首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated interannual variability of canopy transpiration per unit ground area (E (C)) and per unit leaf area (E (L)) across seven tree species in northern Wisconsin over two years. These species have previously been shown to be sufficient to upscale stand-level transpiration to the landscape level during one growing season. Our objective was to test whether a simple plant hydraulic model could capture interannual variation in transpiration. Three species, wetland balsam fir (Abies balsamea (L.) Mill), basswood (Tilia Americana L.) and speckled alder (Alnus rugosa (DuRoi) Spreng), had no change in E (C) or E (L) between 2000 and 2001. Red pine (Pinus resinosa Ait) had a 57 and 19% increase in E (C) and E (L), respectively, and sugar maple (Acer saccharum Marsh) had an 83 and 41% increase in E (C) and E (L), respectively, from 2000 to 2001. Quaking aspen (Populus tremuloides Michx) had a 50 and 21% decrease in E (C) and E (L), respectively, from 2000 to 2001 in response to complete defoliation by forest tent caterpillar (Malascoma distria Hüber) and subsequent lower total leaf area index of the reflushed foliage. White cedar (Thuja occidentalis L.) had a 20% decrease in both E (C) and E (L) caused by lowered surface water in wetlands in 2001 because of lower precipitation and wetland flow management. Upland A. balsamea increased E (L) and E (C) by 55 and 53%, respectively, as a result of release from light competition of the defoliated, overstory P. tremuloides. We hypothesized that regardless of different drivers of interannual variability in E (C) and E (L), minimum leaf water potential would be regulated at the same value. Minimum midday water potentials were consistent over the two years within each of the seven species despite large changes in transpiration between years. This regulation was independently verified by the exponential saturation between daily E (C) and vapor pressure deficit (D) and the tradeoff between a reference canopy stomatal conductance (G (S)) and the sensitivity of G (S) to D, indicating that trees with high G (S) must decrease G (S) in response to atmospheric drought faster than trees with low G (S). Our results show that models of forest canopy transpiration can be simplified by incorporating G (S) regulation of minimum leaf water potential for isohydric species.  相似文献   

2.
Omi SK  Yoder B  Rose R 《Tree physiology》1991,8(3):315-325
Post-storage water relations, stomatal conductance, and root growth potential were examined in ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings from high- and low-elevation seed sources that had been lifted either in October or November and freezer stored, or in March, and then grown hydroponically in a greenhouse for 31 days. Seedlings lifted in October had poor root initiation (< 17 new roots per seedling), low predawn leaf water potentials (< -1.5 MPa), and low stomatal conductance (7.10 mmol m(-2) s(-1)) compared with seedlings lifted in November or March. There was little difference in post-storage water relations and stomatal conductance between seedlings lifted in November and those lifted in March. Throughout the 31-day test, seedlings from the high-elevation seed source produced 3-9 times more new roots, had higher predawn leaf water potentials (-0.6 to -0.7 MPa versus -1.1 to -1.6 MPa), and 1.3-5 times greater stomatal conductance than seedlings from the low-elevation seed source. For all seedlings on Day 31, the number of new roots was significantly related to predawn leaf water potential (r(2) = 0.65) and stomatal conductance (r(2) = 0.82). Similarly, the dry weight of new roots per seedling on Day 31 accounted for a significant amount of the variation in predawn leaf water potential (r(2) = 0.81) and stomatal conductance (r(2) = 0.49).  相似文献   

3.
We studied variations in water relations and drought response in five Himalayan tree species (Schima wallichii (DC.) Korth. (chilaune) and Castanopsis indica (Roxb.) Miq. (dhale katus) at an elevation of 1400 m, Quercus lanata Smith (banjh) and Rhododendron arboreum Smith (lali gurans) at 2020 m, and Quercus semecarpifolia Smith (khasru) at 2130 m) at Phulchowki Hill, Kathmandu, Nepal. Soil water potential at 15 (Psi(s15)) and 30 cm (Psi(s30)) depths, tree water potential at predawn (Psi(pd)) and midday (Psi(md)), and leaf conductance during the morning (g(wAM)) and afternoon (g(wPM)) were observed from December 1998 to April 2001, except during the monsoon months. There was significant variation among sites, species and months in Psi(pd), Psi(md), g(wAM) and g(wPM), and among months for all species for Psi(s15). Mean Psi(pd) and Psi(md) were lowest in Q. semecarpifolia (-0.40 and -1.18 MPa, respectively) and highest in S. wallichii (-0.20 and -0.63 MPa, respectively). The minimum Psi value for all species (-0.70 to -1.79 MPa) was observed in March 1999, after 4 months of unusually low rainfall. Some patterns of Psi(pd) were related to phenology and leaf damage. During leafing, Psi(pd) often increased. Mean g(wAM) and g(wPM) were highest in Q. semecarpifolia (172 and 190 mmol m(-2) s(-1), respectively) and lowest in C. indica (78 and 74 mmol m(-2) s(-1), respectively). Soil water potential (Psi) at 15 cm depth correlated with plant Psi in all species, but rarely with g(wAM) and not with g(wPM). Plant Psi declined with increasing elevation, whereas g(w) increased. As Psi(pd) declined, so did maximal g(w), but overall, g(w) was correlated with Psi(pd) only for R. arboreum. Schima wallichii maintained high Psi, with low stomatal conductance, as did Castanopsis indica, except that C. indica had low Psi during dry months. Rhododendron arboreum maintained high Psi(pd) and g(w), despite low soil Psi. Quercus lanata had low g(w) and low Psi(pd) in some months, but showed no correlation between tree Psi and g(w). Quercus semecarpifolia, which grows at the highest elevation, had low soil and plant Psi and high g(w).  相似文献   

4.
Ewers BE  Oren R 《Tree physiology》2000,20(9):579-589
We analyzed assumptions and measurement errors in estimating canopy transpiration (E(L)) from sap flux (J(S)) measured with Granier-type sensors, and in calculating canopy stomatal conductance (G(S)) from E(L) and vapor pressure deficit (D). The study was performed in 12-year-old Pinus taeda L. stands with a wide range in leaf area index (L) and growth rate. No systematic differences in J(S) were found between the north and south sides of trees. However, J(S) in xylem between 20 and 40 mm from the cambium was 50 and 39% of J(S) in the outer 20-mm band of xylem in slow- and fast-growing trees, respectively. Sap flux measured in stems did not lag J(S) measured in branches, and time and frequency domain analyses of time series indicated that variability in J(S) in stems and branches is mostly explained by variation in D. Therefore, J(S) was used to estimate transpiration, after accounting for radial patterns. There was no difference between D and leaf-to-air vapor pressure gradient, and D did not have a vertical profile in stands of either low or high L suggesting a strong canopy-atmosphere coupling. Therefore, D estimated at one point in the canopy can be used to calculate G(S) in such stands. Given the uncertainties in J(S), relative humidity, and temperature measurements, to keep errors in G(S) estimates to less than 10%, estimates of G(S) should be limited to conditions in which D >/= 0.6 kPa.  相似文献   

5.
This experiment was carried out in acclimatized greenhouses with seedlings of two hybrid clones of Eucalyptus urophylla×Eucalyptus grandis. A sunscreen protector consisting of 62.5% calcium carbonate was sprayed on the seedlings at weekly intervals. Water stress was induced by suspending irrigation until the soil reached 30% available water and water was then replaced so that it returned to field capacity. Gas exchange and leaf water status were measured after 50 days. The experiment was set up in a 4×2 factorial randomized block design in four distinct environments:(1) temperatures less than 21.2℃ and vapor pressure deficit of 0.15 kPa;(2) intermediate temperatures of 24.2℃ and vapor pressure deficit of 0.69 kPa;(3) high temperatures of 27.0℃ and high vapor pressure deficit of 1.4 kPa; and,(4) high temperature of 27.0℃ and vapor pressure deficit below 1.10 kPa. Two leaf sun protector treatments were used, with five replications each. High atmospheric demand acted as a stress factor for the seedlings during the initial growth phase.Applications of leaf sunscreen protector provided beneficial effects in maintaining optimum water status and gas exchanges of the plants under water stress.  相似文献   

6.
Patterns of water relations, xylem sap abscisic acid (ABA) concentration ([ABA]) and stomatal aperture were compared in drought-sensitive black walnut (Juglans nigra L.) and black willow (Salix nigra Marsh.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.). Strong correlations among reduction in predawn water potential, increase in xylem sap [ABA] and stomatal closure were observed in all species. Stomatal response was more highly correlated with xylem [ABA] than with ABA flux. Xylem sap pH and ion concentrations appeared not to play a major role in the stomatal response of these species. Stomata were more sensitive to relative changes in [ABA] in drought-sensitive black walnut and black willow than in sugar maple and white oak. In the early stages of drought, increased [ABA] in the xylem sap of black walnut and black willow was probably of root origin and provided a signal to the shoot of the water status of the roots. In sugar maple and white oak, leaf water potential declined with the onset of stomatal closure, so that stomatal closure also may have occurred in response to the change in leaf water potential.  相似文献   

7.
Patterns of water relations, xylem sap abscisic acid concentration ([ABA]) and stomatal aperture were characterized and compared in drought-sensitive black walnut (Juglans nigra L.), less drought-sensitive sugar maple (Acer saccharum Marsh.) and drought-tolerant white oak (Quercus alba L.) trees co-occurring in a second-growth forest in Missouri, USA. There were strong correlations among reduction in predawn leaf water potential, increased xylem sap [ABA] and stomatal closure in all species. Stomatal conductance was more closely correlated with xylem sap ABA concentration than with ABA flux or xylem sap pH and cation concentrations. In isohydric black walnut, increased concentrations of ABA in the xylem sap appeared to be primarily of root origin, causing stomatal closure in response to soil drying. In anisohydric sugar maple and white oak, however, there were reductions in midday leaf water potential associated with stomatal closure, making it uncertain whether drought-induced xylem sap ABA was of leaf or root origin. The role of root-originated xylem sap ABA in these species as a signal to the shoot of the water status of the roots is, therefore, less certain.  相似文献   

8.
Diurnal patterns of leaf conductance, net photosynthesis and water potential of five tree species were measured at the top of the canopy in a tropical lowland rain forest in southwestern Cameroon. Access to the 40 m canopy was by a large canopy-supported raft, the Radeau des Cimes. The measurements were made under ambient conditions, but the raft altered the local energy balance at times, resulting in elevated leaf temperatures. Leaf water potential was equal to or greater than the gravitational potential at 40 m in the early morning, falling to values as low as -3.0 MPa near midday. Net photosynthesis and conductance were typically highest during midmorning, with values of about 10-12 micro mol CO(2) m(-2) s(-1) and 0.2-0.3 mol H(2)O m(-2) s(-1), respectively. Leaf conductance and net photosynthesis commonly declined through midday with occasional recovery late in the day. Photosynthesis was negatively related to leaf temperature above midday air temperature maxima. These patterns were similar to those observed in other seasonally droughted evergreen communities, such as Mediterranean-climate shrubs, and indicate that environmental factors may cause stomatal closure and limit photosynthesis in tropical rain forests during the midday period.  相似文献   

9.
Stomatal regulation plays a vital role related to plant functioning, especially with a limited water supply. Estimating the leaf stomatal conductance (g s) is pivotal for further estimation of transpiration as well as energy and mass balances between air and plant in arid regions. Based on successive measurements of leaf gas exchange of two typical desert riparian phreatophytes, Tamarix ramosissima Ledeb., and Populus euphratica Oliv., we estimated g s using the empirical, optimal, and mechanistic models. Measurements were conducted on T. ramosissima during the growing seasons in 2011 and 2012 and P. euphratica in 2013 and 2014. Estimated values were compared with those measured by the portable open-path gas exchange measurement system. Results indicated that Ye’s mechanistic model always performed best among all the g s models tested here with R 2 values of 0.878 and 0.723 for T. ramosissima in 2011 and 2012, and 0.625 and 0.867 for P. euphratica in 2013 and 2014, respectively. Meanwhile, Medlyn’s optimal model exhibited the least reliable performance with R 2 at values of 0.514 and 0.398 for T. ramosissima in 2011 and 2012, and 0.385 and 0.101 for P. euphratica in 2013 and 2014, respectively. Empirical models may not be suitable for application in novel situations because they have been developed from experimental observations rather than from any mechanistic understanding or theory of stomatal behavior. Consequently, the application of Ye’s mechanistic model will be of great significance for the modeling and up-scaling of g s in extremely arid regions in the future.  相似文献   

10.
After cold storage, conifer seedlings in British Columbia are tested for field growth potential before planting. We compared three tests of performance potential using container-grown seedlings of Douglas-fir, interior spruce, lodgepole pine, and western larch (14 seedlots total). On several autumn dates, seedlings were lifted and stored at −2°C. The following spring we tested stored seedlings for root growth potential (RGP), chlorophyll fluorescence (CF), and stomatal conductance (Gs), and then planted seedlings in nursery beds. We assessed survival and shoot dry weight (SDW) after one growing season. Performance test results were significantly correlated with each other (r ≥ 0.47) but showed different relationships with field performance, which varied with lift date. The best performance predictor was the sum of CF and RGP (R 2 = 0.79 for 78 seedlot by lift-date combinations), which minimized the risk of planting poor seedlings and not planting good seedlings. A sum of 83 for CF (Fv/Fm %) and RGP (new roots >1 cm) provided a threshold above which survival and growth were good. For evergreen conifers, Gs was a good performance predictor, but required extra time to measure leaf area. We recommend a combination of CF and RGP to assess vigor of shoot and root systems before planting. Wolfgang D. Binder––Scientist Emeritus.  相似文献   

11.
Zhu GF  Li X  Su YH  Lu L  Huang CL 《Tree physiology》2011,31(2):178-195
A combined model to simulate CO? and H?O gas exchange at the leaf scale was parameterized using data obtained from in situ leaf-scale observations of diurnal and seasonal changes in CO? and H?O gas exchange. The Farquhar et al.-type model of photosynthesis was parameterized by using the Bayesian approach and the Ball et al.-type stomatal conductance model was optimized using the linear least-squares procedure. The results show that the seasonal physiological changes in photosynthetic parameters (e.g., V(cmax25), J(max25), R(d25) and g(m25)) in the biochemical model of photosynthesis and m in the stomatal conductance model should be counted in estimating long-term CO? and H?O gas exchange. Overall, the coupled model successfully reproduced the observed response in net assimilation and transpiration rates.  相似文献   

12.
We compared sap-flux-scaled, mean, canopy stomatal conductance (GS) between Picea abies (L.) Karst. in Sweden and Pinus taeda (L.) in North Carolina, both growing on nutritionally poor soils. Stomatal conductance of Picea abies was approximately half that of Pinus taeda and the sensitivity of GS in Picea abies to vapor pressure deficit (D) was lower than in Pinus taeda. Optimal fertilization increased leaf area index (L) two- and threefold in Pinus taeda and Picea abies, respectively, regardless of whether irrigation was increased. Although it increased L, fertilization did not increase GS in Picea abies unless irrigation was also provided. In Pinus taeda growing on coarse, sandy soils, the doubling of L in response to fertilization reduced GS sharply unless irrigation was also provided. The reduction in GS with fertilization in the absence of irrigation resulted from the production of fine roots with low saturated hydraulic conductivity. When Pinus taeda received both fertilization and irrigation, the increase in L was accompanied by a large increase in GS. In Pinus taeda, a reference GS (defined as GS at D = 1 kPa; GSR) decreased in all treatments with decreasing volumetric soil water content (theta). In Picea abies, theta varied little within a treatment, but overall, GSR declined with theta, reaching lowest values when drought was imposed by the interception of precipitation. Despite the large difference in GS both between Picea abies and Pinus taeda and among treatments, stem growth was related to absorbed radiation, and stem growth response to treatment reflected mostly the changes in L.  相似文献   

13.
Spiraea pubescens, a common shrub in the warm-temperate deciduous forest zone which is distributed in the Dongling Mountain area of Beijing, was exposed to ambient and enhanced ultraviolet-B (UV-B, 280–320 nm) radiation by artificially supplying a daily dose of 9.4 kJ/m2 for three growing seasons, a level that simulated a 17% depletion in stratospheric ozone. The objective of this study was to explore the effects of long-term UV-B enhancement on stomatal conductance, leaf tissue δ 13C, leaf water content, and leaf area. Particular attention was paid to the effects of UV-B radiation on water use efficiency (WUE) and leaf total nitrogen content. Enhanced UV-B radiation significantly reduced leaf area (50.1%) but increased leaf total nitrogen content (102%). These changes were associated with a decrease in stomatal conductance (16.1%) and intercellular CO2 concentration/ air CO2 concentration (C i /C a) (4.0%), and an increase in leaf tissue δ 13C (20.5‰), leaf water content (3.1%), specific leaf weight (SLW) (5.2%) and WUE (4.1%). The effects of UV-B on the plant were greatly affected by the water content of the deep soil (30–40 cm). During the dry season, differences in the stomatal conductance, δ 13C, and WUE between the control and UV-B treated shrubs were very small; whereas, differences became much greater when soil water stress disappeared. Furthermore, the effects of UV-B became much less significant as the treatment period progressed over the three growing seasons. Correlation analysis showed that enhanced UV-B radiation decreased the strength of the correlation between soil water content and leaf water content, δ 13C, C i/C a, stomatal conductance, with the exception of WUE that had a significant correlation coefficient with soil water content. These results suggest that WUE would become more sensitive to soil water variation due to UV-B radiation. Based on this experiment, it was found that enhanced UV-B radiation had much more significant effects on morphological traits and growth of S. pubescens than hydro-physiological characteristics. __________ Translated from Journal of Plant Ecology, 2006, 30(1): 47–56 [译自: 植物生态学报]  相似文献   

14.
The aim of this methodological study was to quantify differences between water potential measured with a pressure chamber (PC) and with a hydraulic press (HP) in six north Sahelian dominant species of the woody strata across the range of their local environmental conditions in the Malian Gourma. Mean annual rainfall is 372 mm, falling from June to September, followed by 8–10 months of dry season. The daily course of Leaf Water Potential (LWP) was monitored in 2–6 m tall healthy individuals. Water potential measured with the two instruments were statistically comparable (R2 > 40%) except in A. senegal. However, the HP under-estimated LWP and revealed smaller ranges of water potential than the PC. In the Sahelian shrubs studied here, for the precise measurement of a water potential gradient in the soil–plant-atmosphere continuum and for inter-specific comparisons, the PC is more appropriate than the HP. However, the HP may be useful for intra-species comparison in large sampled fields, since calibrations will be checked across a wider range of dates and a large number of sites.  相似文献   

15.
Signal communication between root and shoot plays a crucial role in plant resistance to water stress. While many studies on root to shoot signals have been carried out in many plant species, no information is available for the model plant, Arabidopsis, whose adoption has great significance for further probing the molecular aspects of long distance stress signals. Here, we introduced the establishment of techniques for investigations of root to shoot signals in Arabidopsis. Stomatal movements in relation to root signals were probed by using these techniques. The results show that Arabidopsis is a suitable plant species for partial roots drying (PRD) experiments. In the PRD system, while no significant differences were found in leaf water potential between well-watered and stressed plants, water stress led to a decrease in leaf conductance, which suggests a regulation of stomatal movements by root to shoot signals. While water stress caused a significant increase in the concentration of sap abscisic acid (ABA) of xylem, no increase in xylem sap pH was observed. Moreover, the increase in the ABA content of xylem coincided with the decrease in leaf conductance, which suggests a possible role of ABA in the regulation of stomatal movements. Infrared temperature images showed that leaf temperatures of PRD plant were higher compared with those of well-watered plants, which further indicates that stomatal movements can be modulated by root signals. The confirmation of root to shoot signaling in Arabidopsis has established a basis for further investigation into the molecular mechanisms of the root to shoot signaling under water stress.  相似文献   

16.
Correlations between leaf abscisic acid concentration ([ABA]), stomatal conductance (gs), rate of stomatal opening in response to an increase in leaf water potential (si), shoot hydraulic conductance (L) and photosynthetic characteristics were examined in saplings of six temperate deciduous tree species: Acer platanoides L., Padus avium Mill., Populus tremula L., Quercus robur L., Salix caprea L. and Tilia cordata Mill. Species-specific values of foliar [ABA] were negatively related to the mean values of gs, si, L and light- and CO2- saturated net photosynthesis (P(max)), thus providing strong correlative evidence of a scaling of foliar gas exchange and hydraulic characteristics with leaf endogenous [ABA]. In addition, we suggest that mean gs, si, L and Pmax for mature leaves may partly be determined by the species-specific [ABA] during leaf growth. The most drought-intolerant species had the lowest [ABA] and the highest gs, suggesting that interspecific differences in [ABA] may be linked to differences in species-specific water-use efficiency. Application of high concentrations of exogenous ABA led to large decreases in gs, si and P(max), further underscoring the direct role of ABA in regulating stomatal opening and photosynthetic rate. Exogenous ABA also decreased L, but the decreases were considerably smaller than the decreases in gs, si and Pmax. Thus, exogenous ABA predominantly affected the stomata directly, but modification of L by ABA may also be an important mechanism of ABA action. We conclude that interspecific variability in endogenous [ABA] during foliage growth and in mature leaves provides an important factor explaining observed differences in L, gs, si and Pmax among temperate deciduous tree species.  相似文献   

17.
The effect of drought on forest water use is often estimated with models, but comprehensive models require many parameters, and simple models may not be sufficiently flexible. Many tree species, Pinus species in particular, have been shown to maintain a constant minimum leaf water potential above the critical threshold for xylem embolism during drought. In such cases, prediction of the relative decline in daily maximum transpiration rate with decreasing soil water content is relatively straightforward. We constructed a soil-plant water flow model assuming constant plant conductance and daily minimum leaf water potential, but variable conductance from soil to root. We tested this model against independent data from two sites: automatic shoot chamber data and sap flow measurements from a boreal Scots pine (Pinus sylvestris L.) stand; and sap flow measurements from a maritime pine (Pinus pinaster Ait.) stand. To focus on soil limitations to water uptake, we expressed daily maximum transpiration rate relative to the rate that would be obtained in wet soil with similar environmental variables. The comparison was successful, although the maritime pine stand showed carry-over effects of the drought that we could not explain. For the boreal Scots pine stand, daily maximum transpiration was best predicted by water content of soil deeper than 5 cm. A sensitivity analysis revealed that model predictions were relatively insensitive to the minimum leaf water potential, which can be accounted for by the importance of soil resistance of drying soil. We conclude that a model with constant plant conductance and minimum leaf water potential can accurately predict the decline in daily maximum transpiration rate during drought for these two pine stands, and that including further detail about plant compartments would add little predictive power, except in predicting recovery from severe drought.  相似文献   

18.
Excised leaves and roots of willow (Salix dasyclados Wimm.) accumulated abscisic acid (ABA) in response to desiccation. The accumulation of ABA was greater in young leaves and roots than in old leaves and roots. In mature leaves, ABA accumulation was related to the severity and duration of the desiccation treatment. Water loss equal to 12% of initial fresh weight caused the ABA content of mature leaves to increase measurably within 30 min and to double in 2.5 h. The drying treatment caused significant (P = 0.05) reductions in leaf water potential and stomatal conductance. Recovery of leaf water potential to the control value occurred within 10 min of rewatering the dehydrated leaves, but recovery of stomatal conductance took an hour or longer, depending on the interval between dehydration and rewatering. The addition of ABA to the transpiration stream of well-watered excised leaves was sufficient to cause partial stomatal closure within 1 h and, depending on ABA concentration, more or less complete stomatal closure within 3 h. When the ABA solution was replaced with water, stomatal conductance increased at a rate inversely related to the concentration of the ABA solution with which the leaves had been supplied.  相似文献   

19.
Will RE  Teskey RO 《Tree physiology》1999,19(11):761-765
Pinus taeda L. stomata respond slowly to changes in irradiance. Because incident irradiance on a leaf varies constantly, the rate of change in stomatal conductance to fluctuating irradiance may have a large effect on plant water use. We estimated total daily water use of Pinus taeda foliage for 10 days with very different irradiance patterns, assuming that rates of stomatal opening and closing were similar. To determine how the most extreme imbalance in rates of stomatal opening and closing affects estimates of water use, we also estimated total daily water use assuming instantaneous stomatal opening and a realistic rate of stomatal closing. Total daily water use was calculated by summing estimates of transpiration based on irradiance and vapor pressure deficit measured every minute at locations atop and within a canopy. Estimates of total daily water use calculated on the basis of realistic rates of stomatal opening and closing were similar to estimates calculated assuming instantaneous stomatal change (mean difference between methods of calculation was less than 0.2%). Estimates of total daily water use assuming instantaneous stomatal opening and a realistic rate of closing differed from estimates of total daily water use based on similar rates of stomatal opening and closing. The discrepancy was greater within the canopy (mean difference 6%) than at the top of the canopy (mean difference 1%). Calculation of mean daily conductance from mean daily irradiance, without accounting for minute-by-minute variations in irradiance, resulted in overestimations of daily stomatal conductance (13% mean error) and the magnitude of the error was directly related to the variation in irradiance for that day. We conclude that, provided variation in irradiance is accounted for, rates of stomatal opening and closing have little effect on estimates of daily water use.  相似文献   

20.
A multiplicative model of stomatal conductance was developed and tested in two functionally distinct ecotypes of Acer rubrum L. (red maple). The model overcomes the main limitation of the commonly used Ball-Berry model (Ball et al. 1987) by accounting for stomatal behavior under soil drying conditions. We combined the Ball-Berry model with an integrated expression of abscisic acid (ABA)-based stomatal response to ABA concentration ([ABA]) in bulk leaf tissue (gfac), which coupled physiological changes at the leaf level with those in the root. The factor gfac = exp(-beta[ABA]L) incorporated the stomatal response to [ABA] into the Ball-Berry model by down regulating stomatal conductance (gs) in response to physiological changes in the root. The down regulation of gs is pertinent under conditions where soil drying may modify the delivery of chemical signals to leaf stomata. Model testing indicated that the multiplicative model was capable of predicting gs in red maple under wide ranges of soil and atmospheric conditions. Concordance correlation coefficients were high (between 0.59 and 0.94) for the tested ecotypes under three environmental conditions (atmospheric, rhizospheric and minimal stress). The study supported the use of gfac as a gas exchange function that controls water stress effects on gs and aids in the prediction of gs responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号