首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We examined fine-root (< 2.0 mm diameter) respiration throughout one growing season in four northern hardwood stands dominated by sugar maple (Acer saccharum Marsh.), located along soil temperature and nitrogen (N) availability gradients. In each stand, we fertilized three 50 x 50 m plots with 30 kg NO(3) (-)-N ha(-1) year(-1) and an additional three plots received no N and served as controls. We predicted that root respiration rates would increase with increasing soil temperature and N availability. We reasoned that respiration would be greater for trees using NO(3) (-) as an N source than for trees using NH(4) (+) as an N source because of the greater carbon (C) costs associated with NO(3) (-) versus NH(4) (+) uptake and assimilation. Within stands, seasonal patterns of fine-root respiration rates followed temporal changes in soil temperature, ranging from a low of 2.1 micro mol O(2) kg(-1) s(-1) at 6 degrees C to a high of 7.0 micro mol O(2) kg(-1) s(-1) at 18 degrees C. Differences in respiration rates among stands at a given soil temperature were related to variability in total net N mineralized (48-90 micro g N g(-1)) throughout the growing season and associated changes in mean root tissue N concentration (1.18-1.36 mol N kg(-1)). The hypothesized increases in respiration in response to NO(3) (-) fertilization were not observed. The best-fit model describing patterns within and among stands had root respiration rates increasing exponentially with soil temperature and increasing linearly with increasing tissue N concentration: R = 1.347Ne(0.072T) (r(2) = 0.63, P < 0.01), where R is root respiration rate ( micro mol O(2) kg(-1) s(-1)), N is root tissue N concentration (mol N kg(-1)), and T is soil temperature ( degrees C). We conclude that, in northern hardwood forests dominated by sugar maple, root respiration is responsive to changes in both soil temperature and N availability, and that both factors should be considered in models of forest C dynamics.  相似文献   

2.
An understanding of root system capacity to acquire nitrogen (N) is critical in assessing the long-term growth impact of rising atmospheric CO2 concentration ([CO2]) on trees and forest ecosystems. We examined the effects of mycorrhizal inoculation and elevated [CO2] on root ammonium (NH4+) and nitrate (NO3-) uptake capacity in sweetgum (Liquidambar styraciflua L.) and loblolly pine (Pinus taeda L.). Mycorrhizal treatments included inoculation of seedlings with the arbuscular mycorrhizal (AM) fungus Glomus intraradices Schenck & Smith in sweetgum and the ectomycorrhizal (EM) fungus Laccaria bicolor (Maire) Orton in loblolly pine. These plants were then equally divided between ambient and elevated [CO2] treatments. After 6 months of treatment, root systems of both species exhibited a greater uptake capacity for NH4+ than for NO3-. In both species, mycorrhizal inoculation significantly increased uptake capacity for NO3-, but not for NH4+. In sweetgum, the mycorrhizal effect on NO3- and NH4+ uptake capacity depended on growth [C02]. Similarly, in loblolly pine, the mycorrhizal effect on NO3- uptake capacity depended on growth [CO2], but the effect on NH4+ uptake capacity did not. Mycorrhizal inoculation significantly enhanced root nitrate reductase activity (NRA) in both species, but elevated [CO2] increased root NRA only in sweetgum. Leaf NRA in sweetgum did not change significantly with mycorrhizal inoculation, but increased in response to [CO2]. Leaf NRA in loblolly pine was unaffected by either treatment. The results indicate that the mycorrhizal effect on specific root N uptake in these species depends on both the form of inorganic N and the mycorrhizal type. However, our data show that in addressing N status of plants under high [CO2], reliable prediction is possible only when information about other root system adjustments (e.g., biomass allocation to fine roots) is simultaneously considered.  相似文献   

3.
Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings were supplied with solutions containing nitrogen (N) at 0.1 x or 2 x the optimum rate (low-N and high-N supply, respectively) and grown either outside in a control plot or inside open-top chambers and exposed to ambient (355 &mgr;mol mol(-1)) or elevated (700 &mgr;mol mol(-1)) CO(2) concentration ([CO(2)]). Gas exchange measurements, chlorophyll determinations and nutrient analysis were made on current-year (< 1-year-old) shoots of the upper whorl after the seedlings had been growing in the [CO(2)] treatments for 17 months and the nutrient treatments for 6 months. Total seedling biomass and biomass allocation were assessed at the end of the experiment. Nutrient treatment had a significant effect on the light response curves, irrespective of [CO(2)] or chamber treatment; seedlings supplied with high-N rates had higher net photosynthetic rates than seedlings supplied with low-N rates. The degree of photosynthetic stimulation in response to elevated [CO(2)] was larger in seedlings receiving high-N rates than in seedlings receiving low-N rates. Light-saturated net photosynthesis of seedlings grown and measured in elevated [CO(2)] was 26% higher than that of seedlings grown and measured in ambient [CO(2)]. There was no significant effect of [CO(2)] or chamber treatment on the CO(2) response curves of seedlings receiving High-N supply rates. In contrast, analysis of the CO(2) response curves of seedlings receiving Low-N supply rates showed acclimation to elevated [CO(2)]. Both maximum rate of carboxylation (V(cmax)) and maximum electron transport capacity (J(max)) were lower and J(max)/V(cmax) higher in seedlings in the elevated [CO(2)] treatment. There was no effect of elevated [CO(2)] on stomatal conductance, although it was highly dependent on foliar [N], ranging from ~60 mmol m(-2) s(-1) at ~1.5 g N m(-2) to 200 mmol m(-2) s(-1) at ~5 g N m(-2). In the high-N and low-N treatments, foliar N concentration was 10 and 28% lower in seedlings grown in elevated [CO(2)] than in seedlings grown in ambient [CO(2)], respectively. There was no [CO(2)] effect on foliar phosphorus concentration ([P]). Chlorophyll concentration increased with increasing N supply in all treatments. There was no significant effect of elevated [CO(2)] on specific leaf area. Chlorophyll concentration expressed either on an area or dry mass basis for a given foliar [N] was higher in seedlings grown in elevated [CO(2)] than in seedings grown in ambient [CO(2)]. Elevated [CO(2)] increased total biomass accumulation by 37% in seedlings in the high-N treatment but had no effect in seedlings in the low-N treatment. There was a proportionally bigger allocation of biomass to roots of seedlings in the elevated [CO(2)] + low-N supply rate treatment compared with seedlings in other treatments. This resulted in a reduction in aboveground biomass compared with corresponding seedlings grown in ambient [CO(2)].  相似文献   

4.
Wang X  Curtis PS  Pregitzer KS  Zak DR 《Tree physiology》2000,20(15):1019-1028
Physiological and biomass responses of six genotypes of Populus tremuloides Michx., grown in ambient t (357 micromol mol(-1)) or twice ambient (707 micromol mol(-1)) CO2 concentration ([CO2]) and in low-N or high-N soils, were studied in 1995 and 1996 in northern Lower Michigan, USA. There was a significant CO2 x genotype interaction in photosynthetic responses. Net CO2 assimilation (A) was significantly enhanced by elevated [CO2] for five genotypes in high-N soil and for four genotypes in low-N soil. Enhancement of A by elevated [CO2] ranged from 14 to 68%. Genotypes also differed in their biomass responses to elevated [CO2], but biomass responses were poorly correlated with A responses. There was a correlation between magnitude of A enhancement by elevated [CO2] and stomatal sensitivity to CO2. Genotypes with low stomatal sensitivity to CO2 had a significantly higher A at elevated [CO2] than at ambient [CO2], but elevated [CO2] did not affect the ratio of intercellular [CO2] to leaf surface [CO2]. Stomatal conductance and A of different genotypes responded differentially to recovery from drought stress. Photosynthetic quantum yield and light compensation point were unaffected by elevated [CO2]. We conclude that P. tremuloides genotypes will respond differentially to rising atmospheric [CO2], with the degree of response dependent on other abiotic factors, such as soil N and water availability. The observed genotypic variation in growth could result in altered genotypic representation within natural populations and could affect the composition and structure of plant communities in a higher [CO2] environment in the future.  相似文献   

5.
Three-year-old clonal cuttings of Picea sitchensis (Bong.) Carr. were grown for two years (1988-1989) in sand irrigated with a nutrient solution containing either 1.0 mol N m(-3) (low N) or 6.0 mol N m(-3) (high N) NH(4)NO(3). In 1988, all the N provided was enriched with (15)N to 4.95 atom % (labeled N). In 1989, N was supplied with (15)N at natural abundance (unlabeled N). The recovery of unlabeled and labeled N in new foliage was used to quantify the internal cycling of N. In the high-N treatment, trees had two flushes of shoot growth and a period of rapid root growth, which coincided with the second flush of shoot growth in August. The timing of root growth and the first flush of shoot growth was similar in the low-N treatment, but there was no second flush of shoot growth and a greater proportion of biomass was recovered in roots. By November 1989, the root/needle dry matter ratio was 1.95 for the low-N trees and 1.36 for the high-N trees. Nitrogen was stored overwinter in roots and current-year needles. During the first six weeks of growth in the spring of 1989, stored N was remobilized for new foliage growth. Subsequent growth depended on root uptake of N. Remobilization of stored N was apparently not affected by the current N supply, because the amount of unlabeled N recovered in foliage produced in 1988 was the same for both N treatments. During 1989, the proportion of (15)N remobilized from roots relative to that from leaves produced in 1988 was greater in low-N trees than in high-N trees. In the autumn of both years, there was rapid uptake of N into roots and current-year needles. The effects of N supply on tree growth and nitrogen use efficiency are discussed in terms of the capacity for both N storage and internal cycling.  相似文献   

6.
We exposed Populus tremuloides Michx. and Acer saccharum Marsh. to a factorial combination of ambient and elevated atmospheric CO2 concentrations ([CO2]) and high-nitrogen (N) and low-N soil treatments in open-top chambers for 3 years. Our objective was to compare photosynthetic acclimation to elevated [CO2] between species of contrasting shade tolerance, and to determine if soil N or shading modify the acclimation response. Sun and shade leaf responses to elevated [CO2] and soil N were compared between upper and lower canopy leaves of P. tremuloides and between A. saccharum seedlings grown with and without shading by P. tremuloides. Both species had higher leaf N concentrations and photosynthetic rates in high-N soil than in low-N soil, and these characteristics were higher for P. tremuloides than for A. saccharum. Electron transport capacity (Jmax) and carboxylation capacity (Vcmax) generally decreased with atmospheric CO2 enrichment in all 3 years of the experiment, but there was no evidence that elevated [CO2] altered the relationship between them. On a leaf area basis, both Jmax and Vcmax acclimated to elevated [CO2] more strongly in shade leaves than in sun leaves of P. tremuloides. However, the apparent [CO2] x shade interaction was largely driven by differences in specific leaf area (m2 g-1) between sun and shade leaves. In A. saccharum, photosynthesis acclimated more strongly to elevated [CO2] in sun leaves than in shade leaves on both leaf area and mass bases. We conclude that trees rooted freely in the ground can exhibit photosynthetic acclimation to elevated [CO2], and the response may be modified by light environment. The hypothesis that photosynthesis acclimates more completely to elevated [CO2] in shade-tolerant species than in shade-intolerant species was not supported.  相似文献   

7.
Pedunculate oak (Quercus robur L.) seedlings were grown for 3 or 4 months (second- and third-flush stages) in greenhouses at two atmospheric CO2 concentrations ([CO2]) (350 or 700 micromol mol(-1)) and two nitrogen fertilization regimes (6.1 or 0.61 mmol N l(-1) nutrient solution). Combined effects of [CO2] and nitrogen fertilization on partitioning of newly acquired carbon (C) and nitrogen (N) were assessed by dual 13C and 15N short-term labeling of seedlings at the second- or third-flush stage of development. In the low-N treatment, root growth, but not shoot growth, was stimulated by elevated [CO2], with the result that shoot/root biomass ratio declined. At the second-flush stage, overall seedling biomass growth was increased (13%) by elevated [CO2] regardless of N fertilization. At the third-flush stage, elevated [CO2] increased growth sharply (139%) in the high-N but not the low-N treatment. Root/shoot biomass ratios were threefold higher in the low-N treatment relative to the high-N treatment. At the second-flush stage, leaf area was 45-51% greater in the high-N treatment than in the low-N treatment. At the-third flush stage, there was a positive interaction between the effects of N fertilization and [CO2] on leaf area, which was 93% greater in the high-N/elevated [CO2] treatment than in the low-N/ambient [CO2] treatment. Specific leaf area was reduced (17-25%) by elevated [CO2], whereas C and N concentrations of seedlings increased significantly in response to either elevated [CO2] or high-N fertilization. At the third-flush stage, acquisition of C and N per unit dry mass of leaf and fine root was 51 and 77% greater, respectively, in the elevated [CO2]/high-N fertilization treatment than in the ambient [CO2]/low-N fertilization treatment. However, there was dilution of leaf N in response to elevated [CO2]. Partitioning of newly acquired C and N between shoot and roots was altered by N fertilization but not [CO2]. More newly acquired C and N were partitioned to roots in the low-N treatment than in the high-N treatment.  相似文献   

8.
We measured fine root N concentration, root in vivo nitrate reductase activity (NRA) and root uptake capacity for (15)NH(4) (+) and (15)NO(3) (-) along an N-deposition gradient from northern Sweden to central Europe, encompassing a variation in N deposition rates of < 5 to about 40 kg N ha(-1) year(-1). The focus was on Picea abies (L.) Karst., but Fagus sylvatica L. in central Europe and Pinus sylvestris L. and Betula spp. in northern Sweden were also studied. We assumed that, with an increased supply of N, root N concentration would increase, activity of the inducible enzyme nitrate reductase (NR) in roots would increase, particularly with an increasing supply of NO(3) (-), and root uptake capacity for inorganic N would decline, reflecting a lower demand for N. As expected, fine root N concentration in P. abies increased along the gradient from 1.1% (d.w. basis) at the northern site to 2.1% at central European sites. This variation compared with an amplitude of 0.7-1.5% for foliage. Root in vivo NRA was low in northern Sweden, and higher in central Europe. Picea abies and broad-leaved species had similar root NRA. At one location in Denmark and one in France, however, root NRA in the spring was very high in F. sylvatica. Root uptake capacity for NO(3) (-), as measured in excised roots, was low throughout the transect, but in P. abies, it was high for NH(4) (+) in northern Sweden and decreased by a factor of 4 with increasing N deposition. A similar pattern was found in the broad-leaved species. Unless the higher availability of NO(3) (-) and lower specific root uptake capacity per unit root mass for inorganic N in central Europe (compared with northern Sweden) is balanced by a higher root biomass, the central European forests will be a weaker sink for N.  相似文献   

9.
Longleaf pine (Pinus palustris Mill.) seedlings were exposed to two concentrations of atmospheric CO(2) (365 or 720 micro mol mol(-1)) in combination with two N treatments (40 or 400 kg N ha(-1) year(-1)) and two irrigation treatments (target values of -0.5 or -1.5 MPa xylem pressure potential) in open-top chambers from March 1993 through November 1994. Irrigation treatments were imposed after seedling establishment (i.e., 19 weeks after planting). Seedlings were harvested at 4, 8, 12, and 20 months. Elevated CO(2) increased biomass production only in the high-N treatment, and the relative growth enhancement was greater for the root system than for the shoot system. In water-stressed trees, elevated CO(2) increased root biomass only at the final harvest. Root:shoot ratios were usually increased by both the elevated CO(2) and low-N treatments. In the elevated CO(2) treatment, water-stressed trees had a higher root:shoot ratio than well-watered trees as a result of a drought-induced increase in the proportion of plant biomass in roots. Well-watered seedlings consistently grew larger than water-stressed seedlings only in the high-N treatment. We conclude that available soil N was the controlling resource for the growth response to elevated CO(2) in this study. Although some growth enhancement was observed in water-stressed trees in the elevated CO(2) treatment, this response was contingent on available soil N.  相似文献   

10.
Bauer GA  Berntson GM 《Tree physiology》2001,21(2-3):137-144
We examined changes in root system architecture and physiology and whole-plant patterns of nitrate reductase (NR) activity in response to atmospheric CO2 enrichment and N source to determine how changes in the form of N supplied to plants interact with rising CO2 concentration ([CO2]). Seedlings of Betula alleghaniensis Britt. and Pinus strobus L., which differ in growth rate, root architecture, and the partitioning of NR activity between leaves (Betula) and roots (Pinus), were grown in ambient (400 microl l(-1)) and elevated (800 microl l(-1)) [CO2] and supplied with either nitrate (NO3-) or ammonium (NH4+) as their sole N source. After 15 weeks of growth, plants were harvested and root system architecture, N uptake kinetics, and NR activity measured. Betula alleghaniensis responded to elevated [CO2] with significant increases in growth, regardless of the source of N. Pinus strobus showed no significant response in biomass production or allocation to elevated [CO2]. Both species exhibited significantly greater growth with NH4+ than with NO3-, along with lower root:shoot biomass ratios. Betula showed significant increases in total root length in response to elevated [CO2]. However, root N uptake rates in Betula (for both NO3- and NH4+) were either reduced or unchanged by elevated [CO2]. Pinus showed the opposite response to elevated [CO2], with no change in root architecture, but an increase in maximal uptake rates in response to elevated [CO2]. Nitrate reductase activity (on a mass basis) was reduced in leaves of Betula in elevated [CO2], but did not change in other tissues. Nitrate reductase activity was unaffected by elevated [CO2] in Pinus. Scaling this response to the whole-plant, NR activity was reduced in elevated [CO2] in Betula but not in Pinus. However, because Betula plants were larger in elevated [CO2], total whole-plant NR activity was unaffected.  相似文献   

11.
We studied the effects of excess nitrogen added as nitrate (NO(3) (-)) or ammonium (NH(4) (+)), or both, on mineral nutrition and growth of beech (Fagus sylvatica L.) plants grown at pH 4.2 in Al-free nutrient solution or in solutions containing 0.1 or 1.0 mM AlCl(3). A high external concentration of NH(4) (+) increased the concentration of nitrogen in roots, stems and leaves. The root/shoot dry weight ratio was less in plants grown in the presence of NH(4) (+) than in plants grown in the presence of NO(3) (-). The concentration of phosphorus in the roots was increased and the concentration of potassium in all parts of the plant was decreased by NH(4) (+). A high external concentration of NO(3) (-) caused a decrease in phosphorus concentrations of the root, stem and leaf. Uptake of (45)Ca(2+) by roots was reduced in the presence of high concentrations of NH(4) (+) or NO(3) (-), and a combination of high concentrations of nitrogen and aluminum further reduced the uptake of (45)Ca(2+). Uptake of phosphate ((32)P) and concentrations of phosphorus in root and shoot were increased when plants were grown in the presence of 0.1 mM Al. Exposure to 1.0 mM Al, however, reduced the concentration of phosphorus in roots and shoots and the reduction was greater when plants were grown in the presence of a high external NO(3) (-) concentration. Aluminum binds to roots, and plants grown in the presence of 1.0 mM Al had a slightly higher concentration of aluminum in roots than plants grown in the presence of 0.1 mM Al, whereas the concentration of Al in the shoot was increased 2 to 3 times in plants exposed to 1.0 mm Al. Furthermore, the effects of 1.0 mM Al on uptake of other macronutrients were quite different from the effects of 0.1 mM Al. We conclude that 0.1 mM Al facilitates uptake and transport of phosphorus in beech and that between 0.1 and 1.0 mM Al there is a dramatic change in the effects of Al on uptake and transport of divalent cations and phosphorus.  相似文献   

12.
To study the effects of elevated CO(2) on gas exchange, nonstructural carbohydrate and nutrient concentrations in current-year foliage of 30-year-old Norway spruce (Picea abies (L.) Karst.) trees, branches were enclosed in ventilated, transparent plastic bags and flushed with ambient air (mean 370 &mgr;mol CO(2) mol(-1); control) or ambient air + 340 &mgr;mol CO(2) mol(-1) (elevated CO(2)) during two growing seasons. One branch bag was installed on each of 24 selected trees from control and fertilized plots. To reduce the effect of variation among trees, results from each treated branch were compared with those from a control branch on the same whorl of the same tree. Elevated CO(2) increased rates of light-saturated photosynthesis on average by 55% when measured at the treatment CO(2) concentration. The increase was larger in shoots with high needle nitrogen concentrations than in shoots with low needle nitrogen concentrations. However, shoots grown in elevated CO(2) showed a decrease in photosynthetic capacity compared with shoots grown in ambient CO(2). When measured at the internal CO(2) concentration of 200 &mgr;mol CO(2) mol(-1), photosynthetic rates of branches in the elevated CO(2) treatments were reduced by 8 to 32%. The elevated CO(2) treatment caused a 9 to 20% reduction in carboxylation efficiency and an 18% increase in respiration rates. In response to elevated CO(2), starch, fructose and glucose concentrations in the needles increased on average 33%, whereas concentrations of potassium, nitrogen, phosphorus, magnesium and boron decreased. Needle nitrogen concentrations explained 50-60% of the variation in photosynthesis and CO(2) acclimation was greater at low nitrogen concentrations than at high nitrogen concentrations. We conclude that the enhanced photosynthetic rates found in shoots exposed to elevated CO(2) increased carbohydrate concentrations, which may have a negative feedback on the photosynthetic apparatus and stimulate cyanide-resistant respiration. We also infer that the decrease in nutrient concentrations of needles exposed to elevated CO(2) was the result of retranslocation of nutrients to other parts of the branch or tree.  相似文献   

13.
Five-year-old Scots pine (Pinus sylvestris L.) seedlings were grown in open-top chambers at ambient and elevated (ambient + 400 &mgr;mol mol(-1)) CO(2) concentrations. Net photosynthesis (A), specific leaf area (SLA) and concentrations of nitrogen (N), carbon (C), soluble sugars, starch and chlorophyll were measured in current-year and 1-year-old needles during the second year of CO(2) enrichment. The elevated CO(2) treatment stimulated photosynthetic rates when measured at the growth CO(2) concentration, but decreased photosynthetic capacity compared with the ambient CO(2) treatment. Acclimation to elevated CO(2) involved decreases in carboxylation efficiency and RuBP regeneration capacity. Compared with the ambient CO(2) treatment, elevated CO(2) reduced light-saturated photosynthesis (when measured at 350 &mgr;mol mol(-1) in both treatments) by 18 and 23% (averaged over the growing season) in current-year and 1-year-old needles, respectively. We observed significant interactive effects of CO(2) treatment, needle age and time during the growing season on photosynthesis. Large seasonal variations in photosynthetic parameters were attributed to changes in needle chemistry, needle structure and feedbacks governed by whole-plant growth dynamics. Down-regulation of photosynthesis was probably a result of reduced N concentration on an area basis, although a downward shift in the relationship between photosynthetic parameters and N was also observed.  相似文献   

14.
To examine how rates of net photosynthesis and N uptake of red oak seedlings respond to defoliation under contrasting conditions of N availability, nitrogen-deficient plants were grown in sand culture and subjected to partial defoliation and increased N availability under low light conditions. Both photosynthesis and N uptake rates were measured regularly before and after the treatments. Defoliation resulted in elevated rates of net photosynthesis in both low-N and high-N trees, but the high-N trees were able to maintain the high photosynthetic rates for a longer period of time. Nitrogen availability did not affect the photosynthetic rate of the undefoliated plants. Nitrogen uptake was not affected by the defoliation treatment, but was increased by increasing N availability in both the defoliated and undefoliated plants. Nitrogen uptake rates increased less than would be expected on the basis of N availability alone, but the uptake rates were apparently not limited by carbon supply in the short term. Suboptimal concentrations of N in plant tissues resulted in a strong sink for N even in the absence of refoliation.  相似文献   

15.
We developed a nondestructive method for detecting early toxic effects of inflethal copper (Cu) concentrations on ectomycorrhizal and non-mycorrhizal (NM) Scots pine (Pinus sylvestris L.) seedlings. The fungal symbionts examined were Paxillus involutus (Fr.) Fr., Suillus luteus (Fr.) S.F. Gray and Thelephora terrestris (Ehrh.) Fr. The accumulation of Cu in needles and fungal development (ergosterol) in roots and infstrate were assessed. Inorganic phosphate (P(i)) and ammonium (NH(4) (+)) uptake capacities were determined in a semi-hydroponic cultivation system on intact P-limited plants that were exposed for 3 weeks to 0.32 (control), 8 or 16 &mgr;moles Cu(2+). Short-term effects of a 1-hour exposure to 32 &mgr;moles Cu(2+) on nutrient uptake rates were also determined. None of the Cu(2+) treatments affected plant growth or root ergosterol concentrations. The active fungal biomass in infstrate invaded by S. luteus was reduced by 50% in the 16 &mgr;M Cu(2+) treatment compared with the control treatment; however, colonization by S. luteus prevented an increased accumulation of Cu in the needles. In contrast, the 16 &mgr;M Cu(2+) treatment caused a 2.2-fold increase in needle Cu concentration in NM plants. Ergosterol concentrations in the infstrate colonized by P. involutus and T. terrestris were not affected by 16 &mgr;molar Cu(2+). Although P. involutus and T. terrestris were less sensitive to Cu(2+) than S. luteus, T. terrestris did not prevent the accumulation of Cu in needles of its host plant in the 16 &mgr;molar Cu(2+) treatment. Mycorrhizal plants consistently had higher P(i) and NH(4) (+) uptake capacities than NM plants. In the control treatment, specific P(i) uptake rates were almost 10, 4 and 3 times higher in plants associated with P. involutus, S. luteus and T. terrestris, respectively, than in NM plants, and specific NH(4) (+) uptake rates were about 2, 2 and 5 times higher, respectively, than those of NM seedlings. Compared with the corresponding control plants, a 3-week exposure to 8 &mgr;M Cu(2+) had no effect on the nutrient uptake potential of plants. In contrast, the 16 &mgr;M Cu(2+) treatment significantly reduced P(i) uptake capacity of all plants and decreased NH(4) (+) uptake capacity of seedlings colonized by S. luteus or T. terrestris. The 32 &mgr;M Cu(2+) 1-h shock treatment reduced specific NH(4) (+) and P(i) uptake rates of roots colonized by S. luteus to 39 and 77%, respectively, of the original rates. The Cu(2+) 1-h shock treatment reduced the NH(4) (+) uptake rate of NM plants by 51%.  相似文献   

16.
Rey A  Jarvis PG 《Tree physiology》1998,18(7):441-450
To study the long-term response of photosynthesis to elevated atmospheric CO(2) concentration in silver birch (Betula pendula Roth.), 18 trees were grown in the field in open-top chambers supplied with 350 or 700 &mgr;mol mol(-1) CO(2) for four consecutive growing seasons. Maximum photosynthetic rates, stomatal conductance and CO(2) response curves were measured over the fourth growing season with a portable photosynthesis system. The photosynthesis model developed by Farquhar et al. (1980) was fitted to the CO(2) response curves. Chlorophyll, soluble proteins, total nonstructural carbohydrates, nitrogen and Rubisco activity were determined monthly. Elevated CO(2) concentration stimulated photosynthesis by 33% on average over the fourth growing season. However, comparison of maximum photosynthetic rates at the same CO(2) concentration (350 or 700 &mgr;mol mol(-1)) revealed that the photosynthetic capacity of trees grown in an elevated CO(2) concentration was reduced. Analysis of the response curves showed that acclimation to elevated CO(2) concentration involved decreases in carboxylation efficiency and RuBP regeneration capacity. No clear evidence for a redistribution of nitrogen within the leaf was observed. Down-regulation of photosynthesis increased as the growing season progressed and appeared to be related to the source-sink balance of the trees. Analysis of the main leaf components revealed that the reduction in photosynthetic capacity was accompanied by an accumulation of starch in leaves (100%), which was probably responsible for the reduction in Rubisco activity (27%) and to a lesser extent for reductions in other photosynthetic components: chlorophyll (10%), soluble protein (9%), and N concentrations (12%) expressed on an area basis. Despite a 21% reduction in stomatal conductance in response to the elevated CO(2) treatment, stomatal limitation was significantly less in the elevated, than in the ambient, CO(2) treatment. Thus, after four growing seasons exposed to an elevated CO(2) concentration in the field, the trees maintained increased photosynthetic rates, although their photosynthetic capacity was reduced compared with trees grown in ambient CO(2).  相似文献   

17.
Effects of elevated CO2 concentration ([CO2]) on carbon (C) and nitrogen (N) uptake and N source partitioning (N2 fixation versus mineral soil N uptake) of 1-year-old Robinia pseudoacacia were determined in a dual 13C and 15N continuous labeling experiment. Seedlings were grown for 16 weeks in ambient (350 ppm) or elevated [CO2] (700 ppm) with 15NH4 15NO3 as the only mineral nitrogen source. Elevated [CO2] increased the fraction of new C in total C, but it did not alter C partitioning among plant compartments. Elevated [CO2] also increased the fraction of new N in total N and this was coupled with a shift in N source partitioning toward N2 fixation. Soil N uptake was unaffected by elevated [CO2], whereas N2 fixation was markedly increased by the elevated [CO2] treatment, mainly because of increased specific fixation (mg N mg(-1) nodule). As a result of increased N2 fixation, the C/N ratio of tree biomass tended to decrease in the elevated [CO2] treatment. Partitioning of N uptake among plant compartments was unaffected by elevated [CO2]. Total dry mass of root nodules doubled in response to elevated [CO2], but this effect was not significant because of the great variability of root nodule formation. Our results show that, in the N2-fixing R. pseudoacacia, increased C uptake in response to increased [CO2] is matched by increased N2 fixation, indicating that enhanced growth in elevated [CO2] might not be restricted by N limitations.  相似文献   

18.
We estimated nitrogen (N) use by trees of three poplar species exposed for 3 years to free air CO(2) enrichment (FACE) and determined whether the CO(2) treatment affected the future N availability of the plantation. Trees were harvested at the end of the first 3-year rotation and N concentration and content of woody tissues determined. Nitrogen uptake of fine roots and litter was measured throughout the first crop rotation. The results were related to previously published variations in soil N content during the same period. We estimated retranslocation from green leaves and processes determining N mobilization and immobilization, such as mineralization and nitrification, and N immobilization in litter and microbial biomass. In all species, elevated CO(2) concentration ([CO(2)]) significantly increased nitrogen-use efficiency (NUE; net primary productivity per unit of annual N uptake), decreased N concentration in most plant tissues, but did not significantly change cumulative N uptake by trees over the rotation. Total soil N was depleted more in elevated [CO(2)] than in ambient [CO(2)], although not significantly for all soil layers. The effect of elevated [CO(2)] was usually similar for all species, although differences among species were sometimes significant. During the first 3-year rotation, productivity of the plantation remained high in the elevated [CO(2)] treatment. However, we observed a potential reduction in N availability in response to elevated [CO(2)].  相似文献   

19.
Invasion by woody legumes can alter hydrology, nutrient accumulation and cycling, and carbon sequestration on grasslands. The rate and magnitude of these changes are likely to be sensitive to the effects of atmospheric CO(2) enrichment on growth and water and nitrogen dynamics of leguminous shrubs. To assess potential effects of increased atmospheric CO(2) concentrations on plant growth and acquisition and utilization of water and nitrogen, seedlings of Acacia smallii Isely (huisache) were grown for 13 months at CO(2) concentrations of 385 (ambient), 690, and 980 micro mol mol(-1). Seedlings grown at elevated CO(2) concentrations exhibited parallel declines in leaf N concentration and photosynthetic capacity; however, at the highest CO(2) concentration, biomass production increased more than 2.5-fold as a result of increased leaf photosynthetic rates, leaf area, and N(2) fixation. Measurements of leaf gas exchange and aboveground biomass production and soil water balance indicated that water use efficiency increased in proportion to the increase in atmospheric CO(2) concentration. The effects on transpiration of an accompanying decline in leaf conductance were offset by an increase in leaf area, and total water loss was similar across CO(2) treatments. Plants grown at elevated CO(2) fixed three to four times as much N as plants grown at ambient CO(2) concentration. The increase in N(2) fixation resulted from an increase in fixation per unit of nodule mass in the 690 micro mol mol(-1) CO(2) treatment and from a large increase in the number and mass of nodules in plants in the 980 micro mol mol(-1) CO(2) treatment. Increased symbiotic N(2) fixation by woody invaders in response to CO(2) enrichment may result in increased N deposition in litterfall, and thus increased productivity on many grasslands.  相似文献   

20.
Coleman MD  Friend AL  Kern CC 《Tree physiology》2004,24(12):1347-1357
We established Populus deltoides Bartr. stands differing in nitrogen (N) availability and tested if: (1) N-induced carbon (C) allocation could be explained by developmental allocation controls; and (2) N uptake per unit root mass, i.e., specific N-uptake rate, increased with N availability. Closely spaced (1 x 1 m) stands were treated with 50, 100 and 200 kg N ha(-1) year(-1) of time-release balanced fertilizer (50N, 100N and 200N) and compared with unfertilized controls (0N). Measurements were made during two complete growing seasons from May 1998 through October 1999. Repeated nondestructive measurements were carried out to determine stem height and diameter, leaf area and fine-root dynamics. In October of both years, above- and belowground biomass was harvested, including soil cores for fine-root biomass. Leaves were harvested in July 1999. Harvested tissues were analyzed for C and N content. Nondestructive stem diameter and and fine-root dynamic measurements were combined with destructive harvest data to estimate whole-tree biomass and N content at the end of the year, and to estimate specific N-uptake rates during the 1999 growing season. Shoot growth response was greater in fertilized trees than in control trees; however, the 100N and 200N treatments did not enhance growth more than the 50N treatment. Root biomass proportions decreased over time and with increasing fertilizer treatment. Fertilizer-induced changes in allocation were explained by accelerated development. Specific N-uptake rates increased during the growing season and were higher for fertilized trees than for control trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号