首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
山西焦化污染区土壤和农产品中PAHs风险特征初步研究   总被引:3,自引:1,他引:2  
为对区域土壤环境质量评价和农产品的安全生产提供数据支持和试验方法参考,分析了山西省焦化污染区孝义、汾阳、柳林等地农田土壤和农产品样品中16种优控多环芳烃(PAHs)含量,并探讨了PAHs的污染特征和潜在的健康风险。结果表明:农田表层土壤和农产品中总PAHs(∑16-PAHs)浓度水平范围分别为171.67~3 176.79μg·kg-1和59.53~1 054.99μg·kg-1,在国内分别处于较高和中等污染水平。土壤和农产品中均是2~4环PAHs含量高而5~6环PAHs含量低。PAHs在农产品中的富集趋势为叶菜类>根茎类>果实类。通过风险评价发现部分土壤和农产品超过相应的标准,存在一定的潜在风险。通过比值法结合采样点位置推断焦化厂产生的焦油和荒煤气是农田表层土壤中PAHs的重要来源,应当引起重视。  相似文献   

2.
江苏句容地区土壤中多环芳烃的分布特征及来源   总被引:1,自引:0,他引:1  
以江苏句容地区20个点位的土壤样品为试材,分析了该地区土壤中16种优控多环芳烃(PAHs)污染物的含量特征及污染水平。结果表明,该地区土壤中PAHs总量为5.15~375.19μg/kg,其中Flt含量最高,与西藏、北京、天津、汕头等地区相比,PAHs污染处于中等水平;土壤中PAHs以3环PAHs为主,主要单个污染物为Flt、Phe和Cry;秸秆焚烧、薪柴烹饪、燃煤取暖等人类活动是该地区多环芳烃主要来源因素,个别采样点因靠近交通干道,其多环芳烃主要来源于汽车尾气。  相似文献   

3.
采用气相色谱质谱(GC-MS)法测定了苏南地区13个农田表层土壤样品中的多环芳烃(PAHs)和酞酸酯(PAEs)污染物,分析比较了不同区域农田表层土壤,尤其是来自钢铁企业周边的表层土壤中PAHs和PAEs的污染特征及其来源。结果表明,苏南地区农田土壤中总PAHs和总PAEs的浓度分别在147~40300μg·kg-1和0.575~762μg·kg-1之间,其中钢铁厂周边的平均浓度分别为6130μg·kg-1和47.4μg·kg-1。土壤样品中苯并(a)芘的浓度与总PAHs的浓度显著相关,高分子量PAHs在钢铁厂周边表土中含量较高,钢铁冶炼焦化和烧结等工序是其污染来源。酞酸正丁酯(DBP)和酞酸乙基己基酯是苏南地区农田土壤中含量最高的两种PAEs类物质,钢铁厂周边有较高的DBP检出可能与炼钢、冷轧和炼铁等工序有关。本研究将为经济高速发展地区农田土壤环境质量评价、农产品安全生产及土壤污染防治对策的制定提供科学依据。  相似文献   

4.
通过对农田土壤多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)的分布特征、污染程度及成因解析,深入了解工业活动引发的土壤污染问题,实现工业园区周边农田土壤的污染预警和科学合理利用。在黄河三角洲石油开采区和西南铅锌冶炼区附近的农田分别采集89个和148个土壤样品,采用气相色谱-质谱仪(GC-MS)分析美国环境保护署(Environmental protection agency,EPA)优控的土壤中PAHs组成与含量,运用主成分分析(Principal component analysis,PCA)和正定矩阵因子法(Positive matrix factorization,PMF)模型比较两个区域农田土壤中PAHs的来源。结果表明,石油开采区农田土壤中16种PAHs总含量(以干质量计)平均值为149.8 μg·kg-1(含量范围31.5~1 399 μg·kg-1),铅锌冶炼区农田土壤PAHs总含量平均值为267.6 μg·kg-1(含量范围8.99~2 231 μg·kg-1),两个地区主要以4~6环PAHs为主。聚类分析、PCA和PMF 3种源解析方法对两个区域的PAHs来源进行比较,石油开采区农田土壤中PAHs主要来源及其贡献率分别为燃煤9.1%、生物质燃烧和石油源60.7%、化石燃烧24.1%以及柴油燃烧6.2%,铅锌冶炼区分别为生物质燃烧和石油源31.6%、汽油及重油的燃烧28.3%、煤燃烧40.1%。铅锌冶炼区周边农田土壤PAHs污染程度相对较高。  相似文献   

5.
采用高效液相色谱法(HPLC)测定了山西某焦化废弃地土壤US.EPA优先控制的16种多环芳烃(PAHs)总量,分析了PAHs的垂直分布特征,并对土壤污染风险进行了评价。结果表明,该焦化废弃地土壤表层(0~20cm)PAHs总量为86.7~1258.6μg·kg-1(干重),中层(20~60cm)AHs总量为ND~689.5μg·kg-1,下层(60~100cm)为ND~300.6μg·kg-1,与加拿大保护环境和人体健康的土壤质量指导值相比,多数点位土壤PAHs超标,且表现出随深度的增加含量减少的趋势,风险评估结果表明该焦化废弃地土壤PAHs风险较小。  相似文献   

6.
某氮肥厂场地土壤PAHs污染特征研究   总被引:3,自引:0,他引:3  
采用现场采样及室内测试方法对广州某氮肥厂原料车间和油库区土壤中16种优控多环芳烃(PAHs)的含量进行调查研究,分析了∑PAHs含量及其组成特征和垂直分布特征,并在此基础上进行了源解析.结果表明,分析样品中∑PAHs范围在10~7 795燃μ·kg-1,原料车间土壤中∑PAHs小于油库区土壤中的,菲、芘、荧蒽、并(b)荧蒽、苯并(a)芘为主要污染物;油库土壤0~40cm的样品中16种PAHs均有检出,∑PAHs和单体分布基本一致;原料车间土壤∑PAHs和单体浓度随着地面深度的增加而减少.通过对单组分比值(菲/蒽,荧蒽/芘)的分析可以看出油库区土壤中PAHs来源于石油和燃烧源,而原料车间污染源主要为燃烧源.  相似文献   

7.
浙江省农田土壤多环芳烃污染及风险评价   总被引:1,自引:1,他引:0  
为探究浙江省农田土壤中16种优控多环芳烃(Polycyclic aromatic hydrocarbons, PAHs)含量、来源及生态和健康风险,用网格布点法采集了62个农田土壤样品并进行实验分析。结果表明,∑PAHs浓度范围为34.04~1 990.38 ng·g~(-1),污染物以高环类PAHs为主,研究区域内所有土样苯并[a]芘(BaP)浓度均未超过我国新颁布的《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中的风险筛选值。采用比值法及主成分分析研究其环境来源,结果显示主要来自于交通污染、煤炭和薪柴燃烧。内梅罗综合污染指数法评价结果表明,研究区有87.10%的样点存在生态风险。毒性当量因子风险评价法分析结果显示,PAHs的毒性当量浓度范围为1.53~268.27 ng·g~(-1),7种致癌PAHs为污染主体,平均占比高达99.18%。暴露量估算结果显示,经口摄入是PAHs致癌风险最高的暴露途径。健康风险评价显示,土壤中PAHs暴露暂时不会对人群产生明显的非致癌风险,但儿童的综合致癌风险已超过可接受范围,需引起重视。  相似文献   

8.
土壤中多环芳烃的分布特征及其来源分析   总被引:2,自引:0,他引:2  
利用气相色谱法分析了南充市10个不同功能区表层土壤中美国环保署规定的16种优控多环芳烃(PAHs)的含量和组分特征,运用同分异构体比率揭示了其污染来源.研究表明,该区土壤中PAHs的含量在9.1~2 269.1μg·kg-1之间,而且工业区的残留量大于农业区和居民区的残留量.按PAHs的环数来分,在工业污染区PAHs的含量总的趋势是四环>二环>三环>五环>六环;农业和居民区二环>三环>五环>四环>六环.该污染状况与国内外相关研究比较,处于中等污染水平.煤、木材和化石的燃烧是该地区土壤中PAHs污染的主要来源,苯并(a)蒽和菲是主要的超标化合物.  相似文献   

9.
彭晓春  陈志良  董家华  任明忠  吴彦瑜  白中炎  杨兵 《安徽农业科学》2011,39(33):20441-20443,20468
选取甘肃省白银市为研究区域,采集23个具有代表性的不同功能区表层土壤样品,分析土壤样品中美国环保署规定的16种优控多环芳烃(PAHs)的含量和组分特征,并采用同分异构体比率研究其污染来源。研究表明,该区土壤中PAHs含量为64.96~3 043.86ng/g,远超出土壤内源性PAHs含量,有52.2%、13.0%和21.7%的土壤样品分别达到PAHs的轻度、中度、重度污染水平。多环芳烃浓度在不同类型土壤中的含量由高到低依次为河流下游底泥〉生活区〉工业生产区〉污灌区。白银市土壤样品中4环及4环以上高分子量的PAHs所占比例较大。源解析结果表明,该市土壤PAHs来源主要是木材、煤的燃烧和化石燃料的燃烧。  相似文献   

10.
东莞市蔬菜基地多环芳烃的污染特征研究   总被引:1,自引:0,他引:1  
利用气相色谱-质谱技术分析了东莞市典型蔬菜基地灌溉水、土壤和蔬菜中属于美国国家环保局优控污染物的16种多环芳烃(PAHs)化合物的污染特征。结果表明,灌溉水中仅检出少数PAHs化合物,且含量较低。土壤和蔬菜中均检出14种PAHs化合物,其中土壤中PAHs化合物总含量在0.048~1.799mg/kg之间,主要化合物为菲和芘,部分化合物超过美国土壤控制标准;蔬菜中ΣPAHs在0.174~3.261mg/kg(干重)之间,多数低于1.0mg/kg。大部分蔬菜中检出5种以上PAHs化合物,含量以低于0.50mg/kg为主,主要化合物为芘、菲、萘、蒽和荧蒽。致癌性化合物苯并(a)芘、苯并(b)荧蒽和苯并(k)荧蒽的检出率较低但含量高达1.0mg/kg左右。因此,东莞市蔬菜基地已受到PAHs不同程度的污染。  相似文献   

11.
对北京市郊农田土壤中多环芳烃(PAHs)的种类、含量进行研究,并对其来源和生态风险进行探讨,以期了解京郊农田土壤中PAHs的污染现状和潜在风险,为农业环境保护提供科学依据和理论支持。结果表明:16种PAHs全部检出的检出率为74.4%,PAHs总含量(∑PAHs)范围为7.19~1 811.99 ng·g-1,平均值为460.75 ng·g-1;土壤中PAHs的组成结构主要以2~4环为主,占总含量的78.2%,主要来源为石油和煤的高温燃烧。风险评价结果显示,京郊农田土壤已受到PAHs污染,并具有潜在生态风险。  相似文献   

12.
采集天津市西青区西部中北镇、杨柳青、张家窝、辛口镇等四镇不同功能区表层土壤,以ASE-GPC-SPE联合净化方法对土壤样品进行处理,并通过HPLC-UV-FLU串联检测方法进行测定.结果表明,研究区域土壤16种优控PAHs总量范围67.6~1 274.7 ng·g-1,平均含量为422.8 ng·g-1.四个镇中PAHs总量大小为中北镇>杨柳青>张家窝>辛口镇,四种功能区土壤PAHs平均水平为工厂区>农用地>路边区>生活区,部分采样点存在16种PAHs未完全检出情况.通过主成分分析法揭示了其污染来源,前三个主成分方差贡献率达到91.3%,第一主成分高环PAHs占主导,主要是燃烧源导致.第二主成分低环PAHs占主导,是由石油源导致.同时研究了天津西郊土壤中PAHs与有机质的相关关系,污染浓度不高的情况下PAHs与有机质呈线性正相关R2=0.613,与相关性最强R2=0.665,说明土壤有机质是影响土壤中PAHs含量的重要因素之一.但是如果在高污染源附近,对PAHs的吸附及迁移作用的影响因素较为复杂.通过对比欧洲PAHs风险等级划分标准,中北镇处于中度污染水平,杨柳青镇、张家窝为轻度污染水平,辛口镇无污染.  相似文献   

13.
为研究吕梁某焦化厂及周边土壤重金属的污染状况,在焦化厂内和周边农田共采集了60个土壤表层(0~20cm)样品,检测分析样品中重金属元素的含量,并采用单因子污染指数法和内梅罗污染指数法对其污染状况进行了评价。结果表明:厂区内土壤重金属Zn、Cd、Cu、Mn、Hg、As的平均含量分别为62.91 mg·kg-1、0.37 mg·kg-1、46.26mg·kg-1、429.98mg·kg-1、0.16mg·kg-1、11.60mg·kg-1,厂区周边农田土壤重金属的平均含量分别为53.57mg·kg-1、0.24mg·kg-1、37.99mg·kg-1、362.23mg·kg-1、0.11mg·kg-1、11.74mg·kg-1,厂区周边农田土壤中各重金属含量均小于厂区内土壤。除Zn和Mn外焦化厂内和周边农田土壤中的Cd、Cu、Hg、As平均含量均高于山西省土壤环境背景值。单因子污染指数法和内梅罗污染指数法评价结果表明,除5%的样品中土壤Cd含量超过了国家二级标准,属轻微污染,其余为未污染,土壤都属清洁水平;以山西背景值为评价标准各重金属都有不同程度的污染,说明该研究区土壤有重金属污染风险。  相似文献   

14.
《山西农业科学》2017,(7):1200-1204
主要针对国内工业园区周边土壤中多环芳烃(PAHs)的含量、来源、危害及影响因素等方面的研究进行比较分析与综述,归纳总结了焦化、钢铁、石化等工业园区周边土壤中多环芳烃污染的研究成果,以反映有关工业活动导致的周边土壤多环芳烃污染及其潜在危害。结果表明,工业园区排放的PAHs是其周边土壤PAHs的主要来源,其周边土壤多数已遭受多环芳烃的严重污染,已严重危及企业周边居民的生命健康,应急需普及环境教育、提高人们的环保意识,加大对工业园区周边区域环境污染与防治方面科学研究项目的支持力度,有利于政府部门采用有关研究成果,并严格执法,科学根治工业园区周边土壤多环芳烃的污染,以协调经济发展、社会进步与生态环境的关系。  相似文献   

15.
采用高效液相色谱系统对山西某钢铁工业园区及周边土壤样品中的16种美国环境保护署(EPA)优先控制的多环芳烃(PAHs)进行了分析,同时应用相对丰度法和比值法对土壤中的PAHs来源进行解析,并运用效应区间中值ERM(the effects range median)和效应区间低值ERL(the effects range low)进行生态风险评价。结果显示,山西某工业园区及周边土壤中PAHs的总含量为186.354~1 021.311μg/kg,平均值为487.726μg/kg,在国内外属于较低污染水平;燃烧源为该园区及周边土壤中PAHs的主要来源,其次为石油类污染源;该地区土壤PAHs的生态风险水平较低。  相似文献   

16.
京津地区不同粒径大气颗粒物中的有机污染物   总被引:8,自引:0,他引:8  
使用气溶胶粒度分布采样器对北京和天津不同地区的6个样点的大气颗粒物进行采样,结果得到的颗粒物质量浓度的归一化分布除个别点外均为双峰态。又采用加速溶剂提取仪萃取并分析了颗粒中的正构烷烃和多环芳烃,发现这些污染物在≤1.1~2.1μm和≥2.1~3.3μm的颗粒中具有明显不同的分布特征。正构烷烃在≤1.1~2.1μm的颗粒上开始具有双峰分布;2~3环PAHs随粒径的变化规律不明显,环数增加,PAHs含量随颗粒粒径减小而增加,在≤1.1~2.1μm颗粒上PAHs种类和含量增加明显。2~3环,4环,5~6环PAHs和PAH16(16种优控PAHs和)在≤1.1~2.1μm的颗粒上集中程度分别为45.3%~63.2%,62.7%~77.6%,86.4%~100%和65.9%~80.6%、颗粒物中小同环数PAHs及PAH16(16种优控PAHs总量)含量与粒径呈对数线性相关。本次采样结果显示,天津大气颗粒物中PAHs的污染比北京严重,北京城区颗粒物中PAHs的含量高一郊区。  相似文献   

17.
以常州市某农药厂搬迁土地为研究对象.在监测分析土壤中16种多环芳烃(PAHs)的基础上,对该区域土壤进行健康风险和生态风险评价.结果表明.研究区域土壤中∑PAHs的含量范围为0~1.546 mg·kg-1,优势化合物中萘、菲等低环化合物含量大于高环的荧蒽、苯并[k]荧蒽和芘等化合物,且土壤中PAHs可能来源于石油源.健...  相似文献   

18.
以山西省襄汾县为研究区域,采集100个农田耕作层表土,用相关分析和主成分分析的方法,研究了县域尺度小麦—玉米轮作下,耕作层土壤有机质、全氮、速效磷、速效钾含量及铁、锰、铜、锌、硼和硫这6种中、微量元素含量的变化特征。结果表明,土壤有机质与全氮、锰、硫的含量呈极显著正相关,与速效磷和锌的含量呈显著正相关;由主成分分析可知,土壤有机质、速效磷和全铜含量密切相关;全县耕作层土壤有机质均值为11.41 g/kg,全氮含量为1.01 g/kg,属中等偏上水平;速效钾含量为201.75 mg/kg,水平较高;而铁、锰、铜、锌、硼和硫的平均含量分别为4.55,6.74,1.14,1.33,0.69,71.07 mg/kg,水平偏低,说明耕作层普遍缺乏中、微量元素。  相似文献   

19.
太湖流域典型湖泊表层沉积物中多环芳烃污染特征   总被引:4,自引:2,他引:4  
持久性有机污染物引起的水质安全性问题日益受到广泛的关注,为了全面了解太湖流域湖泊沉积物中多环芳烃的污染特征,在太湖流域选择典型湖泊天口湖和太湖梅梁湾分别采集7个表层沉积物(0~2 cm)样品,利用GC/MS分析了样品中16种优控多环芳烃(PAHs).结果表明,天目湖表层沉积物中16种优控PAHs总量介于287.50~713.93 ng·g-1(干质量),太湖梅梁湾表层沉积物中PAHs总量介于1 690.72~5 033.70 ng·g-1(干质量),空间分布特征受周边区域内点源污染和河流输入污染物影响.天目湖表层沉积物TOC浓度与PAHs总量相关性比太湖梅梁湾显著.利用特征化合物指数对PAHs的来源进行判别,天目湖表层沉积物中PAHs主要来源是木材、煤燃烧,而太湖梅梁湾表层沉积物中PAHs主要来自石油、木材和煤燃烧混合来源.基于沉积物中多环芳烃的环境质量标准,太湖梅梁湾表层沉积物中PAHs生态风险远高于天目湖,但总体生态风险较低.  相似文献   

20.
为了解西溪湿地底泥质量现状,2012年9月采集保护区内不同干扰类型的底泥样本,测试了底泥中重金属和POPs中PCBs、OCPs和PAHs的含量,并对湿地底泥污染进行了生态风险初步评价。结果表明,底泥中未检出PCBs和OCPs,但检测出14种EPA优控PAHs,总PAHs的浓度范围为115.9~217.8 ng·g-1,低于潜在生态风险的效应区间低值ERL,其中列入中国"水中优先控制污染黑名单"的7种PAHs均有检出并且其总量占∑PAHs 1/2左右(平均为50.08%);底泥中8种重金属含量平均值低于《土壤环境质量标准》(GB 15618-1995)的二级标准,但Hg、Zn、Pb、Ni含量在多个位点已超过一级标准;分别采用土壤背景值和国家一级标准为参比值对湿地底泥中重金属进行单因子污染风险指数评价,发现分别有7种和4种元素的污染指数大于1;综合分析不同干扰类型的底泥质量,发现底泥疏浚能有效降低有机质含量、全氮和PAHs含量,但对全磷、重金属含量则无明显效果,封闭水体的干塘措施能显著减少污泥量和有机物含量。研究结果表明,西溪湿地底泥中高环PAHs和重金属污染水平可能对西溪湿地生物具有潜在的生物毒性作用及不利的生态影响效应,其疏浚底泥农用则无生态风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号