肥提供科学依据。结果表明:在施锌肥量10~150kg/hm2范围内,玉米苗期、拔节期、吐丝期、灌浆期、成熟期的植株和籽粒含锌量都有显著增加的趋势,并且施用量与锌含量呈极显著正相关,正常施锌和超高量施锌在植物体内各个生育期锌含量都呈增加的趋势,且同一浓度施锌量,玉米植株积累的锌量随植株生长而增加,说明玉米在不同生长期从土壤中吸取的锌元素也在不断增加。玉米地上部分各生育阶段对锌的吸收速率总体趋势为,随着施锌量的增加各个生育阶段对锌的吸收速率呈增加趋势,其中,拔节期-吐丝期对锌的吸收速率最高。随着施锌量的增加,玉米产量呈现先增加后降低的趋势,最适合的施锌量为50kg/hm2,相比正常施锌量有所提高,并且高施锌肥可以增加玉米产量、提高玉米籽粒和植株锌含量。  相似文献   

15.
A rhizobox experiment was conducted to study the changes of various zinc (Zn) forms in rhizosphere and nonrhizosphere soils of maize (Zea mays L.) plants grown under well-watered and drought conditions. The tested soil was earth-cumulic orthic anthrosol sampled from the Shaanxi Province of China. The experiment was set at two levels of Zn, 0 and 5.0 mg Zn kg?1 soil, and at two treatments of soil water content, 45%–50% (drought) and 70%–75% (well watered) of soil water-holding capacity. A completely randomized factorial design (2 Zn treatments × 2 water levels × 3 replicates) was set up. Adequate soil water supply enhanced growth and Zn accumulation of maize plants. Applying Zn increased plant biomass and Zn content more notably under well-watered conditions rather than drought conditions. Soil Zn was defined as water-soluble plus exchangeable (WSEXC) Zn, carbonate-bound Zn (CA), iron–manganese oxide–bound Zn (FeMnOX), organic matter–bound Zn (OM), and residual Zn (RES) forms using the sequential extraction procedure. Most of Zn was predominantly in the RES fraction. Zinc application increased the contents of WSEXC Zn, CA Zn, and FeMnOX Zn in soil. When Zn was added to the soil, the concentrations of CA Zn within 0–2 mm and 0–4 mm apart from the central root compartment (CC) were greater than other zones under the conditions of adequate and limited soil water supplies, respectively. Zinc application also resulted in an accumulation of FeMnOX fractions at a distance of 2 mm from CC. The FeMnOX Zn content in this compartment increased with soil drought. Under well-watered conditions, dry-matter weight and Zn concentration of shoots presented better correlations with CA Zn and FeMnOX Zn fractions in and near the rhizosphere as compared with drought conditions. It is suggested that in an earth-cumulic orthic anthrosol, soil moisture conditions affect the transformation of the added Zn into the CA and FeMnOX fractions near the rhizosphere and their bioavailability to maize plants.  相似文献   

16.
Sequential extraction was utilized for partitioning Cd, Cr, Ni, and Zn, in soil and sludge samples into five operationally-defined fractions: exchangeable, bound to carbonates, bound to Fe-Mn oxides, bound to organic matter and residual. The highest amounts of Cd, Ni, and Zn, expressed as per cent of the total, were found in the Fe-Mn oxide fraction of the sewage sludge. Chromium was significantly associated with the organic fraction of the sludge. The residue was the most abundant fraction for all metals studied in the untreated soil, and for Cd and Ni in the sludge-treated soil. The concentration of exchangeable Cd and Cr was relatively low in the untreated soil and did not change much after sludge application, whereas the concentrations of exchangeable Zn increased about 50 times and the concentrations of exchangeable Ni doubled in the sludge-treated soil. The lysimetric experiment revealed an increase in Zn and Ni uptake by ryegrass and in the percentage of metals leached from the soil profile after massive sludge application. In contrast only negligible changes were observed for Cd and Cr. The assumption that mobility and biological availability are related to metal speciation was confirmed by the agreement between the distribution pattern of Cd, Cr, Ni and Zn in the soils, the uptake of the metals by plants and their capacity for leaching out from the soils.  相似文献   

17.
This present investigation took place on a continuing long-term fertilizer experiment, initiated in 1972 at the experimental farm of the College of Agriculture CSK HPKV, Palampur, aimed at studying nutrient dynamics of micronutrients, especially Zn, after continuous use of chemical fertilizers and amendments over the previous 36 years in an acid Alfisol under a maize–wheat system. Treatments investigated were as follows: T1: Control; 100% N; 100% NP; 100% NPK (optimal application - 120:26:33(maize)/25(wheat)); 100% NPK + FYM (10 t ha−1 to the maize crop); T6: 100% NPK + lime (900 kg ha−1); T7: 100% NPK + Zn (25 kg ha−1 as ZnSO4); T8: 100% NPK + Hand weeding; T9: 100% NPK (-S); T10: 150% NPK (super-optimal application); and T11: 50% NPK (sub-optimal application). Different forms of zinc in soil were determined through a sequential extraction method. Results revealed that previous applications of high-analysis fertilizers and amendments caused a marked depletion in the pools of Zn as compared to buffer plots. All pools of Zn as well as crop productivity and Zn uptake were noticeably greater in farmyard manure (FYM)-amended plots compared with plots not receiving fertilizer. The residual fraction was the dominant form but organically bound and exchangeable forms were found to play major role in nutrient supply, crop productivity and nutrient uptake. Correlation and regression analysis studies showed that organic forms constituted the most important pool contributing towards variation in yield and uptake by maize and wheat crops. Exchangeable and organically bound forms contributed significantly towards the availability of DTPA-extractable Zn in soil.  相似文献   

18.
 ZnSO4, Zn-enriched farmyard manure (Zn-FYM), Zn-tetraammonia complex sorbed on FYM [Zn(NH3)4-FYM] and Zn-ethylenediaminetetraacetate (Zn-EDTA) were compared as Zn sources for rice production under lowland conditions. The amount of Zn supplied by Zn-EDTA was one-tenth of that supplied by the other Zn sources. Zn application to a Zn-deficient soil corrected the visual symptoms of Zn deficiency and significantly increased the total biomass, grain yields and the harvest index of rice, as well as the Zn concentration in the grain and the uptake of Zn by the straw and the grains. Even with lower rates of application (0.25 and 0.5 mg Zn kg–1 soil), Zn-EDTA treatments gave comparable values for these parameters, and the highest "Zn-mobilization efficiency" compared to the other Zn sources. The content of diethylenetriaminepentaacetate (DTPA)-extractable Zn in the soil of the different treatments after the harvest of rice was in the order; ZnSO4=Zn-FYM>Zn(NH3)4-FYM=Zn-EDTA. The application of Zn also significantly increased the number of panicles that emerged between 80 to 93 days after transplanting, though the total number of panicles at harvest remained unaffected. The calculated panicle-emergence index had a positive correlation with the grain yield of rice. The Zn-EDTA treatment, inspite of supplying the lowest amount of Zn, as well as leading to the lowest rate of Zn uptake, produced the highest yields. Therefore, we concluded Zn-EDTA to be the most efficient source of Zn for lowland rice production. Received: 20 October 1998  相似文献   

19.
Abstract. The chemical extractability of heavy metals introduced into the soil during 7 years application of sewage sludge, composted municipal solid waste and sheep manure, and their availability to citrus plants were studied. The total content of metals in the soil (0-20 cm)was increased by the use of sludges and compost, but only the Ni content in the saturation extracts of soil was significantly increased. Total Cd, Cr, Cu, Ni, Pb, and Zn were sequentially fractionated into water-soluble plus exchangeable, organically bound, carbonate-associated, and residual fractions. Most of the heavy metals were present in carbonate and residual fractions, although substantial amounts of water-soluble plus exchangeable Cd, and organically bound Cu and Ni were found. No significant increases in the metal contents in leaves and orange fruits were observed, with the exception of Pb in leaves. Several statistically significant correlations between metal content in plants, metal content in soil fractions, and chemical characteristics of soil were also found.  相似文献   

20.
Abstract

A significant portion of chemical zinc (Zn) fertilizers applied to calcareous soils is not absorbed by the first crop and may, therefore, affect the growth and chemical composition of the subsequent crops. This is called the residual effect of Zn. Soil tests may be used to predict such effects. The present experiment was conducted to study the residual effects of zinc sulfate (ZnSO4) on the second crop of corn (Zea mays L.) grown on selected highly calcareous soils of Iran and to compare the suitability of three soil tests for prediction of the effects. Twenty highly calcareous soils of southern Iran (16–58% calcium carbonate equivalent; pH 7.9–8.5), previously treated with three levels of Zn (0, 10, and 20 mg Zn/kg as ZnSO4) and under one crop of corn, was used in greenhouse to grow a second crop of corn without additional Zn fertilizer but with uniform application of nitrogen (N), phosphorus (P), and iron (Fe). Soils were sampled before the second crop and extracted with three Zn extradants, DTPA, EDTA‐(NH4)2CO3, and EDTA. Dry weight of plant tops and Zn concentration and uptake after eight weeks under the greenhouse conditions were used as the plant responses to residual Zn. Statistical analyses including F‐test and multiple regression equations showed that the overall effect of previously‐applied Zn on dry matter was nonsignificant, but Zn concentration and uptake were significantly increased. The three soil tests predicted the Zn concentration and uptake equally well. Moreover, DTPA and EDTA soil tests could predict the dry matter of plants at the highest level of previuosly‐applied Zn (20 mg Zn/kg), especially when selected chemical properties of soil, namely, calcium carbonate equivalent or organic matter content, were considered in the regression equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号