首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

2.
Root and shoot characteristics related to drought resistance were compared among cultivated peach (Prunus persica (L.) Batsch.), P. andersonii (Nevada Desert almond), P. besseyi (western sand cherry), P. maritima (beach plum), P. subcordata (Sierra or Pacific plum), and P. tomentosa (Nanking cherry). In all species, shoot characteristics were more closely associated with drought adaptation than root characteristics. The most xeric species, P. andersonii, had the lowest specific leaf area, smallest leaves, highest stomatal conductance (before stress), highest rate of carbon assimilation (A), high root length/leaf area and root weight/leaf area ratios, and the highest leaf nitrogen content on an area basis. Root hydraulic conductivity was similar for all species, indicating a lack of importance of this parameter for drought resistance. During a 5-7 day drought, water use efficiency (WUE) increased as shoot water potentials (Psi) declined to -3.0 to -4.0 MPa for the xeric P. andersonii and P. subcordata, whereas after an initial increase, WUE decreased with declining Psi in the -1.5 to -3.0 MPa range for the more mesic P. maritima, P. persica and P. tomentosa as a result of non-stomatal limitations to A. Carbon assimilation rate decreased linearly with Psi during drought in all species, but the Psi at which A reached zero was not associated with drought adaptation. We conclude that the variation in leaf characteristics among Prunus species could be exploited to improve the drought resistance of commercial cultivars.  相似文献   

3.
Patterns of shoot development and the production of different types of shoots were compared with scion leaf area index (LAI) to identify how eight clonal Actinidia rootstocks influence scion development. Rootstocks selected from seven Actinidia species (A. chrysantha Merri., A. deliciosa (A. Chev.) C. F. Liang et A.R. Ferguson, A. eriantha Benth., A. hemsleyana Dunn, A. kolomikta (Maxim. et Rupr.) Maxim., A. kolomikta C.F. Liang and A. polygama (Sieb. et Zucc.) Maxim.) were grafted with the scion Actinidia chinensis Planch. var. chinensis 'Hort16A' (yellow kiwifruit). Based on an earlier architectural analysis of A. chinensis, axillary shoot types produced by the scion were classified as short, medium or long. Short and medium shoots produced a restricted number of preformed leaves before the shoot apex ceased growth and aborted, resulting in a 'terminated' shoot. The apex of long shoots continued growth and produced more nodes throughout the growing seasons. Mid-season LAI of the scion was related to the proportion of shoots that ceased growth early in the season. Scions on low-vigor rootstocks had 50% or less leaf area than scions on the most vigorous rootstocks and had a higher proportion of short and medium shoots. On low-vigor rootstocks, a higher proportion of short shoots was retained during pruning to form the parent structure of the following year. Short parent shoots produced a higher proportion of short daughter shoots than long parent shoots, thus reinforcing the effect of the low-vigor rootstocks. However, overall effects of rootstock on shoot development were consistent regardless of parent shoot type and nodal position within the parent shoot. Slower-growing shoots were more likely to terminate and scions on low-vigor rootstocks produced a higher proportion of slow-growing shoots. Shoot termination also occurred earlier on low-vigor rootstocks. The slower growth of terminating shoots was detectable from about 20 days after bud burst. Removal of a proportion of shoots at the end of bud burst increased the growth rate and decreased the frequency of termination of the remaining shoots on all rootstocks, indicating that the fate of a shoot was linked to competitive interactions among shoots during initial growth immediately after bud burst. Rootstock influenced the process of shoot termination independently of its effect on final leaf size. Scions on low-vigor rootstocks had a higher proportion of short shoots and short shoots on all rootstocks had smaller final leaf sizes at equivalent nodes than medium or long shoots. Only later in the development of long shoots was final leaf size directly related to rootstock, with smaller leaves on low-vigor rootstocks. Thus, the most important effect of these Actinidia rootstocks on scion development occurred during the initial period of shoot growth immediately after bud burst.  相似文献   

4.
We studied the relief of water stress associated with fruit thinning in pear (Pyrus communis L.) trees during drought to determine what mechanisms, other than stomatal adjustment, were involved. Combinations of control irrigation (equal to crop water use less effective rainfall) and deficit irrigation (equal to 20% of control irrigation), fruit load (unthinned and thinned to 40 fruits per tree) and root pruning (pruned and unpruned) treatments were applied to pear (cv. 'Conference') trees during Stage II of fruit development. Daily patterns of midday stem water potential (Psi(stem)) and leaf conductance to water vapor (g(l)) of deficit-irrigated trees differed after fruit thinning. In response to fruit thinning, gl progressively declined with water stress until 30 days after fruit thinning and then leveled off, whereas the effects of decreased fruit load on Psi(stem) peaked 30-40 days after fruit thinning and then tended to decline. Soil water depletion was significantly correlated with fruit load during drought. Our results indicate that stomatal adjustment and the resulting soil water conservation were the factors determining the Psi(stem) response to fruit thinning. However, these factors could not explain differences in daily patterns between g(l) and Psi(stem) after fruit thinning. In all cases, effects of root pruning treatments on Psi(stem) in deficit-irrigated trees were transitory (Psi(stem) recovered from root pruning in less than 30 days), but the recovery of Psi(stem) after root pruning was faster in trees with low fruit loads. This behavior is compatible with the concept that the water balance (reflected by Psi(stem) values) was better in trees with low fruit loads compared with unthinned trees, perhaps because more carbon was available for root growth. Thus, a root growth component is hypothesized as a mechanism to explain the bimodal Psi(stem) response to fruit thinning during drought.  相似文献   

5.
We studied relationships between diurnal patterns of stem water potential (PsiSTEM) and stem extension growth of the same scion cultivar growing on three rootstocks with differing size-controlling potentials. The peach trees (Prunus persica (L.) Batsch) used in this field experiment consisted of an early-maturing freestone cultivar, 'Flavorcrest,' grafted onto three different rootstocks: Nemaguard (a vigorous seed-propagated control, P. persica x P. davidiana hybrid), Hiawatha (an intermediate vigor rootstock, derived from an open pollinated seedling of a P. besseyi x P. salicina hybrid) and K-146-43 (a semi-dwarfing rootstock, P. salicina x P. persica hybrid). Diurnal patterns of PsiSTEM and stem extension growth were measured on six dates (March 29, April 12, April 26, May 10, May 24 and June 18) during the primary period of peach shoot extension growth. Rootstocks clearly affected diurnal patterns of PsiSTEM and stem extension growth. Trees on K-146-43 had the lowest midday PsiSTEM and stem extension growth. Differences among rootstocks in the amount of diurnal oscillation in PsiSTEM explained stem extension rate differences induced by the three rootstocks. The sensitivity of shoot extension growth to tree water relations tended to decrease as the season progressed and was not apparent by mid-June. The results of the study indicate that water relations may play an important role in the dwarfing mechanism induced by size-controlling peach rootstocks.  相似文献   

6.
Ladjal M  Huc R  Ducrey M 《Tree physiology》2005,25(9):1109-1117
We studied hydraulic traits of young plants of the Mediterranean cedar species Cedrus atlantica (Endl.) G. Manetti ex Carrière (Luberon, France), C. brevifolia (Hook. f.) Henry (Cyprus), C. libani A. Rich (Hadeth El Jebbe, Lebanon) and C. libani (Armut Alani, Turkey). With an optimum water supply, no major differences were observed among species or provenances in either stem hydraulic conductivity (Ks) or leaf specific conductivity (Kl) measured on the main shoot. A moderate soil drought applied for 10 weeks induced marked acclimation through a reduction in Ks, particularly in the Lebanese provenance of C. libani, and a decrease in tracheid lumen size in all species. Cedrus atlantica, which had the smallest tracheids, was the species most vulnerable to embolism: a 50% loss in hydraulic conductivity (PsiPLC50) occurred at a water potential of -4.4 MPa in the well-watered treatment, and at -6.0 MPa in the moderate drought treatment. In the other species, PsiPLC50 was unaffected by moderate soil drought, and only declined sharply at water potentials between -6.4 and -7.5 MPa in both irrigation treatments. During severe drought, Ks of twigs and stomatal conductance (g(s)) were measured simultaneously as leaf water potential declined. For all species, lower vulnerability to embolism based on loss of Ks was recorded on current-year twigs. The threshold for stomatal closure (10% of maximum g(s)) was reached at a predawn water potential (Psi(pd)) of -2.5 MPa in C. atlantica (Luberon) and at -3.1 MPa in C. libani (Lebanon), whereas the other provenance and species had intermediate Psi(pd) values. Cedrus brevifolia, with a Psi(pd) (-3.0 MPa) close to that of C. libani (Lebanon), had the highest stomatal conductance of the study species. The importance of a margin of safety between water potential causing stomatal closure and that causing xylem embolism induction is discussed.  相似文献   

7.
Solari LI  Johnson S  DeJong TM 《Tree physiology》2006,26(10):1343-1350
We investigated hydraulic conductance characteristics and associated dry matter production and distribution of peach trees grafted on different rootstocks growing in the field. A single scion genotype was grown on a low ('K146-43'), an intermediate ('Hiawatha') and a high ('Nemaguard') vigor rootstock. 'K146-43' and 'Hiawatha' rootstocks had 27 and 52% lower mean leaf-specific hydraulic conductances, respectively, than the more vigorous 'Nemaguard' rootstock. Tree growth rates and patterns of biomass distribution varied significantly among rootstocks. Mean dry mass relative growth rates of trees on 'K146-43' and 'Nemaguard' were 66 and 75%, respectively, of the rates of trees on 'Nemaguard', and the scion to rootstock dry mass ratios of trees on 'K146-43' and 'Hiawatha' were 63 and 82%, respectively, of the ratio of trees on 'Nemaguard'. Thus, differences in dry matter distribution between the scion and rootstock, which may be a compensatory response to the differences in leaf specific hydraulic conductance among rootstocks, appeared to be related to differences in growth rates. Correspondingly, there was a positive linear relationship between the scion to rootstock dry mass ratio and the rootstock to scion hydraulic conductance ratio when conductance was normalized for dry mass. This study confirms that rootstock effects on tree water relations and vegetative growth potential result, at least in part, from differences in tree hydraulic conductance associated with specific peach rootstocks.  相似文献   

8.
Components of dehydration tolerance, including osmotic potential at full turgor (Psi(pio)) and osmotic adjustment (lowering of Psi(pio)), of several deciduous species were investigated in a mature, upland oak forest in eastern Tennessee. Beginning July 1993, the trees were subjected to one of three throughfall precipitation treatments: ambient, ambient minus 33% (dry treatment), and ambient plus 33% (wet treatment). During the dry 1995 growing season, leaf water potentials of all species declined to between -2.5 and -3.1 MPa in the dry treatment. There was considerable variation in Psi(pio) among species (-1.0 to -2.0 MPa). Based on Psi(pio) values, American beech (Fagus grandifolia Ehrh.), dogwood (Cornus florida L.), and sugar maple (Acer saccharum Marsh.) were least dehydration tolerant, red maple (A. rubrum L.) was intermediate in tolerance, and white oak (Quercus alba L.) and chestnut oak (Quercus prinus L.) were most tolerant. During severe drought, overstory chestnut oak and understory dogwood, red maple and chestnut oak displayed osmotic adjustment (-0.12 to -0.20 MPa) in the dry treatment relative to the wet treatment. (No osmotic adjustment was evident in understory red maple and chestnut oak during the previous wet year.) Osmotic potential at full turgor was generally correlated with leaf water potential, with both declining over the growing season, especially in species that displayed osmotic adjustment. However, osmotic adjustment was not restricted to species considered dehydration tolerant; for example, dogwood typically maintained high Psi(pio) and displayed osmotic adjustment to drought, but had the highest mortality rates of the species studied. Understory saplings tended to have higher Psi(pio) than overstory trees when water availability was high, but Psi(pio) of understory trees declined to values observed for overstory trees during severe drought. We conclude that Psi(pio) varies among deciduous hardwood species and is dependent on canopy position and soil water potential in the rooting zone.  相似文献   

9.
Gas exchange, tissue water relations, and leaf/root dry weight ratios were compared among young, container-grown plants of five temperate-zone, deciduous tree species (Acer negundo L., Betula papyrifera Marsh, Malus baccata Borkh, Robinia pseudoacacia L., and Ulmus parvifolia Jacq.) under well-watered and water-stressed conditions. There was a small decrease (mean reduction of 0.22 MPa across species) in the water potential at which turgor was lost (Psi(tlp)) in response to water stress. The Psi(tlp) for water-stressed plants was -1.18, -1.34, -1.61, -1.70, and -2.12 MPa for B. papyrifera, A. negundo, U. parvifolia, R. pseudoacacia, and M. baccata, respectively. Variation in Psi(tlp) resulted primarily from differences in tissue osmotic potential and not tissue elasticity. Rates of net photosynthesis declined in response to water stress. However, despite differences in Psi(tlp), there were no differences in net photosynthesis among water-stressed plants under the conditions of water stress imposed. In A. negundo and M. baccata, water use efficiency (net photosynthesis/transpiration) increased significantly in response to water stress. Comparisons among water-stressed plants showed that water use efficiency for M. baccata was greater than for B. papyrifera or U. parvifolia. There were no significant differences in water use efficiency among B. papyrifera, U. parvifolia, A. negundo, and R. pseudoacacia. Under water-stressed conditions, leaf/root dry weight ratios (an index of transpiration to absorptive capacity) ranged from 0.77 in R. pseudoacacia to 1.05 in B. papyrifera.  相似文献   

10.
Field measurements were made of leaf photosynthesis (A), stomatal conductance (g) and leaf water relations for sugar maple (Acer saccharum Marsh.) seedlings growing in a forest understory, small gap or large clearing habitat in southwestern Wisconsin, USA. Predawn water status, leaf gas exchange and plasticity in field and laboratory water relations characteristics were compared among contrasting light environments in a wet year (1987) and a dry year (1988) to evaluate possible interactions between light and water availability in these habitats. Leaf water potentials (Psi(leaf)) at predawn and midday were lower for clearing than gap or understory seedlings. Acclimation of tissue osmotic potentials to light environment was observed among habitats but did not occur within any of the habitats in response to prolonged drought. During a summer drought in 1988, decreases in daily maximum g (g(max)) and maximum A (A(max)) in clearing seedlings were correlated with predawn Psi(leaf), which reached a seasonal minimum of -2.0 MPa. Under well-watered conditions, diurnal fluctuations in Psi(leaf) of up to 2.0 MPa in clearing seedlings occurred along with large midday depressions of A and g. In a wet year, strong stomatal responses to leaf-to-air vapor pressure difference (VPD) in sunny habitats were observed over nine diurnal courses of gas exchange measurements on seedlings in a gap and a clearing. Increasing stomatal limitations to photosynthesis appeared to be responsible for the reduction in A at high VPD for clearing seedlings. In understory seedlings, however, low water-use efficiency and development of leaf water deficits in sunflecks was related to reduced stomatal limitations to photosynthesis relative to seedlings in sunny habitats. Predawn Psi(leaf) and VPD appear to be important factors limiting carbon assimilation in sugar maple seedlings in light-saturating irradiances, primarily through stomatal closure. The overall results are consistent with the idea that sugar maple seedlings exhibit "conservative" water use patterns and have low drought tolerance. Leaf water relations and patterns of water use should be considered in studies of acclimation and species photosynthetic performance in contrasting light environments.  相似文献   

11.
Soil microorganisms, such as plant growth-promoting rhizobacteria (PGPR), play crucial roles in plant growth, but their influence on plant water relations remains poorly explored. We studied the effects of native soil microorganisms and inoculation with the PGPR strain Aur6 of Pseudomonas fluorescens on water stress responses of seedlings of the drought-avoiding Pinus halepensis Mill. and the drought-tolerant Quercus coccifera L. Plant growth, nutrient concentrations and physiology (maximum photochemical efficiency of photosystem II (PSII; F(v)/F(m)), electron transport rate (ETR), stomatal conductance (g(s)) and predawn shoot water potential (Psi(PD))) were measured in well-watered plants, and in plants under moderate or severe water stress. Inoculation with PGPR and native soil microorganisms improved tree growth, and their interactions had either additive or synergistic effects. Both F(v)/F(m) and ETR were significantly affected by PGPR and native soil microorganisms. Marked differences in g(s) and Psi(PD) were found between species, confirming that they differ in mechanisms of response to water stress. A complex tree species x treatment interactive response to drought was observed. In P. halepensis, F(v)/F(m) and ETR were enhanced by PGPR and native soil microorganisms under well-watered conditions, but the effects of PGPR on Psi(PD) and g(s) were negative during a period of water stress. In Q. coccifera, F(v)/F(m) and ETR were unaffected or even reduced by inoculation under well-watered conditions, whereas Psi(PD) and g(s) were increased by PGPR during a period of water stress. Our results indicate that microbial associates of roots can significantly influence the response of tree seedlings to drought, but the magnitude and sign of this effect seems to depend on the water-use strategy of the species.  相似文献   

12.
Responses of net photosynthesis (A), leaf conductance to water vapor (g(wv)) and instantaneous water use efficiency (WUE) to decreasing leaf and soil water potentials (Psi(l), Psi(s)) were studied in three-month-old white oak (Quercus alba L.), post oak (Q. stellata Wangenh.), sugar maple (Acer saccharum Marsh.), and black walnut (Juglans nigra L.) seedlings. Quercus seedlings had the highest A and g(wv) when plants were well watered. As the soil was allowed to dry, both A and g(wv) decreased; however, trace amounts of A were observed at a Psi(l) as low as -2.9 MPa in Q. stellata and -2.6 MPa in Q. alba and A. saccharum. Photosynthesis was not measurable at Psi(l) lower than -2.2 MPa in J. nigra and water stress-induced leaflet senescence was observed in this species. Within each species, g(wv) showed a similar relationship to soil and leaf Psi, but the response to Psi(l) was shifted to more negative values by 1.2 to 1.6 MPa. As Psi(s) declined below -1 MPa, the difference between soil and leaf Psi diminished because of the suppression of transpiration. There was no indication that Psi(s) had a more direct influence on g(wv) than did Psi(l). Water use efficiency showed an initial increase as the soil dried, followed by a decline under severe water stress. Water use efficiency was highest in J. nigra, intermediate in Quercus species and lowest in A. saccharum. There was an evident relationship between gas exchange characteristics and natural distribution in these species, with the more xeric species showing higher A and g(wv) under both well-watered and water-stressed conditions. There was no trend toward increased efficiency of water use in the more xeric species.  相似文献   

13.
We studied variations in water relations and drought response in five Himalayan tree species (Schima wallichii (DC.) Korth. (chilaune) and Castanopsis indica (Roxb.) Miq. (dhale katus) at an elevation of 1400 m, Quercus lanata Smith (banjh) and Rhododendron arboreum Smith (lali gurans) at 2020 m, and Quercus semecarpifolia Smith (khasru) at 2130 m) at Phulchowki Hill, Kathmandu, Nepal. Soil water potential at 15 (Psi(s15)) and 30 cm (Psi(s30)) depths, tree water potential at predawn (Psi(pd)) and midday (Psi(md)), and leaf conductance during the morning (g(wAM)) and afternoon (g(wPM)) were observed from December 1998 to April 2001, except during the monsoon months. There was significant variation among sites, species and months in Psi(pd), Psi(md), g(wAM) and g(wPM), and among months for all species for Psi(s15). Mean Psi(pd) and Psi(md) were lowest in Q. semecarpifolia (-0.40 and -1.18 MPa, respectively) and highest in S. wallichii (-0.20 and -0.63 MPa, respectively). The minimum Psi value for all species (-0.70 to -1.79 MPa) was observed in March 1999, after 4 months of unusually low rainfall. Some patterns of Psi(pd) were related to phenology and leaf damage. During leafing, Psi(pd) often increased. Mean g(wAM) and g(wPM) were highest in Q. semecarpifolia (172 and 190 mmol m(-2) s(-1), respectively) and lowest in C. indica (78 and 74 mmol m(-2) s(-1), respectively). Soil water potential (Psi) at 15 cm depth correlated with plant Psi in all species, but rarely with g(wAM) and not with g(wPM). Plant Psi declined with increasing elevation, whereas g(w) increased. As Psi(pd) declined, so did maximal g(w), but overall, g(w) was correlated with Psi(pd) only for R. arboreum. Schima wallichii maintained high Psi, with low stomatal conductance, as did Castanopsis indica, except that C. indica had low Psi during dry months. Rhododendron arboreum maintained high Psi(pd) and g(w), despite low soil Psi. Quercus lanata had low g(w) and low Psi(pd) in some months, but showed no correlation between tree Psi and g(w). Quercus semecarpifolia, which grows at the highest elevation, had low soil and plant Psi and high g(w).  相似文献   

14.
We investigated the hydraulic architecture of young olive trees either self-rooted or grafted on rootstocks with contrasting size-controlling potential. Clones of Olea europea L. (Olive) cv 'Leccino' inducing vigorous scion growth (Leccino 'Minerva', LM) or scion dwarfing (Leccino 'Dwarf', LD) were studied in different scion/rootstock combinations (LD, LM, LD/LD, LM/LM, LD/LM and LM/LD). Shoots growing on LD root systems developed about 50% less leaf surface area than shoots growing on LM root systems. Root systems accounted for 60-70% of plant hydraulic resistance (R), whereas hydraulic resistance of the graft union was negligible. Hydraulic conductance (K = 1/R) of LD root systems was up to 2.5 times less than that of LM root systems. Total leaf surface area (A(L)) was closely and positively related to root hydraulic conductance so that whole-plant hydraulic conductance scaled by A(L) did not differ between experimental groups. Accordingly, maximum transpiration rate and minimum leaf water potential did not differ significantly among experimental groups. We conclude that reduced root hydraulic conductance may explain rootstock-induced dwarfing in olive.  相似文献   

15.
To clarify the physiological basis of productivity differences among rooted cuttings and seedlings of eucalypt species, relationships between morphology and water relations were examined in 4-month-old seedlings of Eucalyptus grandis W. Hill ex Maiden, E. urophylla S.T. Blake and E. cloeziana F. Muell. and in 4-month-old rooted cuttings of three E. grandis cultivars. Four-month-old seedlings had greater dry weights, lower leaf area/root dry weight (LA/RDW) ratios and lower shoot/root dry weight (S/R) ratios than 4-month-old rooted cuttings. For all cultivars of E. grandis, tall rooted cuttings, as defined by height at age 4 weeks, had greater dry weights by age 4 months and lower LA/RDW and S/R ratios than short rooted cuttings. There were differences in height growth, dry matter productivity and relative shoot and root development among cuttings of different E. grandis cultivars, but these differences were not as great as the differences between short and tall grades of the same cultivar and between seedlings and cuttings. Consistent with the differences in LA/RDW and S/R ratios, seedlings had higher daytime water potentials (Psi(x)) than cuttings, and tall cuttings had higher daytime values of Psi(x) than short cuttings. Differences in Psi(x) were also related to stomatal conductance (g(wv)), which was up to 300% greater in short cuttings than in tall cuttings. Among seedlings, those of E. cloeziana, which had the smallest dry weight at age 4 months, had the highest g(wv), whereas those of E. grandis, which had the greatest dry weight at age 4 months, had the lowest g(wv). Unlike seedlings and the tall cuttings, short cuttings lost turgor when subjected to drought. The differences observed in susceptibility to water stress may account in part for the associated differences in dry matter production. Xylem pressure potential and relative water deficit at zero turgor did not differ significantly among the types of plants studied, which suggests that differences in growth rates were not the result of differences in dehydration tolerance.  相似文献   

16.
We investigated the effects of altered precipitation on leaf osmotic potential at full turgor (Psi(pio)) of several species in an upland oak forest during the 1994 growing season as part of a Throughfall Displacement Experiment at the Walker Branch Watershed near Oak Ridge, Tennessee. The main species sampled included overstory chestnut oak (Quercus prinus L.), white oak (Q. alba L.), red maple (Acer rubrum L.); intermediates sugar maple (A. saccharum L.) and blackgum (Nyssa sylvatica Marsh.); and understory dogwood (Cornus florida L.) and red maple. The precipitation treatments were: ambient precipitation; ambient minus 33% of throughfall (dry); and ambient plus 33% of throughfall (wet). Except in late September, midday leaf water potentials (Psi(l)) were generally high in all species in all treatments, ranging from -0.31 to -1.34 MPa for C. florida, -0.58 to -1.51 MPa for A. rubrum, and -0.78 to -1.86 MPa for Q. prinus. Both treatment and species differences in Psi(pio) were evident, with oak species generally exhibiting lower Psi(pio) than A. saccharum, A. rubrum, C. florida, and N. sylvatica. The Psi(pio) of C. florida saplings declined in the dry treatment, and Q. prinus, Q. alba, and A. saccharum all exhibited a declining trend of Psi(pio) in the dry treatment, although Psi(pio) of Q. prinus leaves increased in late August, corresponding to a recovery in soil water potential. Cornus florida exhibited osmotic adjustment with the largest adjustment coinciding with the period of lowest soil water potential in June. The only other species to exhibit osmotic adjustment was Q. prinus, which also maintained a lower baseline Psi(pio) than the other species. We conclude that a 33% reduction of throughfall is sufficient both to alter the water relations of some species in the upland oak forest and to enable the identification of those species capable of osmotic adjustment to a short-term drought during a wet year.  相似文献   

17.
Water relations, leaf gas exchange, chlorophyll a fluorescence, light canopy transmittance, leaf photosynthetic pigments and metabolites and fruit quality indices of cherry cultivars 'Burlat', 'Summit' and 'Van' growing on five rootstocks with differing size-controlling potentials that decrease in the order: Prunus avium L. > CAB 11E > Maxma 14 > Gisela 5 > Edabriz, were studied during 2002 and 2003. Rootstock genotype affected all physiological parameters. Cherry cultivars grafted on invigorating rootstocks had higher values of midday stem water potential (Psi(MD)), net CO(2) assimilation rate (A), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)) and maximum photochemical efficiency of photosystem II (PSII) (F(v)/F(m)) than cultivars grafted on dwarfing rootstocks. The Psi(MD) was positively correlated with A, g(s) and C(i). Moreover, A was positively correlated with g(s), and the slopes of the linear regression increased from invigorating to dwarfing rootstocks, indicating a stronger regulation of photosynthesis by stomatal aperture in trees on dwarfing Edabriz and Gisela 5. The effect of rootstock genotype was also statistically significant for leaf photosynthetic pigments, whereas metabolite concentrations and fruit physicochemical characteristics were more dependent on cultivar genotype. Among cultivars, 'Burlat' leaves had the lowest concentrations of photosynthetic pigments, but were richest in total soluble sugars, starch and total phenols. Compared with the other cultivars, 'Summit' had heavier fruits, independent of the rootstock. 'Burlat' cherries were less firm and had lower concentrations of soluble sugars and a lower titratable acidity than 'Van' cherries. Nevertheless, 'Van' cherries had lower lightness, chroma and hue angle, representing redder and darker cherries, compared with 'Summit' fruits. In general, Psi(MD) was positively correlated with fruit mass and A was negatively correlated with lightness and chroma. These results demonstrate that: (1) water relations and photosynthesis of sweet cherry tree are mainly influenced by the rootstock genotype; (2) different physicochemical characteristics observed in cherries of the three cultivars suggest that regulation of fruit quality was mainly dependent on the cultivar genotype, although the different size-controlling rootstocks also had a significant effect.  相似文献   

18.
Pressure-volume curves and shoot water potentials were determined for black spruce (Picea mariana (Mill.) BSP) trees from four full-sib families at the Petawawa Research Forest, Ontario, Canada. Trees were sampled from a dry site in 1992 and from the dry site and a wet site in 1993. Modulus of elasticity (epsilon), osmotic potential at turgor loss point (Psi(tlp)) and relative water at turgor loss point (RWC(tlp)) all decreased during the growing season. Osmotic potential at saturation (Psi(sat)) and turgor displayed no general temporal trend. Across a range of environmental conditions, Female 59 progeny had equal or lower Psi(sat), and higher or similar epsilon, mean turgor pressure (P(x)) and predawn turgor pressure (P(pd)) compared with Female 63 progeny. Osmotic potential at saturation decreased as water stress increased from mild to moderate and increased as water stress increased from moderate to severe. Stable genetic differences in Psi(sat) were maintained by the same rate of osmotic adjustment from low to moderate water stress. Modulus of elasticity and RWC(tlp) decreased with decreasing water availability, whereas Psi(tlp) showed no response. The combined effects of Psi(sat) and epsilon resulted in no change in P(pd) as water stress increased from low to moderate values, but turgor declined sharply as water stress increased from moderate to high values. We conclude that drought tolerance traits strongly influence the growth of these black spruce families across sites of varying water availability.  相似文献   

19.
Seasonal ecophysiology, leaf structure and nitrogen were measured in saplings of early (Populus grandidentata Michx. and Prunus serotina J.F. Ehrh.), middle (Fraxinus americana L. and Carya tomentosa Nutt.) and late (Acer rubrum L. and Cornus florida L.) successional tree species during severe drought on adjacent open and understory sites in central Pennsylvania, USA. Area-based net photosynthesis (A) and leaf conductance to water vapor diffusion (g(wv)) varied by site and species and were highest in open growing plants and early successional species at both the open and understory sites. In response to the period of maximum drought, both sunfleck and sun leaves of the early successional species exhibited smaller decreases in A than leaves of the other species. Shaded understory leaves of all species were more susceptible to drought than sun leaves and had negative midday A values during the middle and later growing season. Shaded understory leaves also displayed a reduced photosynthetic light response during the peak drought period. Sun leaves were thicker and had a greater mass per area (LMA) and nitrogen (N) content than shaded leaves, and early and middle successional species had higher N contents and concentrations than late successional species. In both sunfleck and sun leaves, seasonal A was positively related to predawn leaf Psi, g(wv), LMA and N, and was negatively related to vapor pressure deficit, midday leaf Psi and internal CO(2). Although a significant amount of plasticity occurred in all species for most gas exchange and leaf structural parameters, middle successional species exhibited the largest degree of phenotypic plasticity between open and understory plants.  相似文献   

20.
The annual development of Navelina (Citrus sinensis (L.) Osbeck) trees budded on three hybrid citrus rootstocks was studied. Two rootstocks, named #23 and #24, were obtained from the cross of Troyer citrange (C. sinensis x Poncirus trifoliata (L.) Raf.) x Cleopatra mandarin (C. reshni Hort. ex Tan.). The third rootstock, named F&A 418, came from a cross of Troyer citrange x common mandarin (C. deliciosa Ten.). Rootstocks #23 and F&A 418 are dwarfing rootstocks and reduce the size of the scion by about 75%. Rootstock #24 yields a standard size scion. Major growth differences that influenced tree size were apparent during the first summer after grafting and appeared to be related to fruit productivity, because defruiting the dwarfed scions caused a significant increase in vegetative shoot development, including summer sprouting. The reduced growth of the dwarfed scions was not restored by hormone application, indicating that a hormonal deficiency is unlikely to be the primary reason for scion dwarfing, although differences in gibberellin concentrations were found in actively growing shoots. Leaf photosynthesis was similar in scions on all three rootstocks, but the carbohydrate accumulation in fruits and fibrous roots during the summer sprouting period was significantly greater in the dwarfed trees than in the standard trees. Our results suggest that the dwarfing mechanism induced by the F&A 418 and #23 rootstocks is mediated by enhanced reproductive development and fruit growth, resulting in reduced vegetative development in the summer. Thus, a change in the pattern of assimilate distribution appears to be one of the main components of the dwarfing mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号