首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since 2008, West Nile Virus (WNV) has expanded its range in several Italian regions, and its yearly recurrence suggests the virus may have become endemic in some areas. In 2011, a new plan based also on the detection of IgM antibodies was implemented in the north‐eastern Italian regions of Veneto and Friuli Venezia Giulia, aiming to early detect WNV infections in areas where the virus had already circulated during the previous summers, and in adjacent zones. From July to November 2011, 1880 sera from 521 equine premises were screened by a commercial IgM capture ELISA. Mosquitoes were captured by CDC‐CO2 traps at 61 locations in the two regions. Collected mosquitoes were identified, pooled by species/date/location and examined by real‐time RT‐PCR and sequencing. Passive surveillance was carried out on clinically affected horses and non‐migratory wild birds found dead. IgM sero‐positive equines were detected in 19 holdings, five in the area with WNV circulation (AWC) and 14 in the surveillance area (SA); 10 more horse premises tested positive to further serological controls within 4 km of the positive holdings. A total of 85 398 mosquitoes of 15 species were collected and 2732 pools examined. Five Culex pipiens pools tested positive for the presence of WNV. Passive surveillance on non‐migratory wild birds allowed detection of the virus only in one found dead collared dove (Streptopelia decaocto), of 82 birds sampled. The WNV belonged to the lineage 2, which had been isolated for the first time in Italy earlier in 2011. By the first week of October, nine human cases had been confirmed in the same area. The implementation of a protocol combining IgM screening of horses with surveillance on mosquito vectors proved to be valuable for early detecting WNV circulation.  相似文献   

2.
3.
West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are maintained in enzootic transmission cycles between mosquitoes and birds and are occasionally transmitted to mammals. As arboviruses are currently expanding their geographic range and emerging in often unpredictable locations, surveillance is considered an important element of preparedness. To determine whether sera collected from resident and migratory birds in the Netherlands as part of avian influenza surveillance would also represent an effective source for proactive arbovirus surveillance, a random selection of such sera was screened for WNV antibodies using a commercial ELISA. In addition, sera of jackdaws and carrion crows captured for previous experimental infection studies were added to the selection. Of the 265 screened serum samples, 27 were found to be WNV–antibody‐positive, and subsequent cross‐neutralization experiments using WNV and USUV confirmed that five serum samples were positive for only WNV‐neutralizing antibodies and seven for only USUV. The positive birds consisted of four Eurasian coots (Fulica atra) and one carrion crow (Corvus corone) for WNV, of which the latter may suggest local presence of the virus, and only Eurasian coots for USUV. As a result, the screening of a small selection of serum samples originally collected for avian influenza surveillance demonstrated a seroprevalence of 1.6% for WNV and 2.8% for USUV, suggesting that this sustained infrastructure could serve as a useful source for future surveillance of arboviruses such as WNV and USUV in the Netherlands.  相似文献   

4.
The West Nile virus (WNV) is an arthropod-borne virus (arbovirus) circulating in a natural transmission cycle between mosquitoes (enzootic vectors) and birds (amplifying hosts). Additionally, mainly horses and humans (dead-end hosts) may be infected by blood-feeding mosquitoes (bridge vectors). We developed an epidemic model for the simulation of the WNV dynamics of birds, horses and humans in the U.S., which we apply to the Minneapolis metropolitan area (Minnesota). The SEIR-type model comprises a total of 19 compartments, that are 4 compartments for mosquitoes and 5 compartments or health states for each of the 3 host species. It is the first WNV model that simulates the seasonal cycle by explicitly considering the environmental temperature. The latter determines model parameters responsible for the population dynamics of the mosquitoes and the extrinsic incubation period. Once initialized, our WNV model runs for the entire period 2002-2009, exclusively forced by environmental temperature. Simulated incidences are mainly determined by host and vector population dynamics, virus transmission and herd immunity, respectively. We adjusted our WNV model to fit monthly totals of reported bird, equine and human cases in the Minneapolis metropolitan area. From this process we estimated that the proportion of actually WNV-induced dead birds reported by the Centers for Disease Control and Prevention is about 0.8%, whereas 7.3% of equine and 10.7% of human cases were reported. This is consistent with referenced expert opinions whereby about 10% of equine and human cases are symptomatic (the other 90% of asymptomatic cases are usually not reported). Despite the restricted completeness of surveillance data and field observations, all major peaks in the observed time series were caught by the simulations. Correlation coefficients between observed and simulated time series were R=0.75 for dead birds, R=0.96 for symptomatic equine cases and R=0.86 for human neuroinvasive cases, respectively.  相似文献   

5.
To enhance early detection of West Nile virus (WNV) transmission, an integrated ecological surveillance system was implemented in Catalonia (north‐eastern Spain) from 2007 to 2011. This system incorporated passive and active equine surveillance, periodical testing of chicken sentinels in wetland areas, serosurveillance wild birds and testing of adult mosquitoes. Samples from 298 equines, 100 sentinel chickens, 1086 wild birds and 39 599 mosquitoes were analysed. During these 5 years, no acute WNV infection was detected in humans or domestic animal populations in Catalonia. WNV was not detected in mosquitoes either. Nevertheless, several seroconversions in resident and migrant wild birds indicate that local WNV or other closely related flaviviruses transmission was occurring among bird populations. These data indicate that bird and mosquito surveillance can detect otherwise silent transmission of flaviviruses and give some insights regarding possible avian hosts and vectors in a European setting.  相似文献   

6.
Surveillance of West Nile virus (WNv) in Ontario has included passive reporting of human cases and testing of trapped mosquitoes and dead birds found by the public. The dead bird surveillance programme was limited to testing within a public health unit (PHU) until a small number of birds test positive. These dead corvid and mosquito surveillance programmes have not been compared for their ability to provide early warning in geographic areas where human cases occur each year. Spatial scan statistics were applied to time‐to‐event survival data based on first cases of WNv in found dead corvids, mosquitoes and humans. Clusters identified using raw data were compared to clusters based on model‐adjusted survival times to evaluate whether geographic and sociodemographic factors influenced their distribution. Statistically significant (p < .05) space–time clusters of PHUs with faster time to detection were found using each surveillance data stream. During 2002–2004, the corvid surveillance programme outperformed the mosquito programme in terms of time to WNv detection, while the clusters of first‐positive mosquito pools were more spatially similar to first human cases. In 2006, a cluster of first‐positive dead corvids was located in northern PHUs and preceded a cluster of early human cases that was identified after controlling for the influence of geographic region and sociodemographic profile.  相似文献   

7.
Usutu virus (USUV), a flavivirus of the Japanese encephalitis virus complex, was for the first time detected outside Africa in the region around Vienna (Austria) in 2001 by Weissenb?ck et al. [Weissenb?ck, H., Kolodziejek, J., Url, A., Lussy, H., Rebel-Bauder, B., Nowotny, N., 2002. Emergence of Usutu virus, an African mosquito-borne flavivirus of the Japanese encephalitis virus group, central Europe. Emerg. Infect. Dis. 8, 652-656]. USUV is an arthropod-borne virus (arbovirus) circulating between arthropod vectors (mainly mosquitoes of the Culex pipiens complex) and avian amplification hosts. Infections of mammalian hosts or humans, as observed for the related West Nile virus (WNV), are rare. However, USUV infection leads to a high mortality in birds, especially blackbirds (Turdus merula), and has similar dynamics with the WNV in North America, which, amongst others, caused mortality in American robins (Turdus migratorius). We hypothesized that the transmission of USUV is determined by an interaction of developing proportion of the avian hosts immune and climatic factors affecting the mosquito population. This mechanism is implemented into the present model that simulates the seasonal cycles of mosquito and bird populations as well as USUV cross-infections. Observed monthly climate data are specified for the temperature-dependent development rates of the mosquitoes as well as the temperature-dependent extrinsic-incubation period. Our model reproduced the observed number of dead birds in Austria between 2001 and 2005, including the peaks in the relevant years. The high number of USUV cases in 2003 seems to be a response to the early beginning of the extraordinary hot summer in that year. The predictions indicate that >70% of the bird population acquired immunity, but also that the percentage would drop rapidly within only a couple of years. We estimated annually averaged basic reproduction numbers between R (0)=0.54 (2004) and 1.35 (2003). Finally, extrapolation from our model suggests that only 0.2% of the blackbirds killed by USUV were detected by the Austrian USUV monitoring program [Chvala, S., Bakonyi, T., Bukovsky, C., Meister, T., Brugger, K., Rubel, F., Nowotny, N., Weissenb?ck, H., 2007. Monitoring of Usutu virus activity and spread by using dead bird surveillance in Austria, 2003-2005. Vet. Microbiol. 122, 237-245]. These results suggest that the model presented is able to quantitatively describe the process of USUV dynamics.  相似文献   

8.
Toscana virus (TOSV), West Nile virus (WNV) and tickborne encephalitis virus (TBEV) are among major viral pathogens causing febrile disease and meningitis/encephalitis. The impact of these viruses was investigated at a referral centre in Ankara Province, Central Anatolia in 2012, where previous reports suggested virus circulation but with scarce information on clinical cases and vector activity. Serum and/or cerebrospinal fluid samples from 94 individuals were evaluated, in addition to field‐collected arthropod specimens that included 767 sandflies and 239 mosquitoes. Viral nucleic acids in clinical samples and arthropods were sought via specific and generic nested/real‐time PCRs, and antibody responses in clinical samples were investigated via commercial indirect immunofluorescence tests (IIFTs) and virus neutralization. A WNV antigen assay was also employed for mosquitoes. WNV neuroinvasive disease has been identified in a 63‐year‐old male via RNA detection, and the WNV strain was characterized as lineage 1. TOSV infections were diagnosed in six individuals (6.3%) via RNA or IgM detection. Partial sequences in a 23‐year‐old female, presented with fever and transient pancytopenia, were characterized as TOSV genotype A. Febrile disease with arthralgia and/or peripheral cranial nerve involvement was noted in cases with TOSV infections. Previous WNV and TOSV exposures have been observed in 5.3% and 2.1% of the subjects, respectively. No confirmed TBEV exposure could be identified. Morphological identification of the field‐collected mosquitoes revealed Culex pipiens sensu lato (74.4%), Anopheles maculipennis (20.9%), An. claviger (2.1%) and others. Sandfly species were determined as Phlebotomus papatasi (36.2%), P. halepensis (27.3%), P. major s. l. (19.3%), P. sergenti (8.9%), P. perfiliewi (4.4%), P. simici (2.6%) and others. Viral infections in arthropods could not be demonstrated. TOSV genotype A and WNV lineage 1 activity have been demonstrated as well as serologically proven exposure in patients. Presence of sandfly and mosquito species capable of virus transmission has also been revealed.  相似文献   

9.
This study aimed to assess which method of wild waterbird surveillance had the greatest probability of detecting highly pathogenic avian influenza (HPAI) H5N1 during a period of surveillance activity, the cost of each method was also considered. Lake Constance is a major wintering centre for migratory waterbirds and in 2006 it was the site of an HPAI H5N1 epidemic in wild birds. Avian influenza surveillance was conducted using harmonised approaches in the three countries around the lake, Austria, Germany and Switzerland, from 2006–2009. The surveillance consisted of testing birds sampled by the following methods: live birds caught in traps, birds killed by hunters, birds caught in fishing nets, dead birds found by the public and catching live Mute Swans (Cygnus olor); sentinel flocks of Mallards (Anas platyrhynchos) were also used. Scenario tree analysis was performed including sensitivity analysis, followed by assessment of cost-effectiveness. Results indicated that if HPAI H5N1 was present at 1% prevalence and assuming HPAI resulted in bird mortality, sampling dead birds found by the public and sentinel surveillance were the most sensitive approaches despite residual uncertainty over some parameters. The uncertainty over the mortality of infected birds was an influential factor. Sampling birds found dead was most cost-effective, but strongly dependent on mortality and awareness of the public. Trapping live birds was least cost-effective. Based on our results, we recommend that future HPAI H5N1 surveillance around Lake Constance should prioritise sentinel surveillance and, if high mortality is expected, the testing of birds found dead.  相似文献   

10.
11.
In 2010, a West Nile virus (WNV) epidemic was reported in Central Macedonia, Northern Greece, with 197 neuroinvasive disease (WNND) cases in humans. The following 3 years, WNV spreads to new areas of Greece and human cases reoccurred during the transmission periods. After the initial outbreak, a WNV surveillance system using juvenile backyard chickens was established in Central Macedonia (after the 2011 outbreak) and Eastern Macedonia‐Thrace (after the 2012 outbreak). Sera were screened for the presence of antibodies against WNV using cELISA and serum neutralization test, to monitor the spread of WNV and to assess the correlation between the WNV point seroprevalence in chickens and the incidence rates of human WNND cases in the aforementioned areas. WNV seroprevalence in chickens was 10.4% (95% CI: 7–15) in Central Macedonia (2011) and 18.1% (95% CI: 14–23) in Eastern Macedonia‐Thrace (2012). Seroprevalence in chickens and incidence rates of human WNND cases in Eastern Macedonia‐Thrace were strongly positively correlated (ρ = 0.98, P = 0.005) at the regional unit level, with the incidence of WNND in humans increasing with increasing WNV point seroprevalence in chickens. In Central Macedonia, the correlation was weaker (ρ = 0.68, P = 0.20), apparently due to small number of reported human WNND cases. Another study was also conducted using juvenile backyard chickens in Central Macedonia, aiming to detect early WNV enzootic circulation, before the onset of human cases during 2011 and 2013. The first seroconverted chickens were detected about 1.5 months before the laboratory diagnosis of any human WNND cases in Central Macedonia, for both years. WNV surveillance, using juvenile backyard chickens, was reliable for the identification of areas with WNV enzootic and silent transmission, and for early warning. Timely diffusion of information to public health authorities facilitated the successful implementation of preparedness plans to protect public health.  相似文献   

12.
Six local species of culicides were identified as the common mosquitoes in Zaria, out of 15 species captured using various adult and larval collection methods. These common culicides are Culex pipiens fatigans, Anopheles gambiae grp., Mansonia africana, Culex pipiens pipiens, Aedes (stegomyia) aegypti and Aedes vittatus. They were each fed directly on a local dog naturally infected with Dirofilaria repens to evaluate their refractoriness/susceptibility to dirofilarial infection. In a number of donor-feeding trials, 39. 4% Culex pipiens fatigans; 58.9% An gambiae grp.; 60.5% Mansonia africana; 1.8% of Culex pipiens pipiens; 23.4% Ae aegypti and 3.3% of Ae vittatus successfully fed on the microfilaraemic host. Only Aedes aegypti was susceptible to the infection as all 40 (100%) Ae aegypti reaching 10-14 day post-blood meal had infective (L(3)) larvae of D. repens. The remaining five species were refractory. The microfilariae in the five non-susceptible mosquitoes were always found trapped in the blood meal in the insects midgut (stomach). These trapped microfilaria were dead by the 2nd day in the insect's midgut. However, in the susceptible Ae aegypti, the microfilariae were set free from the blood meal in the midgut and within 24h migrated to the malpighian tubules (MT) of the mosquitoes. All Ae aegypti dissected 5-7 day post-infective blood meal showed the typical quiescent sausage stage (L(2)) larvae in the malpighian tubules. At day-10 post-blood meal, relatively active infective (L(3)) larvae of D. repens were found in the MT; and by day 12-14, highly motile infective larvae had reached the insect's head and proboscis, with infective larvae occasionally oozing out during dissection through the tip of the proboscis. The rate of development of D. repens to infective larvae was faster in mosquitoes infected in July when the environmental temperature was 24.5 degrees C than those infected in November when the temperature was 22.5 degrees C. The latter were delayed for 4 days. The breeding sources of Ae aegypti, the local vector implicated were also identified. As no particular vector of this zoonotic filaria has been identified previously in Nigeria, these findings could make any control programme more focussed and easier.  相似文献   

13.
Argentina is one of the four South American countries where the presence of Dirofilaria immitis is currently confirmed. The objective of this study was to review information on dirofilariasis in the country, and to report our recent findings on mosquito vectors. Since the first report of dogs with unidentified microfilariae in 1926, D. immitis was found in seven provinces and canine prevalence ranged 0-71% at local scale. National prevalence was 8% by the end of the 1980s and current information is available only for Buenos Aires Province. Four pulmonary human infections of D. immitis and one subcutaneous of Dirofilaria sp. were documented. The common coati was the only wild host found, and natural infection in mosquitoes was not previously reported in the country. In our recent mosquito survey in Greater Buenos Aires, we captured and dissected 2380 mosquitoes belonging to 20 species. According to a minimum temperature of 14 degrees C, the potential transmission period (PTP) for D. immitis in Buenos Aires covers 6 months, and the most favourable period (mean temperature above 20 degrees C) takes place from the middle of November to the beginning of April. To identify potential vectors of the parasite, we assessed weekly abundances of mosquito species during those PTP estimated previously. We found two specimens of Culex pipiens and one of Aedes aegypti carrying non-infective stages of D. immitis. These two highly anthropophilic mosquitoes may enhance the role of D. immitis as zoonotic agent in temperate Argentina.  相似文献   

14.
As part of the USA's National Strategy for Pandemic Influenza, an Interagency Strategic Plan for the Early Detection of Highly Pathogenic H5N1 Avian Influenza in Wild Migratory Birds was developed and implemented. From 1 April 2006 through 31 March 2009, 261 946 samples from wild birds and 101 457 wild bird fecal samples were collected in the USA; no highly pathogenic avian influenza was detected. The United States Department of Agriculture, and state and tribal cooperators accounted for 213 115 (81%) of the wild bird samples collected; 31, 27, 21 and 21% of the samples were collected from the Atlantic, Pacific, Central and Mississippi flyways, respectively. More than 250 species of wild birds in all 50 states were sampled. The majority of wild birds (86%) were dabbling ducks, geese, swans and shorebirds. The apparent prevalence of low pathogenic avian influenza viruses during biological years 2007 and 2008 was 9.7 and 11.0%, respectively. The apparent prevalence of H5 and H7 subtypes across all species sampled were 0.5 and 0.06%, respectively. The pooled fecal samples (n= 101 539) positive for low pathogenic avian influenza were 4.0, 6.7 and 4.7% for biological years 2006, 2007 and 2008, respectively. The highly pathogenic early detection system for wild birds developed and implemented in the USA represents the largest coordinated wildlife disease surveillance system ever conducted. This effort provided evidence that wild birds in the USA were free of highly pathogenic avian influenza virus (given the expected minimum prevalence of 0.001%) at the 99.9% confidence level during the surveillance period.  相似文献   

15.
Bird migration has long been hypothesized as the main mechanism for long‐distance dispersal of flaviviruses, but the role of migratory birds in flaviviruses spillover is not well documented. In this study, we investigated the eco‐epidemiology of West Nile virus (WNV) and Usutu virus (USUV) in trans‐Saharan passerines during their spring stopover in southern Tunisian oases. To do, we combined oral swab analysis and serological tools to assess whether migratory birds could be reaching these stopover sites while infectious or have been previously exposed to viruses. All sampled birds tested negative for oral swab analysis. However, anti‐WNV and anti‐USUV antibodies were detected in 32% and 1% of tested birds, respectively. Among WNV‐seropositive species, the Golden oriole (Oriolus oriolus) showed the highest anti‐WNV occurrence probability. In this species, anti‐WNV occurrence was twice larger in males than females. Inter‐specific and intraspecific morphological, physiological and behavioural differences could explain these results. Although our findings did not show evidence for passerines migrating while infectious, they did not exclude an existing enzootic WNV transmission cycle in Tunisian oases. Further investigations including larger samples of migratory birds are needed for a better understanding of this issue.  相似文献   

16.
Adult mosquito collections using New Jersey light traps and Black-hole light traps were conducted to determine the potential vectors and the relative mosquito infection rates of Dirofilaria immitis and Dirofilaria repens in Gyeonggi and Gangwon Provinces, Republic of Korea, 2005. Dirofilaria spp. were confirmed by polymerase chain reaction (PCR) using species-specific primers for D. immitis and D. repens. Minimum field infection rates (MFIR) [MFIR = (number infected pools/total number of mosquitoes) x 1000] of 12 pools/2059 total number mosquitoes (5.8) and 21 pools (10.1) of the wild caught mosquitoes were positive by PCR for D. immitis and D. repens, respectively. Dual infections of both D. immitis and D. repens were detected by PCR in eight pools (3.9). Anopheles sinensis sensu lato (includes An. sinensis s.s., An. pullus, An. kleini, An. belenrae, and An. lesteri), An. sineroides, Aedes vexans nipponi, Culex pipiens and Armigeres subalbatus were found to be infected and are potential vectors of D. immitis and D. repens in Korea. Infections observed in mosquitoes represent potential health risks for domestic animal and human populations.  相似文献   

17.
West Nile virus (WNV) is a flavivirus that is maintained in an enzootic cycle between ornithophilic mosquitoes, mainly of the Culex genus, and certain wild bird species. Other bird species like ravens, jays and raptors are highly susceptible to the infection and may develop deadly encephalitis, while further species of birds are only going through subclinical infection. The objective of this study was to continue in years 2009-2011 the serological and molecular surveillance in wild birds in Germany (see Vector Borne Zoonotic Dis. 10, 639) and to expand these investigations for the first time also to sera from domestic poultry and horses collected between 2005 and 2009. All three cohorts function as indicators for the endemic circulation of WNV. The presence of WNV-specific antibodies was detected in all samples by virus neutralization test (VNT), indirect immunofluorescence test (IFT) and/or enzyme-linked immunosorbent assay (ELISA). The presence of WNV genomes was monitored in relevant sera using two qRT-PCRs that amplify lineage 1 and 2 strains. A total of 364 migratory and resident wild bird serum samples (with emphasis on Passeriformes and Falconiformes) as well as 1119 serum samples from domestic poultry and 1282 sera from horses were analysed. With the exception of one hooded crow, antibody carriers were exclusively found in migratory birds, but not in resident birds/domestic poultry or in local horses. Crows are facultative, short-distance winter migrants in Germany. WNV-specific nucleic acids could not be demonstrated in any of the samples. According to these data, there is no convincing evidence for indigenous WNV infections in equines and in wild/domestic birds in Germany. However, since a few years, WNV infections are endemic in other European countries such as Austria, Hungary, Greece and Italy, a state-of-the-art surveillance system for the detection of incursions of WNV into Germany deems mandatory.  相似文献   

18.
West Nile virus (WNV) is an important emerging zoonotic arbovirus giving rise to clinical syndromes of varying severity in humans and horses. Culex mosquitoes are the main vector. Although WNV has been reported in many countries in the Middle East and Asia, little is known about its prevalence in equine populations in the Arabian Peninsula. We have carried out a serological study on 200 horses to assess WNV infection in the Eastern and Central regions of Saudi Arabia in 2013–2015. Sera were tested for the presence of WNV antibodies in parallel using a commercial enzyme‐linked immunosorbent assay (ELISA) kit and microneutralization (MN) tests. In comparison with the MN assay used as “gold standard,” we find the ELISA had a sensitivity of 94.7% and specificity of 80.1%. The prevalence of WNV neutralizing antibody ranged from 5 (17.3%) of 29 sera collected in Riyadh up to 15 (55.6%) of 27 sera collected from Al‐Qateef. These findings highlight the need to be aware of the possibility of WNV disease in humans and horses presenting with central nervous system disease in the Kingdom of Saudi Arabia.  相似文献   

19.
The nutritional status of cows grazing on a 120‐ha public alpine forestland pasture dominated by the dwarf bamboo Sasa senanensis located in central Japan was evaluated over the course of 2 years. Data were collected during grazing seasons in three periods: early (June), mid‐ (August) and late (late September–early October) periods. During these periods, the number of experimental Japanese Black cows varied between three and six. With the exception of the dry matter (DM) intake in 2005 and the crude protein (CP) digestibility in 2006, the DM and CP intake and digestibility were lower in the mid‐ and late periods than in the early period for both years (P < 0.05). Metabolizable energy intake was slightly insufficient for the requirement of the cows in the late period of 2005; in the mid‐ and late periods of 2006, the metabolizable energy intake was 0.4 to 0.5 times the requirement. These results suggest that the energy intake of cows grazing on forestland pasture dominated by S. senanensis would not satisfy their requirements starting in the mid‐period (August) grazing, even though the pasture had abundant herbage resources during these periods.  相似文献   

20.
West Nile virus lineage 2 (WNV‐2) was detected in the brain of 17 goshawks (Accipiter gentilis) that succumbed to neuroinvasive disease in the Czech Republic during 2018: twelve birds were captive and five wild. Furthermore, two wild sparrowhawks (Accipiter nisus) and three other captive birds of prey (golden eagle Aquila chrysaetos, hybrid saker falcon Falco cherrug × F. rusticolus and Harris's hawk Parabuteo unicinctus) also died due to WNV encephalitis. The 2018 outbreak in Czech raptors clearly reflects a new epidemiological situation and indicates an increasing risk of both raptor and human infection with WNV‐2 in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号