首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boyd DS  Wicks TE  Curran PJ 《Tree physiology》2000,20(11):755-760
The leaf area index (LAI) of boreal forest can be estimated using reflected radiation recorded by satellite sensors. Measurements of visible and near infrared radiation are commonly used in the normalized difference vegetation index (NDVI) to estimate LAI. However, research, mainly in tropical forest, has demonstrated that LAI is related more closely to radiation of middle infrared wavelengths than of visible wavelengths. This paper derives a vegetation index, VI3, based on radiation from vegetation recorded at near and middle infrared wavelengths. For a boreal forest canopy, the relationship between VI3 and LAI was observed to be much stronger than that between NDVI and LAI. In addition, the LAI estimated using VI3 accounted for about 76% of the variation in field estimates of LAI, compared with about 46% when using the NDVI. We conclude that information provided by middle infrared radiation should be considered when estimating the leaf area index of boreal forest.  相似文献   

2.
This study was conducted to document the effects of canopy change on radiation and energy balances in a deciduous broad-leaved forest. Global solar radiation was highly variable with a maximum close to 28.7 MJ m−2 day−1 and a minimum of about 0.7 MJ m−2 day−1. The high daily variation of net radiation was the result of the frequency and duration of rainfall. The mean annual albedo in this study site was 0.126. Seasonal variation of albedo was characterized by steadily decreasing values with leaf-fall, but at the time when new leaves sprouted the trend did turn upwards. The mean annual radiation efficiency at this study site was 0.564, and the seasonal variation of the radiation efficiency was dependent upon the net long-wave radiation rather than albedo. This study also illustrated the seasonal variation of the proportion of the actual evaporation to the equilibrium evaporation as a means for estimating the latent heat flux from forest using the equilibrium evaporation model. Seasonal variation of the proportion of the actual evaporation to the equilibrium evaporation reflected the physiological and productive activities of trees. Latent heat flux dominated the energy balance and, in particular, reached about 96% of net radiation in July.  相似文献   

3.
Deciduous broad-leaved forests (DBF), Larix principis-rupprechtii (LF) and Pinus tabulaeformis plantations (PF) are three typical forest communities in the warm temperate zone of the Dongling Mountains. In this study, we used an indirect method, hemispheric photography, to measure and analyze the dynamics of leaf area index (LAI) and canopy openness of the three forest communities. The results show that the LAI values of DBF and LF increased gradually with plant growth and development. The highest LAI value appeared in August, while canopy openness changed inversely with LAI. The lowest value appeared in November. DBF maintained a higher LAI in August and had a more open canopy in November compared with LF. For PF, we observed little changes in the LAI and canopy openness which was attributed to the leaf retention of this evergreen species. However, a similar relation between LAI and canopy openness was found for the three forest communities: canopy openness varied inversely with LAI. The relation is exponential and significant. Therefore, canopy openness is a good indicator of LAI in forests. This result can be used to test the validity of the LAI based on remote sensing and to provide a reference for the study of the canopy heterogeneity and its effect. This also benefits modeling for fluxes of carbon, water and energy from the level of the stand to landscape. __________ Translated from Journal of Plant Ecology, 2007, 31(3): 431–436 [译自: 植物生态学报]  相似文献   

4.
Hemispherical photographs combined with litter collection were applied to determine seasonal dynamics of leaf area index (LAI) between the period of maximum leaf area and the leafless period from an old-growth temperate forest in the Xiaoxing’an Mountains, northeastern China. Our objective is to explore the change in the relationship between “true” LAI and effective LAI (calculated only from hemispherical photography) and to find the best LAI estimation models. Effective LAI in November is corrected for contribution of woody material and clumping at shoot and beyond shoot levels, to give minimum “true” LAI. The “true” LAI in each period is estimated as a sum of the minimum “true” LAI and litter collection LAI in each period. Power function regression calibration models were then carried out between “true” LAI and effective LAI in each period and the entire litter-fall period. Then, significance tests were applied to detect the differences among different models. The results showed that the average “true” LAI ranged from 2.74 ± 0.54 on November 1 to 6.64 ± 1.34 on July 1. For the entire season, average effective LAI was 53.16 % lower than the average “true” LAI. After significance tests, calibration models were classified into two types: (1) maximum LAI period and the period of maximum leaf fall; (2) the period during which leaves began falling and all deciduous leaves had fallen. Based on our experience, we believe that the classified models can produce reliable and accurate LA1 values for the needle and broad-leaved mixed forest stands under the non-destructive condition.  相似文献   

5.
Foliage growth, mass- and area-based leaf nitrogen concentrations (Nm and N a) and specific leaf area (SLA) were surveyed during a complete vegetation cycle for two co-occurring savanna tree species: Crossopteryx febrifuga (Afzel. ex G. Don) Benth. and Cussonia arborea A. Rich. The study was conducted in the natural reserve of Lamto, Ivory Coast, on isolated and clumped trees. Leaf flush occurred before the beginning of the rainy season. Maximum leaf area index (LAI), computed on a projected canopy basis for individual trees, was similar (mean of about 4) for both species. Seasonal courses of the ratio of actual to maximum LAI were similar for individuals of the same species, but differed between species. For C. febrifuga, clumped trees reached their maximum LAI before isolated trees. The LAI of C. arborea trees did not differ between clumped and isolated individuals, but maximum LAI was reached about 2 months later than for C. febrifuga. Leaf fall was associated with decreasing soil water content for C. arborea. For C. febrifuga, leaf fall started before the end of the rainy period and was independent of changes in soil water content. These features lead to a partial niche separation in time for light resource acquisition between the two species. Although Nm, N a and SLA decreased with time, SLA and N a decreased later in the vegetation cycle for C. arborea than for C. febrifuga. For both species, N a decreased and SLA increased with decreasing leaf irradiance within the canopy, although effects of light on leaf characteristics did not differ between isolated and clumped trees. Given relationships between N a and photosynthetic capacities previously reported for these species, our results show that C. arborea exhibits higher photosynthetic capacity than C. febrifuga during most of the vegetation cycle and at all irradiances.  相似文献   

6.
To elucidate the relationships between spatiotemporal changes in leaf nitrogen (N) content and canopy dynamics, changes in leaf N and distribution in the canopy of a 26-year-old deciduous oak (Quercus serrata Thunb. ex. Murray) stand were monitored throughout the developmental sequence from leaf expansion to senescence, by estimating the leaf mass and N concentrations of all the canopy layers. Seasonal changes were observed in leaf N concentration per unit leaf dry mass (N (m)), which peaked after bud burst, declined for two weeks shortly thereafter, and then remained constant for the rest of the growing season for each canopy layer. Leaf N concentration per unit leaf area (N (a)) was higher in the upper layer than in the lower layer throughout the growing season, and was closely correlated with relative irradiance (RI) in the summer when the air temperature was moderately high. The N concentrations of all leaf layers started to decrease in November, and reached their lowest values in late November, whereas LMA scarcely changed throughout the season. The lowest N concentrations did not differ significantly among the canopy layers. Seasonal changes in the relationship between N (a) and RI were detected, indicating that N (a) is optimized temporally as well as spatially. Nitrogen resorption efficiency was highest in the upper canopy layers where larger amounts of N were invested. Based on the estimates of leaf mass and leaf N concentrations of the canopy layers, total leaf N concentration of the whole canopy was estimated to be 84.1 kg ha(-1) in the summer, and 37.3 kg ha(-1) in late November. Therefore, 46.8 kg ha(-1) of leaf N in the canopy (about 56% of the total N) was resorbed just before leaf abscission.  相似文献   

7.
应用LAI-2000冠层分析仪,研究了苏南丘陵区主要林型的叶面积指数(LAI)季节动态。结果表明:4种林型的LAI随季节变化具有明显的规律性,充分反映了4种林型叶片的生长状态,LAI值由大到小依次为毛竹(3.45)>杉木(2.87)>麻栎(2.62)>马尾松(2.00);冠层空隙度总体变化趋势与LAI的总体变化趋势恰好相反,在8月份出现最小值,分别为杉木6.7%、毛竹2.8%、麻栎5.6%、马尾松15.1%;叶倾角的季节变化不大,均在一定范围内波动。对4种林型的冠层均匀性进行比较分析,结果发现,杉木林冠层均匀性最好,麻栎林冠层均匀性最差。对4种林型的叶面积指数与冠层空隙度进行回归分析,发现两者之间呈指数回归关系(R2>0.95),通式为:y=ae-bx。  相似文献   

8.
Seedlings of yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) were exposed continuously to one of three CO(2) concentrations in open-top chambers under field conditions and evaluated after 24 weeks with respect to carbon exchange rates (CER), chlorophyll (Chl) content, and diurnal carbohydrate status. Increasing the CO(2) concentration from ambient to +150 or +300 microl l(-1) stimulated CER of yellow-poplar and white oak seedlings by 60 and over 35%, respectively, compared to ambient-grown seedlings. The increases in CER were not associated with a significant change in stomatal conductance and occurred despite a reduction in the amounts of Chl and accessory pigments in the leaves of plants grown in CO(2)-enriched air. Total Chl contents of yellow-poplar and white oak seedlings grown at +300 microl l(-1) were reduced by 27 and over 55%, respectively, compared with ambient-grown seedlings. Yellow-poplar and white oak seedlings grown at +300 microl l(-1) contained 72 and 67% more morning starch, respectively, than did ambient-grown plants. In contrast, yellow-poplar and white oak seedlings grown at +300 microl l(-1) contained 17 and 27% less evening sucrose, respectively, than did plants grown at ambient CO(2) concentration. Diurnal starch accumulation and the subsequent depletion of sucrose contributed to a pronounced increase in the starch/sucrose ratio of plants grown in CO(2)-enriched air. All seedlings exhibited a substantial reduction in dark respiration as CO(2) concentration increased, but the significance of this increase to the carbohydrate status and carbon economy of plants grown in CO(2)-enriched air remains unclear.  相似文献   

9.
Kosugi Y  Matsuo N 《Tree physiology》2006,26(9):1173-1184
Seasonal fluctuations in leaf gas exchange parameters were investigated in three evergreen (Quercus glauca Thunb., Cinnamomum camphora Sieb. and Castanopsis cuspidata Schottky) and one deciduous (Quercus serrata Thunb.) co-occurring, dominant tree species in a temperate broad-leaved forest. Dark respiration rate (Rn), maximum carboxylation rate (Vcmax) and stomatal coefficient (m), the ratio of stomatal conductance to net assimilation rate after adjustment to the vapor pressure deficit and internal carbon dioxide (CO2) concentration, were derived inversely from instantaneous field gas exchange data (one-point method). The normalized values of Rn and Vcmax at the reference temperature of 25 degrees C (Rn25, Vcmax25) and their temperature dependencies (Delta Ha(Rn), Delta Ha(Vcmax)) were analyzed. Parameter Vcmax25 ranged from 24.0-40.3 micromol m(-2) s(-1) and Delta Ha(Vcmax) ranged from 29.1- 67.0 kJ mol(-1). Parameter Rn25 ranged from 0.6-1.4 micromol m(-2) s(-1) and Delta Ha(Rn) ranged from 47.4-95.4 kJ mol(-1). The stomatal coefficient ranged from 7.2-8.2. For the three evergreen trees, a single set of Vcmax25 and Rn25 parameters and temperature dependence curves produced satisfactory estimates of carbon uptake throughout the year, except during the period of simultaneous leaf fall and leaf expansion, which occurs in April and May. In the deciduous oak, declines in Vcmax25 were observed after summer, along with changes in Vcmax25 and Rn25 during the leaf expansion period. In all species, variation in m during periods of leaf expansion and drought should be considered in modeling studies. We conclude that the changes in normalized gas exchange parameters during periods of leaf expansion and drought need to be considered when modeling carbon uptake of evergreen broad-leaved species.  相似文献   

10.
Rapid urbanization and urban greening have caused great changes to urban forests in China. Understanding spatiotemporal patterns of urban forest leaf area index(LAI) under rapid urbanization and urban greening is important for urban forest planning and management. We evaluated the potential for estimating urban forest LAI spatiotemporally by using Landsat TM imagery. We collected three scenes of Landsat TM(thematic mapper)images acquired in 1997, 2004 and 2010 and conducted a field survey to collect urban forest LAI. Finally, spatiotemporal maps of the urban forest LAI were created using a NDVI-based urban forest LAI predictive model.Our results show that normalized differential vegetation index(NDVI) could be used as a predictor for urban forest LAI similar to natural forests. Both rapid urbanization and urban greening contribute to the changing process of urban forest LAI. The urban forest has changed considerably from 1997 to 2010. Urban vegetated pixels decreased gradually from 1997 to 2010 due to intensive urbanization.Leaf area for the study area was 216.4, 145.2 and173.7 km~2 in the years 1997, 2004 and 2010, respectively.Urban forest LAI decreased sharply from 1997 to 2004 and increased slightly from 2004 to 2010 because of numerous greening policies. The urban forest LAI class distributions were skewed toward low values in 1997 and 2004. Moreover, the LAI presented a decreasing trend from suburban to downtown areas. We demonstrate the usefulness of TM remote-sensing in understanding spatiotemporal changing patterns of urban forest LAI under rapid urbanization and urban greening.  相似文献   

11.
Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.  相似文献   

12.
Estimates of biomass and leaf area index (LAI) are important variables in ecological and climate models. However, very little is known about the biomass and LAI of the vegetation in the Scandinavian mountain area. In this study, extensive field data consisting of diameter at breast height for 13?000 trees and height for 550 trees were collected. Furthermore, biomass and leaf area (LA) measurements for 46 mountain birch trees [Betula pubescens ssp. czerepanovii (Orlowa) Hämet-Ahti] and biomass and LA measurements for shrubs (e.g. Salix spp., Betula nana) at 36 sample plots were carried out. Multiplicative linear models for trees were fitted to tree biomass and LA measurements using basal area at breast height, height, crown diameter and diameter at stump height as explanatory variables. Additive linear models were fitted to shrub biomass and LAI measurements using coverage of shrubs, topographic variables and soil type as explanatory variables. The functions were then used to predict the biomass and LAI for trees and shrubs for the entire test area, which covers an area of 84 km2 and is located at latitude 68° N. The mean total biomass estimates were 27?493 kg ha?1 for the forest and 7650 kg ha?1 for snow-protected heath and meadow vegetation. The LAIs were 2.06 and 0.52, respectively. For monitoring biomass and LAI in the Scandinavian mountain area, the functions could also be applied to data from traditional field-based inventories and the estimates might further be improved by combining the estimates from the test area with auxiliary information such as remote sensing images.  相似文献   

13.

? Key message

Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.

? Context

Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.

? Aims

The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.

? Methods

Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.

? Results

At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.

? Conclusion

The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.
  相似文献   

14.
In a deciduous forest, differences in leaf phenology between juvenile and adult trees could result in juvenile trees avoiding canopy shade for part of the growing season. By expanding leaves earlier or initiating senescence later than canopy trees, juvenile trees would have some period in high light and therefore greater potential carbon gain. We observed leaf phenology of 376 individuals of 13 canopy tree species weekly over 3 years in a deciduous forest in east central Illinois, USA. Our objectives were: (1) to quantify for each species the extent of differences in leaf phenology between juvenile and conspecific adult trees; and (2) to determine the extent of phenological differences between juvenile Aesculus glabra Willd. and Acer saccharum Marsh. trees in understory and gap microhabitats. All species displayed phenological differences between life stages. For 10 species, bud break was significantly earlier, by an average of 8 days, for subcanopy individuals than for canopy individuals. In 11 species, completion of leaf expansion was earlier, by an average of 6 days, for subcanopy individuals than for canopy individuals. In contrast, there were no significant differences between life stages for start of senescence in 10 species and completion of leaf drop in nine species. For eight species, leaf longevity was significantly greater for subcanopy individuals than for canopy individuals by an average of 7 days (range = 4-10 days). Leaf phenology of subcanopy individuals of both Aesculus glabra and Acer saccharum responded to gap conditions. Leaf longevity was 11 days less in the understory than in gaps for Aesculus glabra, but 14 days more in the understory than in gaps for Acer saccharum. Therefore, leaf phenology differed broadly both between life stages and within the juvenile life stage in this community. A vertical gradient in temperature sums is the proposed mechanism explaining the patterns. Temperature sums accumulated more rapidly in the sheltered understory than in an open elevated area, similar to the canopy. Early leaf expansion by juvenile trees may result in a period of disproportionately higher carbon gain, similar to gains made during summer months from use of sun flecks.  相似文献   

15.
We examined relationships between stem diameter, sapwood area, leaf area and transpiration in a 15-year-old mountain ash (Eucalyptus regnans F. Muell.) forest containing silver wattle (Acacia dealbata Link.) as a suppressed overstory species and mountain hickory (Acacia frigescens J.H. Willis) as an understory species. Stem diameter explained 93% of the variation in leaf area, 96% of the variation in sapwood area and 88% of the variation in mean daily spring transpiration in 19 mountain ash trees. In seven silver wattle trees, stem diameter explained 87% of the variation in sapwood area but was a poor predictor of the other variables. When transpiration measurements from individual trees were scaled up to a plot basis, using stem diameter values for 164 mountain ash trees and 124 silver wattle trees, mean daily spring transpiration rates of the two species were 2.3 and 0.6 mm day(-1), respectively. The leaf area index of the plot was estimated directly by destructive sampling, and indirectly with an LAI-2000 plant canopy analyzer and by hemispherical canopy photography. All three methods gave similar results.  相似文献   

16.
全球气候变化引起人们对森林碳固定作用的关注。碳存储速率依赖于生态系统流通量(光合作用和生态系统呼吸),量化为净生态系统二氧化碳交换。在没有密集采样点的情况下,我们需要采用估测森林净生态系统交换的方法准确地估计林分水平和更大尺度的碳固定量。本文通过祸合遥感估算的叶面积指数和生长过程拟合模型,估计了佛罗里达州内9 770公顷湿地松人工林一年里净生态系统交换总量。地面图神经网络模型和陆地卫星数据估计的森林叶面积指数平均值是1.06(数值范围0-3.93,包括森林边界)。输入神经网络叶面积指数值,湿地松拟合模型(SPM2)估计的森林净生态交换值在-5.52 Mg·hm-2·a-1到11.06Mg·hm-2·a-1之间,平均值是3.47 Mg·hm-2·a-1。年总的碳储量是33920t,约合3.5 t/hm2。估计的叶面积指数和森林净生态交换均对对施肥高度敏感。图3表1参30。  相似文献   

17.
Leaf area index (LAI) was estimated at 15 sites in the Swiss Long-Term Forest Ecosystem Research Programme (LWF) in 2004–2005 using two indirect techniques: the LAI-2000 plant canopy analyzer (Licor Inc.) and digital hemispherical photography, applying several exposure settings. Hemispherical photographs of the canopy were analysed using Hemisfer, a software package that offers several new features, which were tested here: (1) automatic thresholding taking the gamma value of the picture into account; (2) implementation of several equations to solve the gap-fraction inversion model from which LAI estimates are derived; (3) correction for ground slope effects, and (4) correction for clumped canopies. In seven broadleaved stands in our sample set, LAI was also estimated semi-directly from litterfall. The various equations used to solve the gap-fraction inversion model generated significantly different estimates for the LAI-2000 measurements. In contrast, the same equations applied in Hemisfer did not produce significantly different estimates. The best relationship between the LAI-2000 and the Hemisfer estimates was obtained when the hemispherical photographs were overexposed by one to two stops compared with the exposure setting derived from the reading of a spotmeter in a canopy gap. There was no clear general relationship between the litterfall and the LAI-2000 or the hemispherical photographs estimates. This was probably due to the heterogeneity of the canopy, or to biased litterfall collection at sites on steep slopes or sites subject to strong winds. This study introduces new arguments into the comparison of the advantages and drawbacks of the LAI-2000 and hemispherical photography in terms of applicability and accuracy.  相似文献   

18.
We compare uncertainty through sensitivity and uncertainty analyses of the modelling framework CO2FIX V.2. We apply the analyses to a Central European managed Norway spruce stand and a secondary tropical forest in Central America. Based on literature and experience we use three standard groups to express uncertainty in the input parameters: 5%, 10% and 20%. Sensitivity analyses show that parameters exhibiting highest influence on carbon sequestration are carbon content, wood density and current annual increment of stems. Three main conclusions arise from this investigation: (1) parameters that largely determine model output are stem parameters, (2) depending on initial state of the model, perturbation can lead to multiple equilibrium, and (3) the standard deviation of total carbon stock is double in the tropical secondary forest for the wood density, and current annual increment. The standard deviation caused by uncertainty in mortality rate is more than 10-fold in the tropical forest case than in the temperate managed forest. Even in a case with good access to data, the uncertainty remains very high, much higher than what can reasonably be achieved in carbon sequestration through changes in forest management.  相似文献   

19.
This paper is an introduction to a special section on inventory based methods to assess the European forest carbon balance. The five papers cover ground based as well as remote sensing based methods, and their combinations and novel modeling efforts for the whole of European forests and forest soils.  相似文献   

20.
Decreasing the forest ecosystem leaf-area index error(LAIe)helps accurately estimate the growth and light energy utilization of aboveground foliage.Analyzing light transmission in forest ecosystems can effectively determine LAIe.The LAI-2200 plant canopy analyzer(PCA)is used extensively for rapid field-effective LAI(LAIe)measurements and primarily to measure forest canopy LAIe values.However,sometimes this parameter must also be measured in forests with small clearings.In this study,we used the LAI-2200 PCA to obtain one A-value and four B-values each for the canopy,herbaceous layer,and forest ecosystem LAIe.Field measurements showed that the three LAIe types were obviously different.In certain quadrats,the average herbaceous layer(Dicranopteris dichotoma Bernh.)LAIe apparently exceeded that of the Pinus massoniana forest ecosystem.The sources of this error were measuring and recording A-value readings for small canopies and underestimating the ecosystem LAIe.We obtained similar coefficients of determination for both the pre-recomputation and post-recomputation of the canopy and forest ecosystem LAIe(R^2C 0.96 and R^2C 0.99,respectively);thus,the error was decreased.Measuring field LAIe with the LAI-2200 PCA and recomputation should compensate for LAIe underestimation in complex forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号