首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We evaluated drought resistance mechanisms in a drought-tolerant clone (CN5) and a drought-sensitive clone (ST51) of Eucalyptus globulus Labill. based on the responses to drought of some physiological, biophysical and morphological characteristics of container-grown plants, with particular emphasis on root growth and hydraulic properties. Water loss in excess of that supplied to the containers led to a general decrease in growth and significant reductions in leaf area ratio, specific leaf area and leaf-to-root area ratio. Root hydraulic conductance and leaf-specific hydraulic conductance decreased as water stress became more severe. During the experiment, the drought-resistant CN5 clone maintained higher leaf water status (higher predawn and midday leaf water potentials), sustained a higher growth rate (new leaf area expansion and root growth) and displayed greater carbon allocation to the root system and lower leaf-to-root area ratio than the drought-sensitive ST51 clone. Clone CN5 possessed higher stomatal conductances at moderate stress as well as higher hydraulic conductances than Clone ST51. Differences in the response to drought in root biomass, coupled with changes in hydraulic properties, accounted for the clonal differences in drought tolerance, allowing Clone CN5 to balance transpiration and water absorption during drought treatment and thereby prolong the period of active carbon assimilation.  相似文献   

2.
We have compared the metabolic responses of leaves and roots of two Eucalyptus globulus L. clones CN5 and ST51 that differ in their sensitivity to water deficits (ST51 is more drought sensitive), with regard to the effect of chilling (10/5 °C, day/night). We studied changes in growth, osmotic potential and osmotically active compounds, soluble proteins, leaf pigments, and membrane lipid composition. Our data showed that both clones have the ability to acclimatize to chilling temperatures. As a result of 10 days of acclimation, an increase of soluble sugars in leaves of treated plants of both clones was observed that disappeared later on. Differences between clones were observed in the photosynthetic pigments and soluble protein content which were more stable in CN5 under chilling. It also was apparent that CN5 presented a less negative predawn water potential (ψpd) and a higher leaf turgor than ST51 throughout the chilling treatment. In the case of the CN5, increased total lipids (TEA) and concomitant increase of linolenic acid (C18:3) in leaves after acclimatization may be related to a better clone performance under chilling temperatures. Moreover, a higher constitutive investment in roots in the case of CN5 as compared to ST51 may benefit new root regeneration under low temperatures favoring growth after cold Mediterranean winter.  相似文献   

3.
Hardwood cuttings of Populus clones Tristis #1 and Eugenei were grown in pots in a controlled environment chamber to observe early patterns of growth and water relations in response to changing conditions of water stress. Height and dry weight growth, dry matter partitioning, leaf area production, stomatal conductance and leaf water potential were measured periodically during the 73-day experiment. The two clones reacted in a similar way to an initial period of stress, showing reduced growth, stomatal conductance and leaf water potential. However, when stress was interrupted by ample watering and then reimposed, substantial differences between the clones were evident. Growth of Eugenei fully recovered after stress was relieved, especially leaf growth, but when water deficiency was reimposed, the plants wilted and some leaves died. Tristis #1, in contrast, showed a greater adaptation to changing stress conditions; it grew less than Eugenei after drought was interrupted, but showed little adverse effect of renewed water deficits. These responses were partially explained by the higher root/leaf weight ratios of Tristis #1 which enabled it to maintain a more favorable plant water status than Eugenei.  相似文献   

4.
Responses of the endemic leguminous shrub Bauhinia faberi var. microphylla, to various soil water supply regimes were studied in order to assess water stress tolerance of seedlings. Two-month-old seedlings were grown under water supply regimes of 100, 80, 60, 40, and 20% water field capacity (FC), respectively, in a temperature and light-controlled greenhouse. Plant height and leaf number were measured monthly over a 4-month period, while water use (WU), water-use efficiency (WUE), leaf relative water content (RWC), biomass production and its partitioning were recorded at the end of the experiment. Seedlings exhibited the greatest biomass production, height, basal diameter, branch number, leaf number, and leaf area when soil content was at 100% FC, and slightly declined at 80% FC. These parameters declined significantly under 60% FC water supply, and severely reduced under 40 and 20% FC. RWC, WU and WUE decreased, while the ratio of root mass to stem mass (R:S) increased in response to decreasing water supply. Water stress caused leaf shedding, but not plant death. The results demonstrated that B. faberi var. microphylla seedlings could tolerate drought by reducing branching and leaf area while maintaining a high R:S ratio. However, low dry mass and WUE at 40 and 20% FC suggested that the seedlings did not produce significant biomass under prolonged severe water deficit. Therefore, before introducing B. faberi var. microphylla in vegetation restoration efforts, water supply above 40% FC is recommended for seedlings to maintain growth.  相似文献   

5.
Weih M 《Tree physiology》2001,21(15):1141-1148
The hypothesis that fast-growing breeds of willow (Salix spp.) are more sensitive to nutrient and water stress and less efficient in nutrient- and water-use than slower-growing natural willow clones was tested. Cuttings of a natural clone of S. viminalis L. collected in Sweden (L78183) and a hybrid clone of S. schwerinii E. Wolf. x S. viminalis L. ("Tora") were grown outdoors in pots under various experimental conditions in a full-factorial design. The experimental conditions included three fertilization, two irrigation and two temperature regimes. Classical growth analysis techniques, based on an initial and a final harvest, were used as a screening method, together with calculation of intrinsic water-use efficiency (foliar carbon isotope ratio; delta13C). In addition, nitrogen-use efficiency was calculated as the product of nitrogen productivity and mean residence time of nitrogen on an annual basis. There were significant differences in plant structural parameters (leaf area ratio, specific leaf area) and water-use efficiency between the clones. Furthermore, several clone x treatment interaction effects on various growth parameters indicated that the clones adapted to specific environments in different ways. "Tora" plants produced up to 25% more shoot biomass than plants of the natural clone in response to high rates of fertilization and irrigation, whereas clone ranking was reversed in most other treatments. The results support the hypothesis that fast-growing hybrids are more sensitive to nutrient and water stress than slower-growing natural clones. The hypothesis that natural clones have higher resource-use efficiency than fast-growing hybrids was supported with respect to water, but not nitrogen.  相似文献   

6.
We examined tolerance to soil drying in clonally propagated apple (Malus domestica Borkh.) rootstocks used to control shoot growth of grafted scions. We measured leaf conductance to water vapor (g(L)) and leaf water potential (Psi(L)) in a range of potted, greenhouse-grown rootstocks (M9, M26, M27, MM111, AR69-7, AR295-6, AR360-19, AR486-1 and AR628-2) as the water supply was gradually reduced. Irrespective of the amount of available water, rootstocks that promoted scion shoot growth (M26 and MM111) generally had higher g(L) and more negative Psi(L) than rootstocks that restricted scion shoot growth (M27 and M9). After about 37 days of reduced water supply, there were significant decreases in g(L) and Psi(L) in all rootstocks compared with well-watered controls. In all treatments, the slope of the relationship between log (g(L)) and Psi(L) was positive, except for rootstocks AR295-6, AR628-2 and AR486-1 in the severe-drought treatment, where the drought-induced change in the relationship suggests that rapid stomatal closure occurred when leaf water potentials fell below -2.0 MPa. This drought response was associated with increased root biomass production. Rootstock M26 showed little stomatal closure even when its water potential fell below -2.0 MPa, and there was no effect of drought on root biomass production. We conclude that differences among rootstocks in the way that g(L) and Psi(L) respond to drought reflect differences in the mechanisms whereby they tolerate soil drying. We suggest that these differences are related to differences among the rootstocks in their ability to control shoot growth.  相似文献   

7.
Pita P  Pardos JA 《Tree physiology》2001,21(9):599-607
Changes in leaf size, specific leaf area (SLA), transpiration and tissue water relations were studied in leaves of rooted cuttings of selected clones of Eucalyptus globulus Labill. subjected to well-watered or drought conditions in a greenhouse. Significant differences between clones were found in leaf expansion and transpiration. There was a significant clone x treatment interaction on SLA. Water stress significantly reduced osmotic potential at the turgor loss point (Pi0) and at full turgor (Pi100), and significantly increased relative water content at the turgor loss point and maximum bulk elastic modulus. Differences in tissue water relations between clones were significant only in the mild drought treatment. Among clones in the drought treatments, the highest leaf expansion and the highest increase in transpiration during the experiment were measured in those clones that showed an early and large decrease in Pi0 and Pi100.  相似文献   

8.
The ecophysiological, morphological, and growth characteristics of 14 poplar clones were studied during 37 days of flooding and a 13-day recovery period. Cuttings were subjected to three soil water regimes, viz. drained (control), shallow flooding to 10 cm above the soil, and deep flooding to a depth of 120 cm. All hybrids modified their ecophysiological and morphological patterns to decrease carbon loss and maintain water balance. In response to flooding, all 14 hybrids reduced their expansion and initiation of new leaves, reduced height and root collar growth, and reduced the number of leaves. For shallowly flooded plants, adventitious roots developed by day 14, and their number increased with flooding duration; net photosynthesis, stomatal conductance, and growth decreased significantly compared with the control; dry weights of roots, leaves, and total biomass decreased and the allocation of growth to shoots and roots changed. After flooding ended, net photosynthesis recovered, but stomatal conductance recovered before net CO2 assimilation since photosynthesis was limited by stomatal factor at the initial stage of stress and it was limited by non-stomatal factors over relatively long periods of stress. Transpiration and the amount of water obtained from the roots both decreased. In the deeply flooded plants, similar but often more severe changes were observed. Based on our results, we classified the hybrids into three types using hierarchical cluster analysis. Clones 15-29, 196-522, 184-411, 306-45, 59-289, DN-2, DN-182, DN-17, DN-14274, NE-222, DTAC-7, and R-270 were flood-tolerant, clone NM-6 was flood-susceptible, and clone 328-162 was moderately flood-tolerant.  相似文献   

9.
《Southern Forests》2013,75(4):213-220
This study tested the hypothesis that water stress increases the hydraulic efficiency of Eucalyptus nitens × E. grandis saplings as a result of osmotic and elastic adjustments. Eucalyptus nitens × E. grandis clones (NH00, NH58, NH69 and NH70) were potted in coarse river sand supplemented with a slow-release fertiliser, drip-irrigated four times daily and exposed to full sunlight for eight months. Thereafter, irrigation was withheld twice for seven consecutive days from half of the saplings of each clone, with a seven-day recovery period (regular irrigation) in-between. Relative soil moisture content did not correlate with stomatal conductance (gs) at pre-dawn and at midday. Leaves of plants subjected to the water-stress treatment wilted in 7 d, and the reduction in gs was significant at midday with no significant differences between clones. Stomatal conductance and all traits derived from pressure-volume graphs (e.g. osmotic potential at full turgor) were constant in the control treatment. There were no clear patterns in osmotic and elastic adjustments in both treatments. Root hydraulic conductance was constant between treatments and clones. However, water stress reduced shoot hydraulic conductance and stem hydraulic conductivity with significant interclonal effects. Plant biomass, leaf area and leaf weight ratio were significantly lower in the water-stressed plants, but there were no differences between the clones. In conclusion, the water-stress treatment did not introduce significant differences in stomatal conductance and tissue-water relations of Eucalyptus nitens × E. grandis clones. Interclonal variation in water-stress response was found in shoot hydraulic traits, and clone NH58 may be more suitable for planting across sites prone to moderate water stress.  相似文献   

10.
刺槐是我国重要的造林树种之一,尤其是在环境恶劣地区,发挥着重要的生态功能。本文利用从全国各地收集的刺槐无性系繁育的1年生插根苗,研究了幼苗的生物量、生物量分配、组织相对含水量。研究结果表明,无性系之间在生物量和生物量分配上有着极显著差异,但在根、枝和茎相对含水量上差异不显著。利用聚类分析,将16个无性系分为三类:第一类生物量低、无分枝,第二类生物量低、较多分枝,第三类为生物量大、稍有分枝。无性系之间,C041、W021有着最强的生长能力,W005和W027有着最高的根冠比。无性系在生物量及其分配上的差异为进一步的选育提供了依据。  相似文献   

11.
Wikberg J  Ogren E 《Tree physiology》2007,27(9):1339-1346
Growth and water-use parameters of four willow (Salix spp.) clones grown in a moderate drought regime or with ample water supply were determined to characterize their water-use efficiency, drought resistance and capacity for drought acclimation. At the end of the 10-week, outdoor pot experiment, clonal differences were observed in: (1) water-use efficiency of aboveground biomass production (WUE); (2) resistance to xylem cavitation; and (3) stomatal conductance to leaf-specific, whole-plant hydraulic conductance ratio (g(st)/K(P); an indicator of water balance). Across clones and regimes, WUE was positively correlated with the assimilation rate to stomatal conductance ratio (A/g(st)), a measure of instantaneous water-use efficiency. Both of these water-use efficiency indicators were generally higher in drought-treated trees compared with well-watered trees. However, the between-treatment differences in (shoot-based) WUE were smaller than expected, considering the differences in A/g(st) for two of the clones, possibly because plants reallocated dry mass from shoots to roots when subject to drought. Higher root hydraulic conductance to shoot hydraulic conductance ratios (K(R)/K(S)) during drought supports this hypothesis. The same clones were also the most sensitive to xylem cavitation and, accordingly, showed the strongest reduction in g(st)/K(P) in response to drought. Drought acclimation was manifested in decreased g(st), g(st)/K(P), osmotic potential and leaf area to vessel internal cross-sectional area ratio, and increased K(R), K(P) and WUE. Increased resistance to stem xylem cavitation in response to drought was observed in only one clone. It is concluded that WUE and drought resistance traits are inter-linked and that both may be enhanced by selection and breeding.  相似文献   

12.
We have developed an automated microprocessor controlled system for subjecting hydroponically grown plants to drought. Pumps and valves were used to move nutrient solutions into and out of a system of culture vessels in a growth chamber to provide periods of drought. Drought conditions were obtained by exposing the roots of hydroponically grown clones of aspen, Populus tremuloides Michx., to air in culture vessels temporarily emptied of nutrient medium. Over a 3-week period, the daily duration of drought was increased from 0 to 6 h. During this period, the plants became increasingly tolerant to drought, as shown by a decreasing propensity to wilt. All three clones sustained diurnal drought periods of 6 h for up to 5 weeks without detectable deterioration of health. Typical drought stress symptoms were observed including inhibition of growth, increased tissue amino acid content, and decreased water, solute, and turgor potentials in young leaves. In all clones, control plants had leaf water potentials between -1.0 and -1.6 MPa, whereas leaf water potentials of drought-treated plants were significantly lower, ranging from -1.7 to -3.0 MPa. Only one of the clones showed a significant decrease in leaf solute potential in response to drought. The decrease in leaf solute potential paralleled the decrease in water potential resulting in no significant difference in turgor potential. The other two clones had nonsignificant decreases to more negative leaf solute potentials under drought conditions resulting in significantly lowered turgor potentials. Leaf water potentials, solute potentials, and turgor potentials of the drought-treated plants returned to control values within two hours after rewatering. The growth inhibitions observed could not have been the consequence of loss of turgor. These results demonstrate genetic differences among aspen clones in water relations responses to drought.  相似文献   

13.
Clonal variation in water use efficiency (WUE), dry mass accumulation and allocation, and stable carbon isotope ratio (delta(13)C) of crude leaf fiber extracts was determined in six clones of Eucalyptus grandis W. Hill ex Maiden. grown for 16 months in field lysimeters in two soil water regimes. The relationships between delta(13)C and WUE calculated on the basis of leaf, harvestable stem, shoot and whole-plant dry mass accumulation were investigated. There was no clonal variation in dry mass accumulation but clonal allocation to roots, harvestable stems, branches and leaves varied. Water use efficiencies (mass of plant or plant part/water used over 16 months) differed significantly between clones. The clonal ranking of WUE varied depending on the units of dry mass accumulation used. Significant relationships between delta(13)C values and instantaneous water use efficiencies and ratios of internal leaf to ambient CO(2) concentrations were found only in the high soil water treatment. There were no relationships between delta(13)C values and whole-plant, shoot and harvestable stem water use efficiencies and soil water availability. Values of delta(13)C were negatively correlated with dry mass accumulation in the low soil water treatment. At the whole-plant level, WUE was positively correlated with dry mass accumulation in the high soil water treatment. We found significant differences in delta(13)C values between clones and the clonal rankings in delta(13)C and WUE were maintained in both soil water treatments.  相似文献   

14.
Ngugi  Michael R.  Hunt  Mark A.  Doley  David  Ryan  Paul  Dart  Peter 《New Forests》2003,26(2):187-200
Effects of soil water availability on seedling growth, dry matter production and allocation were determined for Gympie (humid coastal) and Hungry Hills (dry inland) provenances of Eucalyptus cloeziana F. Muell. and for E. argophloia Blakely (dry inland) species. Seven-month-old seedlings were subjected to well-watered (100% field capacity, FC), moderate (70% FC) and severe (50% FC) soil water regimes in a glasshouse environment for 14 wk. There were significant differences in seedling growth, biomass production and allocation patterns between species. E. argophloia produced twice as much biomass at 100% FC, and more than three times as much at 70% and 50% FC than did either E. cloeziana provenance. Although the humid provenance of E. cloeziana had a greater leaf area at 100% FC conditions than did the dry provenance, total biomass production did not differ significantly. Both E. cloeziana provenances were highly sensitive to water deficits. E. argophloia allocated 10% more biomass to roots than did E. cloeziana. Allometric analyses indicated that relative biomass allocation patterns were significantly affected by genotype but not by soil water availability. These results have implications for taxon selection for cultivation in humid and subhumid regions.  相似文献   

15.
Stomatal conductance, transpiration and xylem pressure potential of African locust bean (Parkia biglobosa (Jacq.) Benth.) seedlings subjected from the sixth week after emergence to four weeks of continuous soil drought did not differ from those of well-watered, control plants until two-thirds of the available soil water had been used. In both well-watered and drought-treated plants, stomatal conductance was highest early in the day when vapor pressure deficits were low, but decreased sharply by midday when evaporative demand reached its highest value. There was no increase in stomatal conductance later in the day as vapor pressure deficit declined. The relationship between transpiration rate and xylem pressure potential showed non-linearity and hysteresis in both control and drought-treated plants, which seems to indicate that the plants had a substantial capacity to store water. The rate of leaf extension in African locust bean seedlings subjected to six consecutive 2-week cycles of soil drought declined relative to that of well-watered, control plants, whereas relative root extension increased. It appears that African locust bean seedlings minimized the impact of drought by: (1) restricting transpiration to the early part of the day when a high ratio of carbon gain to water loss can be achieved; (2) utilizing internally stored water during periods of rapid transpiration; (3) reducing the rate of leaf expansion and final leaf size in response to soil drought without reducing the rate of root extension, thereby reducing the ratio of transpiring leaf surface area to absorbing root surface area.  相似文献   

16.

Improving drought tolerance of container seedlings of Japanese larch is of high importance to afforestation. We hypothesized that adequate nitrogen (N) and limited water supply would increase the tolerance of container seedlings to water-deficit stress, circumventing photoinhibition, by means of (i) enhanced photosynthetic capacity with higher leaf N and (ii) decreased water loss from leaves with lower biomass allocation into aboveground parts. Container seedlings of Japanese larch were grown under the treatment combinations of adequate (+?N: 300 mg N container?1) or limited (??N: 150 mg N container?1) N and adequate (+?W: daily irrigation) or limited (??W: twice-a-week irrigation) water. Then, seedlings were subjected to a progressive drought treatment. Higher leaf N was observed in container seedlings grown under?+?N and???W. During progressive drought, lower stomatal conductance and net photosynthetic rate were observed in leaves with higher leaf N at a given predawn leaf water potential. Furthermore, the maximum efficiency of PSII photochemistry (Fv/Fm) was lower in leaves with higher leaf N, suggesting that higher leaf N might impair intrinsic tolerance to drought at the leaf level contrary to expectations. Conversely,???N and???W seedlings with lower shoot biomass delayed soil drying as a whole-plant response via a reduction in leaf transpiration, leading to delayed photoinhibition as indicated by a decline in Fv/Fm. To circumvent stress at the initial stage of water deficit, lower leaf N via limited N regime and smaller shoot biomass driven by limited N and water regimes would be important.

  相似文献   

17.
以13个3年生麻栎无性系为研究对象,采用盆栽试验方法,研究了在持续干旱胁迫条件下的麻栎无性系土壤水势、叶片水势光合速率和蒸腾速率变化规律及其关系。结果表明,随着干旱胁迫的加剧,13个麻栎无性系土壤水势呈现出不断下降的变化趋势,叶片水势的变化无一致规律,光合速率则先下降而后上升,蒸腾速率的变化规律不尽相同。在13个麻栎无性系中,2、4、5、7、9和16号无性系的蒸腾速率、叶片水势和光合速率具有相同规律,随着干旱胁迫的加剧先下降而后上升,具有较强的适应干旱逆境的能力。对不同干旱条件下无性系的蒸腾速率、土壤水势、叶片水势和光合速率的相关性分析发现,干旱胁迫7天时,蒸腾速率和光合速率达极显著正相关;干旱胁迫12天时,蒸腾速率和土壤水势间呈极显著负相关,光合速率与土壤水势呈显著负相关;干旱胁迫17天时,蒸腾速率与光合速率呈显著正相关。  相似文献   

18.
Leaf functional traits are adaptations that enable plants to live under various environmental conditions. This study aims to determine the differences in leaf functional traits among plants grouped by growth habit, leaf life span, leaf lifestyle, leaf form, and origin. Specific leaf area (SLA) of perennial or evergreen species was lower than that of annual or deciduous species because longer-lived leaves of perennial or evergreen species require more investment in structural integrity and/or defense against disturbances, especially with any resource constraint. SLA of large individuals was lower than that of small individuals. The low SLA in large individuals can improve their response to changing light and water conditions because increasing plant height is advantageous for light competition, but it can also impose a cost in terms of structural support and water transport. Petioles of plants with compound leaves were significantly longer than those of simple leaves because branching is expensive in terms of gaining height. SLA of plants increased with increasing invasiveness accordingly, and SLA of invasive plants was higher than that of their native congeners because invasive plants should invest more biomass on leaf growth rather than leaf structures per unit area to achieve a higher growth rate. Overall, variation in leaf functional traits among different groups may play an adaptive role in the successful survival of plants under diverse environments because leaf functional traits can lead to pronounced effects on leaf function, especially the acquisition and use of light. Plant species with different growth and leaf traits balance resource acquisition and leaf construction to minimize trade-offs and achieve fitness advantages in their natural habitat.  相似文献   

19.
Eucalyptus globulus Labill. seedlings grown under field conditions in Portugal were watered either daily (control) or every 6 days (drought-treated). Relative to those of control plants, rates of leaf production and leaf biomass accumulation were reduced by almost half in drought-treated plants. However, whereas expansion of new leaves on control plants slowed toward the end of the 30 day experiment, expansion of leaves of the same age on drought-treated plants accelerated as a change in weather conditions resulted in midday plant water potentials above -3.0 MPa. In plants that were left unwatered until they wilted and were then watered daily, expansion of the fifth leaf pair from the apex was slower than that of the same pair of leaves of plants watered daily throughout; but it continued for about twice as long and resulted in the same final leaf area. Drought treatment also caused a substantial reduction in the rate of leaf production, which, in part, accounted for the effect of drought on leaf biomass production. In a greenhouse study, witholding water for 15 days had only a slight effect on the length or width of adaxial epidermal cells, and the effect was quickly reversed on rewatering.  相似文献   

20.
Drought resistance of Ailanthus altissima (Mill.) Swingle is a major factor underlying the impressively wide expansion of this species in Europe and North America. We studied the specific mechanism used by A. altissima to withstand drought by subjecting potted seedlings to four irrigation regimes. At the end of the 13-week treatment period, soil water potential was -0.05 MPa for well-watered control seedlings (W) and -0.4, -0.8 and -1.7 MPa for drought-stressed seedlings (S) in irrigation regimes S1, S2 and S3, respectively. Root and shoot biomass production did not differ significantly among the four groups. A progressively marked stomatal closure was observed in drought-stressed seedlings, leading to homeostasis of leaf water potential, which was maintained well above the turgor loss point. Root and shoot hydraulics were measured with a high-pressure flow meter. When scaled by leaf surface area, shoot hydraulic conductance did not differ among the treated seedlings, whereas root hydraulic conductance decreased by about 20% in S1 and S2 seedlings and by about 70% in S3 seedlings, with respect to the well-watered control value. Similar differences were observed when root hydraulic conductance was scaled by root surface area, suggesting that roots had become less permeable to water. Anatomical observations of root cross sections revealed that S3 seedlings had shrunken cortical cells and a multilayer endodermal-like tissue that probably impaired soil-to-root stele water transport. We conclude that A. altissima seedlings are able to withstand drought by employing a highly effective water-saving mechanism that involves reduced water loss by leaves and reduced root hydraulic conductance. This water-saving mechanism helps explain how A. altissima successfully competes with native vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号