首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stand density of a forest affects the vertical distribution of foliage. Understanding the dynamics of this response is important for the study of crown structure and function, carbon-budget estimation, and forest management. We investigated the effect of tree density on the vertical distribution of foliage, branch, and stem growth, and ratio of biomass increment in aboveground tissues; by monitoring all first-order branches of five trees each from thinned and unthinned control stands of 10-year-old Chamaecyparis obtusa for four consecutive years. In the control stand, the foliage crown shifted upward with height growth but the foliage quantity of the whole crown did not increase. In addition, the vertical distribution of leaf mass shifted from lower-crown skewed to upper-crown skewed. In the thinned stand in contrast, the foliage quantity of individual crowns increased two-fold within 4 years, while the vertical distribution of leaf mass remained lower-crown skewed. The two stands had similar production rates, numbers of first-order branches per unit of tree height, and total lengths of first-order branches. However, the mortality rate of first-order branches and self-pruning within a first-order branch were significantly higher in the control stand than in the thinned stand, which resulted in a higher ratio of biomass increment in branch. Thinning induced a higher ratio of biomass increment in foliage and lower in branch. The increased foliage quantity and variation in ratio of biomass increment after thinning stimulated stem growth of residual trees. These results provide information that will be useful when considering thinning regimes and stand management.  相似文献   

2.
Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size and decreasing with site fertility. Annual G and P per unit needle mass varied over the ranges 1.9-2.4 and 3.5-4.0 kg(DW) kg(-1), respectively. The relationship between P and needle mass in the example trees was linear and relatively independent of competition, site fertility and age.  相似文献   

3.
The increasing demand for forest biomass for energy generation could be partially met by growing denser stands and use of fertilizer. Before this is done at large scale, more knowledge of the effects of stand density and fertilization on aboveground allocation patterns and stem form is needed. Therefore, effects of pre-commercial thinning (PCT) to 3000 stems ha?1, an unthinned dense control (C), and PCT combined with two levels of fertilization (100 kg ha?1 of nitrogen applied either during the establishment of the field experiment (F1) or annually (F2)) were examined in 23- to 26-year-old Scots pine (Pinus sylvestris L.) stands six years after the establishment of the field experiment. In total, 114 sample trees were harvested using destructive biomass sampling. The growth allocation and stem form of trees with diameter at breast height (DBH; 1.3 m height) >5.0 cm were not affected by either the PCT or fertilization. Small trees (DBH < 5 cm) in denser, unthinned control plots had more slender stems (lower DBH/height ratios) and allocated less growth to branches and foliage than trees in PCT plots. Fertilization had little effect on the stem form and growth allocation of the smallest trees. Therefore, effects of stem density and fertilization on stem form and growth allocation to foliage were only found for small suppressed trees, and the treatments had very little influence on dominant and codominant trees.  相似文献   

4.
We quantified structural features and the aboveground biomass of the deciduous conifer, Metasequoia glyptostroboides (Hu and Cheng) in six plantations in central Japan. In order to derive biomass estimates we dissected 14 M. glyptostroboides trees into three structural components (stem wood, branch wood and foliage) to develop allometric equations relating the mass of these components and of the whole tree to diameter at breast height (DBH). We found robust relationships at the branch and whole tree level that allow accurate prediction of component and whole tree biomass. Dominant tree height was similar within five older (>40 years) plantations (27–33 m) and shorter in a 20-year-old plantation (18 m). Average stem diameter varied from 12.8 cm in the youngest stand to greater than 35 cm in the oldest stand.

Metasequoia have relatively compact crowns distributed over the top 30% of the tree although the youngest stand had the deepest crown relative to tree height (up to 38%). At the individual tree level in older stands, 87% of the aboveground biomass was allocated to the stem, 9% to branch wood and 4% to foliage. We found little difference in the relative distribution of above ground biomass among the stands with the exception of lower foliage biomass in larger diameter trees. Total aboveground biomass of the older stands varied twofold, ranging from a maximum of 450 Mg ha−1 in a 42-year-old stand to a minimum of 196 Mg ha−1 in a 48-year-old stand. Total above ground biomass of the 20-year-old stand was 176 Mg ha−1.  相似文献   


5.
Differences in stem wood production were found among four clones of Picea sitchensis (Bong.) Carr. at both an agricultural and a forest site. Clonal rankings were not consistent between the sites. Four variables were identified that may influence stem wood production, foliage amount, total aboveground production per unit foliage, proportional allocation of production to new foliage and to branch wood thickening. Comparison of clonal performance between sites showed that stem wood production could be influenced by differences in each of these variables. The four variables were themselves determined by components of crown structure, these were (i) production of new branches from the main stem, (ii) the numbers and lengths of branchlets supported on branches from the main stem, (iii) foliage production per unit branchlet length and foliage longevity, and (iv) branch wood thickening per unit branch length. These components varied both among clones and between sites. Branch production from the mainstem varied among clones, and for some clones it varied substantially between sites. In some clones branch production was positively correlated with mainstem height increment. There were differences among clones in the way that branchlet production varied between the agricultural and forest sites. In the absence of needle fall, foliage weight/branch length varied threefold among clones, but for each clone, varied little between sites. Branch wood weight/branch length was generally greater when foliage weight/branch length was large, but total branch wood increment/tree was strongly influenced by total branch length. The dynamics of crown development and its relation to stem wood production are discussed with reference to (i) the importance of needle longevity, (ii) the importance of tallness and narrowness of crowns and (iii) the importance of branch thickening, a process that competes with stem growth in the utilization of photosynthate. It is concluded that although each of these factors may be important, none singly accounts for the observed differences in stem wood production among genotypes and the way these change in response to the environment.  相似文献   

6.
Aboveground xylem hydraulic conductance was determined in Scots pine (Pinus sylvestris L.) trees and stands from 7 to about 60 years of age. At the stand scale, leaf area index and net primary productivity (NPP, above- plus belowground) increased and reached a plateau at about 25-30 and 15-20 years, respectively; both parameters declined in mature stands. Stand hydraulic conductance followed a similar trend to NPP, with a maximum at about 15-20 years and a pronounced reduction in old stands. At the tree scale, annual biomass growth per unit of leaf area (growth efficiency) declined with tree age, whereas aboveground sapwood volume per unit leaf area, which is linearly related to maintenance respiration costs, steadily increased. Radiation interception per unit leaf area increased significantly with reduced leaf area index of mature stands, despite increased foliage clumping in the canopies of mature trees. Needle nutrient concentration did not change in the chronosequence. Tree hydraulic conductance per unit leaf area was strongly and positively correlated with growth efficiency. We discuss our findings in the context of growth reductions in mature and old trees, and suggest that increased hydraulic resistance and maintenance respiration costs may be the main causes of reduced carbon gain in mature and old trees.  相似文献   

7.
Allometry of shoot extension units (hereafter termed "current shoots") was analyzed in a Malaysian canopy species, Elateriospermum tapos Bl. (Euphorbiaceae). Changes in current shoot allometry with increasing tree height were related to growth and maintenance of tree crowns. Total biomass, biomass allocation ratio of non-photosynthetic to photosynthetic organs, and wood density of current shoots were unrelated to tree height. However, shoot structure changed with tree height. Compared with short trees, tall trees produced current shoots of the same mass but with thicker and shorter stems. Current shoots with thin and long stems enhanced height growth in short trees, whereas in tall trees, thick and short current shoots may reduce mechanical and hydraulic stresses. Furthermore, compared with short trees, tall trees produced current shoots with more leaves of lower dry mass, smaller area, and smaller specific leaf area (SLA). Short trees adapted to low light flux density by reducing mutual shading with large leaves having a large SLA. In contrast, tall trees reduced mutual shading within a shoot by producing more small leaves in distal than in proximal parts of the shoot stem. The production of a large number of small leaves promoted light penetration into the dense crowns of tall trees. All of these characteristics suggest that the change in current shoot structure with increasing tree height is adaptive in E. tapos, enabling short trees to maximize height growth and tall trees to maximize light capture.  相似文献   

8.
Foliar light-saturated net assimilation rates (A) generally decrease with increasing tree height (H) and tree age (Y), but it is unclear whether the decline in A is attributable to size- and age-related modifications in foliage morphology (needle dry mass per unit projected area; M(A)), nitrogen concentration, stomatal conductance to water vapor (G), or biochemical foliage potentials for photosynthesis (maximum carboxylase activity of Rubisco; V(cmax)). I studied the influences of H and Y on foliage structure and function in a data set consisting of 114 published studies reporting observations on more than 200 specimens of various height and age of Picea abies (L.) Karst. and Pinus sylvestris L. In this data set, foliar nitrogen concentrations were independent of H and Y, but net assimilation rates per unit needle dry mass (A(M)) decreased strongly with increasing H and Y. Although M(A) scaled positively with H and Y, net assimilation rates per unit area (A(A) = M(A) x A(M)) were strongly and negatively related to H, indicating that the structural adjustment of needles did not compensate for the decline in mass-based needle photosynthetic rates. A relevant determinant of tree height- and age-dependent modifications of A was the decrease in G. This led to lower needle intercellular CO2 concentrations and thereby to lower efficiency with which the biochemical photosynthetic apparatus functioned. However, V(cmax) per unit needle dry mass and area strongly decreased with increasing H, indicating that foliar photosynthetic potentials were lower in larger trees at a common intercellular CO2 concentration. Given the constancy of foliar nitrogen concentrations, but the large decline in apparent V(cmax) with tree size and age, I hypothesize that the decline in Vcmax results from increasing diffusive resistances between the needle intercellular air space and carboxylation sites in chloroplasts. Increased diffusive limitations may be the inevitable consequence of morphological adaptation (changes in M(A) and needle density) to greater water stress in needles of larger trees. Foliage structural and physiological variables were nonlinearly related to H and Y, possibly because of hyperbolic decreases in shoot hydraulic conductances with increasing tree height and age. Although H and Y were correlated, foliar characteristics were generally more strongly related to H than to Y, suggesting that increases in height rather than age are responsible for declines in foliar net assimilation capacities.  相似文献   

9.
Generic equations are proposed for stem, branch and foliage biomass of individual trees in even-aged pure stands of Cryptomeria japonica, Chamaecyparis obtusa and Larix kaempferi. Biomass data was collected from a total of 1,016 individual trees from 247 stands throughout Japan, and five regression models were assessed by root mean square error, mean bias, fit index (FI), and AIC. The results show that a power equation using diameter at breast height (dbh) and height is the most suitable for all species and components. This equation is more accurate than the familiar power equation that uses ‘dbh2 height’, and it expresses the greater volume of branch and foliage mass of trees with a lower height/diameter ratio. A power equation using dbh is more reasonable for models with dbh as the only independent variable and more accurate than a power equation using ‘dbh2 height’ for estimating branch and foliage mass. Estimating error for branch and foliage mass is larger than that for stem mass, but the entire aboveground biomass can be estimated with an error of less than 19%, except in the case of small trees with dbh less than 10 cm.  相似文献   

10.
A forest biomass yield table based on an empirical model   总被引:1,自引:0,他引:1  
We report an empirical model for estimating unutilized wood biomass, and its application to Cryptomeria japonica D. Don and Larix kaempferi in Tohno City, Iwate Prefecture, northeast Japan. Outputs from the model are the quantity of unutilized wood biomass and merchantable volume produced by timber harvest. The unutilized wood biomass is divided into stumps, tops, branches, foliages, small trees, and unutilized stems due to their defects. Inputs to the model are mean diameter at breast height (DBH), mean tree height, trees per unit area, and timber utilization standards. DBH distribution, DBH–height curve, stem form, bark thickness, and relationship of stem biomass to foliage and branch biomass could be described by the proposed model, indicating its validity. The proposed model enables us to develop the forest biomass yield tables modified from the existing stem volume yield tables. The developed forest biomass yield tables indicated that the unutilized wood biomass due to defects accounted for the largest part of the whole unutilized wood biomass, and that the ratio of unutilized parts in stem volume to total stem volume could vary with stand age and site productivity class. Based on a comparison of the developed forest biomass yield tables with those reported previously, we concluded that the proposed model-based forest biomass yield table would be useful for estimating the quantity of unutilized wood biomass.  相似文献   

11.
How long forest trees can sustain wood production with increasing age remains an open question, primarily because whole-crown structure and growth cannot be readily measured from the ground or on felled trees. We climbed and directly measured crown structures and growth rates of 43 un-suppressed individuals (site trees) of the two tallest species – Eucalyptus regnans and Sequoia sempervirens – representing a wide range of tree sizes and ages. In both species, ground-level measurements of annual growth, including height, ring width, and basal area increment, exhibited the oft-reported trend of decreasing growth (or no change in growth) with age, yet wood production of the entire main trunk and whole crown both increased with size and age up to and including the largest and oldest trees we measured. The balance between structural metrics of whole-crown respiratory demands (cambium area, inner bark volume, sapwood volume, and heartwood deposition area) and photosynthetic capacity (leaf area and green bark area) was statistically independent of size but not age. After accounting for the effect of size, trees with lower potential respiratory demands grew more than trees with higher potential respiratory demands per unit photosynthetic area. The strongest determinant of tree energy balance was the ratio of aboveground cambium area to leaf area. Among the site trees we examined, over 85% of the variation in annual wood production was explained by variation in size, and the proportion of total aboveground wood production in appendages (branches, limbs, and reiterated trunks) increased linearly with size. With increasing age in both species, the proportion of annual wood production converted to heartwood increased in main trunks and appendages. The oldest tree we measured produced more heartwood in its main trunk over 651 years (351 m3) than contained in any tree we measured <1500 years old. The two tallest tree species achieve similar stature despite divergent growth dynamics and ecologies. At one extreme, E. regnans attains great size quickly but dies relatively young because trees are susceptible to fire and fungi. At the other extreme, S. sempervirens attains great size more slowly but has a long lifespan because trees resist fire and prioritize investment in decay-resistant heartwood. Increasing wood production as trees age is a mechanism underlying the maintenance of biomass accumulation during forest development and the carbon-sink capacity of old-growth forests.  相似文献   

12.
MITCHELL  M. D.; DENNE  M. P. 《Forestry》1997,70(1):47-60
The influences of cambial age and ring width on density of Sitkaspruce (Picea sitchensis (Bong.) Carr) were analysed in relationto within-tree trends in tracheid diameter and cell wall thickness.Discs were sampled at breast height from a total of 24 trees,from seven stands at three contrasting sites in Wales, and atbreast height, 30 per cent and 60 per cent total tree heightfrom one of the stands. Across the juvenile wood, ring density decreased with ring numberfrom the pith while radial tracheid diameter increased. Theseoverall trends were considered to be inherent to tree growth,presumably associated with cambial ageing, since they occurredin all trees on all sites. In juvenile wood, density also variedwith site growth rate (as indicated by ring width) at similarcambial age, wider rings being associated with more rapidrateof change in tracheid diameter with ring number and with decreasein tracheid wall thickness. Consequently, on a site having treeswith high growth rate density decreased more rapidly acrossthe juvenile wood, down to a lower minimum value, than on siteswith a slower growth rate. In mature wood, the decrease in densitywith increase in ring width was associated with differencesin both tracheid diameter and wall thickness. Density was slightly(though not significantly) higher at breast height than in comparablerings at 30 per cent total height, associated with significantlythicker tracheid walls at breast height. Changes in radial tracheid diameter (with ring number, or withring width) were associated with greater differences in theearlywood than towards the latewood end of each growth ring,while variations in wall thickness with ring width were associatedwith rate of increase in wall thickness towards the latewoodend. This may account for some previously conflicting reportson influence of silvicultural management on density, for densityis likely to vary with influence of environment on the seasonalcycle of cambial activity. The extent of the juvenile wood as delimited by the inner coreof wide growth rings does not necessarily correspond to theregion of varying tracheid dimensions in Sitka spruce.  相似文献   

13.
邓恩桉优树的选择标准   总被引:3,自引:0,他引:3  
以1988、1991年种植在广西柳州、桂林两地的邓恩桉为选优林分对象,用5株优势木对比法进行选优,同时研究了优树的入选标准.通过对50株候选优树和250株5株优势木生长量数据、分枝与干形得分值的分析,确定了本次选优的标准为:胸径≥优势木平均胸径1.2倍(或树高≥优势木平均树高1.06倍)、单株材积≥优势木平均单株材积1.44倍、分枝与干形二者综合得分5分以上(含),符合该选优标准的候选优树有26株,入选率为52%.该选优标准适合所研究的林分及与研究林分情况相近的邓恩桉林分的选优.  相似文献   

14.
The characteristic decline in height growth that occurs over a tree's lifespan is often called "age-related decline." But is the reduction in height growth in aging trees a function of age or of size? We grafted shoot tips across different ages and sizes of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) trees to determine whether the decline in height growth is mediated by tree size or by the age of the apical meristem. We also evaluated whether reduced carbon assimilation plays an important role in height growth decline. In one experiment we cut shoot tips from old-growth, young-mature and seedling trees and grafted them onto 2-year-old graft-compatible rootstock in a seed orchard in Lebanon, Oregon. In another experiment we performed reciprocal grafts between lateral branches of old-growth trees accessible from the canopy crane at Wind River, Washington and young-mature trees in a nearby plantation. We measured growth (diameter and elongation of the dominant new stem) and mortality annually for three years in the Seed Orchard experiment and for two years in the Reciprocal Graft experiment. In the Seed Orchard experiment we also measured photosynthetic capacity (determined from the response of net carbon assimilation to the intercellular CO(2) concentration of the leaf, or A/C(i) curves), leaf mass per area (LMA) and carbon isotope composition (delta(13)C) of cellulose in 1-year-old foliage. Grafting caused changes in both growth and physiology of the grafted stems. Within two years after grafting, growth and physiology of all combinations of scions and rootstock exhibited characteristics of the rootstock. In some cases, the change in growth was dramatic-cuttings from old-growth trees showed a 10-fold increase in stem elongation rate within 2 years of grafting onto seedling rootstock. Similarly, carbon isotope discrimination of new foliage on shoots from old-growth trees increased by nearly 3 per thousand and 2 per thousand after grafting onto young-mature and seedling rootstock, respectively, whereas discrimination decreased by a similar magnitude in scions from young-mature trees after grafting on old- growth trees. Furthermore, differences in carbon assimilation estimated from carbon isotope discrimination and A/C(i )relationships were small relative to growth differences. Our results confirm that size, not age, drives developmental changes in height growth in Douglas-fir. Reduced carbon assimilation does not play an important role in height growth decline.  相似文献   

15.
Seventy‐four half‐sib families of lodgepole pine (Pinus contorta ssp. latifolia Engelm.) plus trees were measured for vigour, height growth, stem diameter, wood density and ring width in two Swedish field trials at age 9. Height growth, wood density and ring width differed between families within provenances with variance components of 3–8 %. Coefficients of variation were highest for height growth and lowest for ring width. Heritabilities were similar for height growth and wood density but lower for ring width. These genetic parameters seemed to be equal for all provenances. Indirect selection for high dry stem biomass was more effective using height growth than wood density, and a correlated response in wood density of 2.1 % of mean by selecting the 15 highest parent trees was indicated. Juvenile wood density looks uncertain as a selection criterion for mature wood density.  相似文献   

16.
Thinning of Korean pine (Pinus koraiensis Sieb. et Zucc.) is used to facilitate timber and cone production. The present study in Northeast China investigated the effects of thinning intensity on individual tree growth, temporal variation in cone yield, and seed quality in Korean pine plantation. In 2005, five thinning intensity levels (none, extreme, heavy, moderate and light) were set in 15 permanent plots in a 32-year-old Korean pine plantation at Mengjiagang Forest Farm, Jiamusi City, Heilongjiang Province. We recorded tree growth and seed cone production from 2013 to 2016, i.e., from 8 to 11 years after thinning. Except for height growth, thinning increased tree growth (diameter at breast height and crown size) and improved cone yield. The extreme thinning treatment (to 300 trees per hectare) resulted in the largest tree diameter, tree volume, crown size and 4-year cone production per tree. The highest cone yield per tree in the mast year (2014) was observed when stands were thinned to 500 trees per hectare (heavy thinning). Although the best cone and seed quality and the largest cone and seed mass per tree were recorded in the heavily thinned stand, no significant differences were found between heavy and moderate thinning stands (750 trees per hectare). At the stand level, the moderately thinned stand had the highest basal area, stock volume and seed cone production per stand. Our results suggest that thinning to 750 trees per hectare will improve timber and cone productivity in 40-year-old P. koraiensis stands.  相似文献   

17.
燕山山地华北落叶松单株生物量与生产力研究   总被引:2,自引:0,他引:2  
根据对33株华北落叶松标准木的生物量实测资料,对林木单株与器官生物量分配情况进行了探讨,建立了以胸径、树高为自变量的生物量预测模型;提出了在幼树期(树龄7-15a或胸径1.7-6.6cm)根茎比平均值为0.159,幼树期以后(当树龄超过15a或胸径大于6.6cm时)根冠比平均值为0.236,建立了以林龄、胸径为自变量的根冠比预测模型;以去皮材积一生物量模型为基础进行解析木的生产力模拟,多年平均生产力变化在211.258-4512.804g/a,16a以后进入速生期,到49a时年生产力水平仍很高,建议生产上主伐林龄应推迟到50a以后。  相似文献   

18.
Coleman MD  Friend AL  Kern CC 《Tree physiology》2004,24(12):1347-1357
We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by developmental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 x 1 m) stands were treated with 50, 100 and 200 kg N ha(-1) year(-1) of time-release balanced fertilizer (50N, 100N and 200N) and compared with unfertilized controls (0N). Measurements were made during two complete growing seasons from May 1998 through October 1999. Repeated nondestructive measurements were carried out to determine stem height and diameter, leaf area and fine-root dynamics. In October of both years, above- and belowground biomass was harvested, including soil cores for fine-root biomass. Leaves were harvested in July 1999. Harvested tissues were analyzed for C and N content. Nondestructive stem diameter and and fine-root dynamic measurements were combined with destructive harvest data to estimate whole-tree biomass and N content at the end of the year, and to estimate specific N-uptake rates during the 1999 growing season. Shoot growth response was greater in fertilized trees than in control trees; however, the 100N and 200N treatments did not enhance growth more than the 50N treatment. Root biomass proportions decreased over time and with increasing fertilizer treatment. Fertilizer-induced changes in allocation were explained by accelerated development. Specific N-uptake rates increased during the growing season and were higher for fertilized trees than for control trees.  相似文献   

19.

The main objective of this case study was to explore the possible influence of forest management on the levels and distribution of biomass and carbon (C) in even-aged stands of Norway spruce [Picea abies (L.) Karst.] in Denmark. Data originated from a long-term thinning experiment and an adjacent spacing experiment at stand ages of 58 and 41 years, respectively. Biomass of 16 trees from different thinning and spacing treatments was measured or partly estimated, and soils were sampled for determination of C stocks. All trees in each plot were measured for stem diameter and some for total height, to allow for scaling-up results to stand-level estimates. For trees of similar size, foliage biomass tended to be higher in the spacing experiment, which was located on slightly more fertile land. Foliage biomass increased with increasing thinning grade, but the effect could not be separated from that of tree size. At stand level, foliage biomass tended to increase with increasing spacing as well as with increasing thinning grade. For branchwood, stems and roots (including below-ground stump), the biomass increased with increasing tree size and stand volume at tree and stand level, respectively, but no differences between stands, spacings or thinning grades were observed, apart from that expressed by tree size or stand volume. At stand level, C stocks of all biomass compartments decreased with increasing thinning grade, while the distribution between compartments was hardly influenced. The ratio between above-ground and stem biomass was about 1.21 at stand level, while the ratio between below- and above-ground biomass was about 0.17. Thinning influenced the C stock of the forest floor and mineral soil oppositely, resulting in no effect of thinning on total soil C.  相似文献   

20.
The production and allocation of aboveground biomass and the characteristics of tree architecture were examined in eight-year-old Scots pine (Pinus sylvestris L.). Considerable among-tree variation existed in tree architecture, total aboveground dry mass production, and dry mass partitioning among tree parts. A linear relationship existed between needle and branch mass. Stem mass was directly proportional to tree height, which in turn was directly proportional to the allocation ratio between stem mass and total needle + branch mass production. The architectural characteristics that were related to a high proportional allocation to stem and high stemwood production were a large mean shoot volume, large mean number of branches per whorl, long needle retention and a high crown length/crown width ratio. Individual trees were found that combined high stemwood production with both high harvest index and high stemwood specific gravity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号