首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spatial variability in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from soil is related to the distribution of microsites where these gases are produced. Porous soil aggregates may possess aerobic and anaerobic microsites, depending on the water content of pores. The purpose of this study was to determine how production of CO2, N2O and CH4 was affected by aggregate size and soil water content. An air-dry sandy loam soil was sieved to generate three aggregate fractions (<0.25 mm, 0.25–2 mm and 2–6 mm) and bulk soil (<2 mm). Aggregate fractions and bulk soil were moistened (60% water-filled pore space, WFPS) and pre-incubated to restore microbial activity, then gradually dried or moistened to 20%, 40%, 60% or 80% WFPS and incubated at 25 °C for 48 h. Soil respiration peaked at 40% WFPS, presumably because this was the optimum level for heterotrophic microorganisms, and at 80% WFPS, which corresponded to the peak N2O production. More CO2 was produced by microaggregates (<0.25 mm) than macroaggregate (>0.25 mm) fractions. Incubation of aggregate fractions and soil at 80% WFPS with acetylene (10 Pa and 10 kPa) and without acetylene showed that denitrification was responsible for 95% of N2O production from microaggregates, while nitrification accounted for 97–99% of the N2O produced by macroaggregates and bulk soil. This suggests that oxygen (O2) diffusion into and around microaggregates was constrained, whereas macroaggregates remained aerobic at 80% WFPS. Methane consumption and production were measured in aggregates, reaching 1.1–6.4 ng CH4–C kg−1 soil h−1 as aggregate fractions and soil became wetter. For the sandy-loam soil studied, we conclude that nitrification in aerobic microsites contributed importantly to total N2O production, even when the soil water content permitted denitrification and CH4 production in anaerobic microsites. The relevance of these findings to microbial processes controlling N2O production at the field scale remains to be confirmed.  相似文献   

2.
土壤氮气排放研究进展   总被引:3,自引:0,他引:3  
自20世纪初人类发明并掌握工业合成氨的技术以来,氮肥施用量迅速增长。在一部分国家或地区,氮肥的施入量已经超过作物对氮素的需求,导致大量氮素损失到环境中,造成氨挥发、氧化亚氮排放、地下水硝酸盐污染等环境问题。土壤在微生物的作用下可以通过反硝化、厌氧氨氧化等过程将活性氮素转化为惰性氮气,达到清除过多活性氮的目的。由于大气中氮气背景浓度太高,因此很难直接准确测定土壤的氮气排放速率,导致土壤氮气排放通量、过程与调控机制研究远远落后于土壤氮循环的其他方面。本文综述了土壤氮气排放主要途径(反硝化、厌氧氨氧化与共反硝化)及其对土壤氮气排放的贡献;测定土壤氮气排放速率的方法(乙炔抑制法、氮同位素示踪法、N2/Ar比率-膜进样质谱法、氦环境法与N2O同位素自然丰度法)及其优缺点;调控土壤氮气排放通量的主要因素(氧气、可溶性有机碳、硝酸盐、微生物群落结构与功能基因表达等)及其相关作用机制。最后指出研发新的测定原位无扰动土壤氮气通量的方法是推进本领域相关研究的关键;定量典型生态系统(如旱地农田、稻田、森林、草地与湿地)土壤氮气排放通量,阐明其中的微生物学机制,模拟并预测土壤氮气排放对全球变化的响应规律是本领域的研究热点与发展方向。  相似文献   

3.
In this study spatial and temporal relations between denitrification rates and groundwater levels were assessed for intensively managed grassland on peat soil where groundwater levels fluctuated between 0 and 1 m below the soil surface. Denitrification rates were measured every 3–4 weeks using the C2H2 inhibition technique for 2 years (2000–2002). Soil samples were taken every 10 cm until the groundwater level was reached. Annual N losses through denitrification averaged 87 kg N ha-1 of which almost 70% originated from soil layers deeper than 20 cm below the soil surface. N losses through denitrification accounted for 16% of the N surplus at farm-level (including mineralization of peat), making it a key-process for the N efficiency of the present dairy farm. Potential denitrification rates exceeded actual denitrification rates at all depths, indicating that organic C was not limiting actual denitrification rates in this soil. The groundwater level appeared to determine the distribution of denitrification rates with depth. Our results were explained by the ample availability of an energy source (degradable C) throughout the soil profile of the peat soil.This revised version was published online November 2003 with corrections to Figure 4 and in February 2004 with corrections to Figure 2.  相似文献   

4.
The effects of disturbance and glucose addition on N2O and CO2 emissions from a paddy soil at 45% WFPS (water-filled pore space) and at 25 °C were determined. During a 45-day incubation, disturbances with and without glucose addition were imposed 0, 1, 3, and 5 times. The total amount of glucose added to soil with 1, 3, and 5 disturbances was equal (0.6% of oven-dry soil basis). Strong nitrification occurred in the paddy soil during the incubation. Disturbance alone did not influence N2O and CO2 emissions significantly, but disturbance with glucose addition did (P < 0.01). A flush of N2O as well as CO2 was always observed following disturbance with glucose addition. The discrepancy in N2O emission between disturbance alone and disturbance with glucose addition was ascribed to the different magnitude of denitrification and/or heterotrophic nitrification. Greater cumulative emission of N2O was observed in the treatment of three disturbance times with glucose addition (4.3 mg N kg−1 soil), compared with five disturbances with glucose addition (2.5 mg N kg−1 soil) and one disturbance with glucose addition (2.5 mg N kg−1 soil). Cumulative CO2 emission was significant larger in one and three disturbances with glucose addition than that five disturbance with glucose addition. Supplies of available organic C appear to be a critical factor controlling denitrification and/or heterotrophic nitrification processes and N2O emission under relatively low moisture conditions, i.e. 45% WFPS.  相似文献   

5.
We observed that soil cores collected in the field containing relatively high NH inf4 sup+ and C substrate levels produced relatively large quantities of N2O. A series of laboratory experiments confirmed that the addition of NH inf4 sup+ and glucose to soil increase N2O production under aerobic conditions. Denitrifying enzyme activity was also increased by the addition of NH inf4 sup+ and glucose. Furthermore, NH inf4 sup+ and glocose additions increased the production of N2O in the presence of C2H2. Therefore, we concluded that denitrification was the most likely source of N2O production. Denitrification was not, however, directly affected by NH inf4 sup+ in anaerobic soil slurries, although the use of C substrate increased. In the presence of a high substrate C concentration, N2O production by denitrifiers may be affected by NO inf3 sup- supplied from NH inf4 sup+ through nitrification. Alternatively, N2O may be produced during mixotrophic and heterotrophic growth of nitrifiers. The results indicated that the NH inf4 sup+ concentration, in addition to NO inf3 sup- , C substrate, and O2 concentrations, is important for predicting N2O production and denitrification under field conditions.  相似文献   

6.
Site of nitrous oxide production in field soils   总被引:1,自引:0,他引:1  
Summary Nitrous oxide (N2O) fluxes at the soil surface and concentrations at 0.1, 0.2, and 0.3 m were determined in a 40-year-old planted tallgrass (XXX) prairie, a 40-year-old white pine (Pinus strobus) plantation, and field plots treated annually for 18 years either with 33 metric tons of manure ha–1 (330 kg N ha–1) and NH4NO3 (80 kg N ha–1) or with only NH4NO3 (control). Nitrous oxide fluxes from the prairie, forest, manure-amended, and control sites from 13 May to 10 November 1980 ranged from 0.2 to 1.3, 3.5 to 19.5, 3.7 to 79.0, and 1.7 to 24.8 ng N2O-N m–2s–1, respectively. We observed periods when there was no apparent relationship between the N2O flux from the surface and N2O concentrations in the soil profile. This was generally the case in the prairie and in the field sites following the application of N fertilizer. The N2O concentrations in the soil profile increased markedly and coincided with increased soil water content following periods of heavy rainfall for all sites except the prairie. Nitrous oxide concentration gradients indicate that following heavy rainfalls the site of N2O production was moved from the surface deeper into the soil profile. We suggest that the source of N2O production near the surface is nitrification and that N2O is produced by denitrification of NO3 leached into the soil following heavy rainfall.  相似文献   

7.
Nitrogen from fertilisers and crop residues can be lost as nitrous oxide (N2O), a greenhouse gas that causes an increase in global warming and also depletes stratospheric ozone. Nitrous oxide emissions, soil chemical status, temperature and N2O concentration in the soil atmosphere were measured in a field experiment on soil compaction in loam and sandy loam (cambisols) soils in south-east Scotland. The overall objective was to discover how the intensity and distribution of soil compaction by tractor wheels or by roller just before sowing influenced crop performance, soil conditions and production and emissions of N2O under controlled traffic conditions. Compaction treatments were zero, light compaction by roller (up to 1 Mg per metre of length) and heavy compaction by loaded tractor (up to 4.2 Mg). In this paper we report the effects on production and emissions of N2O and relate them to soil and crop conditions. Nitrous oxide fluxes were substantial only when the soil water content was high (>27 g per 100 g). Fertiliser application stimulated emissions in the spring whereas crop residues stimulated emissions in autumn and winter. Heavy compaction increased N2O emissions after fertiliser application or residue incorporation more than light or zero compaction. The bulk densities of the heavily and lightly compacted soils were up to 89% and 82% of the theoretical (Proctor) maxima. Higher soil cone resistances, temperatures and nitrogen availability and lower gas diffusivities and air-filled porosities combined to make the heavily compacted soil more anaerobic and likely to denitrify than the zero or lightly compacted soil. Compaction sufficient to increase N2O emissions significantly corresponded with adverse soil conditions for winter barley (Hordeum vulgare L.) growth. Soil tillage, which ensures that soil compaction is no greater than in our light treatment and is confined to near the soil surface, may help to mitigate both surface fluxes of N2O and losses to the subsoil.  相似文献   

8.
In temperate regions, a majority of N2O is emitted during spring soil thawing. We examined the influence of two winter field covers, snow and winter rye, on soil temperature and subsequent spring N2O emissions from a New York corn field over two years. The first season (2006-07) was a cold winter (2309 h below 0 °C at 8 cm soil depth), historically typical for the region. The snow removal treatment resulted in colder soils and higher N2O fluxes (73.3 vs. 57.9 ng N2O-N cm−2 h−1). The rye cover had no effect on N2O emissions. The second season (2007-08) was a much milder winter (1271 h below freezing at 8 cm soil depth), with lower N2O fluxes overall. The winter rye cover resulted in lower N2O fluxes (5.9 vs. 33.7 ng N2O-N cm−2 h−1), but snow removal had no effect. Climate scenarios predict warmer temperature and less snow cover in the region. Under these conditions, spring N2O emissions can be expected to decrease and could be further reduced by winter rye crops.  相似文献   

9.
Independent soil microcosm experiments were used to investigate the effects of the fungicides mancozeb and chlorothalonil, and the herbicide prosulfuron, on N2O and NO production by nitrifying and denitrifying bacteria in fertilized soil. Soil cores were amended with NH4NO3 or NH4NO3 and pesticide, and the N2O and NO concentrations were monitored periodically for approximately 48 h following amendment. Nitrification is the major source of N2O and NO in these soils at soil moistures relevant to those observed at the field site where the cores were collected. At pesticide concentrations from 0.02 to 10 times that of a standard single application on a corn crop, N2O and NO production was inhibited by all three pesticides. Generally N2O production was inhibited by the pesticides from 10 to 62% and 20 to 98% at the lowest and highest dosages, respectively. Nitric oxide production was generally inhibited from about 5 to 47% and by 20 to 97% at the lowest and highest dosages, respectively. Nitrous oxide and nitric oxide production by nitrification was more susceptible to inhibition by these pesticides than denitrification. Production of both N2O and NO by nitrification was inhibited by as much as 99%, at the highest concentration of pesticide applied. The net production of N2O increased as soil moisture increased. The rate of NO production was greatest at the intermediate moistures investigated, between 14 and 19% gravimetric soil moisture, suggestive that nitrification is the dominant source of NO.  相似文献   

10.
Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.  相似文献   

11.
The aim of this study was to investigate temporal and spatial patterns of denitrification enzyme activity (DEA) and nitrous oxide (N2O) fluxes in three adjacent riparian sites (mixed vegetation, forest and grass). The highest DEA was found in the surface (0–30 cm) soil and varied between 0.7±0.1 mg N kg–1 day–1 at 5°C and 5.9±0.4 mg N kg–1 day–1 at 15°C. There was no significant difference (P >0.05) between the DEA in the uppermost (0–30 cm and 60–90 cm) soil depths under different vegetation covers. In the two deepest (120–150 cm and 180–210 cm) soil depths the DEA varied between 0.0±0.0 mg N kg–1 day–1 at 5°C and 4.4±0.9 mg N kg–1 day–1 at 15°C and was clearly associated with the accumulation of buried organic carbon (OC). Two threshold values of OC were observed before DEA started to increase significantly, namely 5 and 25 g OC kg–1 soil at 10–15°C and 5°C, respectively. In the three riparian sites N2O fluxes varied between a net N2O uptake of –0.6±0.4 mg N2O-N m–2 day–1 and a net N2O emission of 2.5±0.3 mg N2O-N m–2 day–1. The observed N2O emission did not lead to an important pollution swapping (from water pollution to greenhouse gas emission). Especially in the mixed vegetation and forest riparian site highest N2O fluxes were observed upslope of the riparian site. The N2O fluxes showed no clear temporal trend.  相似文献   

12.
 The experiment, carried out on a forest and arable light-textured soil, was designed to study the temperature response of autotrophic and heterotrophic N2O production and investigate how the N2O flux relates to soil respiration and O2 consumption. Although N2O production seemed to be stimulated by a temperature increase in both soils, the relationship between production rate and temperature was different in the two soils. This seemed to depend on the different contribution of nitrification and denitrification to the overall N2O flux. In the forest soil, almost all N2O was derived from nitrification, and its production rate rose linearly from 2  °C to 40  °C. A stronger effect of temperature on N2O production was observed in the arable soil, apparently as a result of an incremental contribution of denitrification to the overall N2O flux with rising temperature. The soil respiration rate increased exponentially with temperature and was significantly correlated with N2O production. O2 consumption stimulated denitrification in both soils. In the arable soil, N2O and N2 production increased exponentially with decreasing O2 concentration, though N2O was the main gas produced at any temperature. In the forest soil, only the N2 flux was related exponentially to O2 consumption and it outweighed the rate of N2O production only at >34  °C. Thus, it appears that in the forest soil, where nitrification was the main source of N2O, temperature affected the N2O flux less dramatically than in the arable soil, where a temperature increase strongly stimulated N2O production by enhancing favourable conditions for denitrification. Received: 26 August 1998  相似文献   

13.
 N2O emissions were measured from three contrasting onion (Allium cepa L.) production systems over an 8.5-month period. One system was established on soil where a clover sward had 3 months earlier been ploughed in (ploughed clover site). This production system followed conventional production management practices. The other two systems were established on soil where a mixed herb ley had 3 months earlier been either ploughed or rotovated. These last two production systems followed the guidelines of the International Federation of Organic Agriculture Movements (IFOAM). Cumulative N2O emissions were significantly greater from the ploughed clover site compared to the ploughed ley site (3.8 and 1.6 kg N2O-N ha–1, respectively), while cumulative N2O emissions from the ploughed ley and rotovated ley sites were not significantly different from each other. Emissions from all sites were dominated by episodes of high N2O flux activity following seedbed preparation and drilling, when soil water suction (SWS) was shown to be the rate-controlling variable. The decline in the N2O fluxes after these peak emissions followed clear exponential relationships of the form F=Ae kt (r≥0.91), where F is the daily flux and A is the y-intercept. First-order decay constants (k) during these periods of declining N2O fluxes (corresponding to half-lives of 2.6–3.0 days) were not significantly different in magnitude from the first-order rate constants that characterised the increasing SWS. Gross differences in cumulative emissions between the clover and ley sites were attributed to the influence of differing soil pHs at the two sites on the N2O:(N2O+N2) ratio in the denitrification products. It also appeared that fertiliser applications to the clover site had both direct and indirect effects on N2O emissions by: (1) enhancing N2O emissions via potential nitrification, (2) increasing the NO3 supply for enhanced N2O emissions via denitrification, and (3) influencing the N2O:(N2O+N2) ratio by lowering soil pH and increasing NO3 concentrations. Onion crop yields were greater at the clover site, mainly due to the higher density of planting made possible under a conventional production philosophy. Expressing the yield on the basis of net N2O emissions, 23 t onions kg–1 N2O-N was obtained from the ploughed clover, which was double that obtained for the two systems based on the ley site. However, when the N2O emissions from the cultivation of the soils prior to the sowing of the onions was included, all three systems produced a similar yield per kilogram of N2O-N emitted, averaging 10 t kg–1. Received: 6 January 1999  相似文献   

14.
In a 1-year study, quantification of nitrous oxide (N2O) emission was made from a flood-irrigated cotton field fertilized with urea at 100kg N ha−1 a−1. Measurements were made during the cotton-growing season (May–November) and the fallow period (December–April). Of the total 95 sampling dates, 77 showed positive N2O fluxes (range, 0.1 to 33.3g N ha−1 d−1), whereas negative fluxes (i.e., N2O sink activity) were recorded on 18 occasions (range, −0.1 to −2.2g N ha−1 d−1). Nitrous oxide sink activity was more frequently observed during the growing season (15 out of 57 sampling dates) as compared to the fallow period (3 out of 38 sampling dates). During the growing season, contribution of N2O to the denitrification gaseous N products was much less (average, 4%) as compared to that during the fallow period (average, 21%). Nitrous oxide emission integrated over the 6-month growing period amounted 324g N ha−1, whereas the corresponding figure for the 6-month fallow period was 648g N ha−1. Subtracting the N2O sink activity (30.3g N ha−1 and 3.8g N ha−1 during the growing season and fallow period, respectively), the net N2O emission amounted 938g N ha−1 a−1. Results suggested that high soil moisture and temperature prevailing under flood-irrigated cotton in the Central Punjab region of Pakistan though favor high denitrification rates, but are also conducive to N2O reduction thus leading to relatively low N2O emission.  相似文献   

15.
氧化亚氮(N2O)是主要温室气体之一,土壤是N2O的重要排放源,其排放主要受N2O产生和还原的功能微生物影响。土壤团聚体是由原生颗粒(砂、粉、黏粒)、胶结物质和孔隙组成的土壤基本结构单元。土壤不同粒径团聚体之间因基质和孔隙差异形成特殊独立的微生境被视为N2O的生物化学反应器。在不同的微生境中,N2O产生和还原的功能微生物分布不同,因而土壤不同粒径团聚体N2O排放可能存在差异。目前在不同生态系统土壤全土N2O排放特征的报道较多,而对于不同粒径土壤团聚体N2O排放相对贡献尚不清楚、功能微生物分布还未知、N2O产生和还原热区尚未明确。本文综述了近年来国内外关于土壤团聚体对N2O产生和排放机制的研究,总结了土壤团聚体性状特征对N2O产生和还原的影响,阐述了不同粒径土壤团聚体对N2O排放影响的微生物学机制,进一步明确了今后需加强土壤团聚体N2O产生和还原的热区、环境因子阈值范围的确定、系列功能基因(酶)整体性的研究,以期为N2O模拟排放模型优化提供参考,为土壤N2O减排提供理论依据。  相似文献   

16.
Nitrous oxide emissions under different soil and land management conditions   总被引:4,自引:0,他引:4  
Nitrous oxide (N2O) emissions of three different soils – a rendzina on cryoturbed soil, a hydromorphic leached brown soil and a superficial soil on a calcareous plateau – were measured using the chamber method. Each site included four types of land management: bare soil, seeded unfertilized soil, a suboptimally fertilized rapeseed crop and an overfertilized rapeseed crop. Fluxes varied from –1g to 100g N2O-nitrogen ha–1 day–1. The highest rates of N2O emissions were measured during spring on the hydromorphic leached brown soil which had been fertilized with nitrogen (N); the total emissions during a 5-month period exceeded 3500gNha–1. Significant fluxes were also observed during the summer. Very marked effects of soil type and management were observed. Two factors – the soil hydraulic behaviour and the ability of the microbial population to reduce N2O – appear to be essential in determining emissions of N2O by soils. In fact, the hydromorphic leached brown soil showed the highest emissions, despite having the lowest denitrification potential because of its water-filled pore space and low N2O reductase activity. Soil management also appears to affect both soil nitrate content and N2O emissions. Received: 4 April 1997  相似文献   

17.
The accurate measurement of nitrous oxide (N2O) and dinitrogen (N2) during the denitrification process in soils is a challenge which will help to estimate the contribution of soil N2O emissions to global warming. Oxygen concentration, nitrate concentration and carbon availability are generally the main factors that control soil denitrification rate and the amount of N2O or N2 emitted. The aim of this paper is to present a database of the N2O mole fraction measured at the field scale, and to test hypotheses concerning its regulation. A 15N-nitrate tracer solution was added to 36 undisturbed soil cores on a 20 m×20 m cultivated field plot. Fluxes of CO2, N2O and N2 from the soil surface were monitored for 24 h. Soil moisture, bulk density, carbon, nitrogen and mineral nitrogen concentration were also measured to investigate possible spatial relationships between their variations and those of N2O, N2 and nitrous oxide mole fraction. Under high water content, nitrous oxide and N2 emissions were highly variable with variation coefficients of 70-140%. N2O emission rates were about twice as high as those of N2, with a total denitrification rate ranging from 269 to 3843 g N ha−1 d−1. After 24 h of incubation, the values of nitrous oxide mole fraction ranged from 0.15 to 0.94 and no significant decline during incubation time was observed. Spatial variability of N2O, N2 and nitrous oxide mole fraction was high and no spatial dependence was observed at the scale of the experimental plot. Only tenuous relationships between gaseous nitrogen emissions and soil properties (mainly nitrate concentration and moisture content) were found. Meanwhile, a positive correlation was observed between N2 and CO2 emissions. This result supports the hypothesis that an increase in soil available organic carbon leads to N2 emissions as the end product of denitrification.  相似文献   

18.
Riparian zones are important features of the landscape that can buffer waterways from non-point sources of nitrogen pollution. Studies of perennial streams have identified denitrification as one of the dominant mechanisms by which this can occur. This study aimed to assess nitrate removal within the riparian zone of an ephemeral stream and characterise the processes responsible, particularly denitrification, using both in-situ and laboratory techniques. To quantify rates of groundwater nitrate removal and denitrification in-situ, nitrate was added to two separate injection-capture well networks in a perched riparian aquifer of a low order ephemeral stream in South East Queensland, Australia. Both networks also received bromide as a conservative tracer and one received acetylene to inhibit the last step of denitrification. An average of 77 ± 2% and 98 ± 1% of the added nitrate was removed within a distance of 40 cm from the injection wells (networks with acetylene and without, respectively). Based on rates of N2O production in the network with added acetylene, denitrification was not a major mechanism of nitrate loss, accounting for only 3% of removal. Reduction of nitrate to ammonium was also not a major pathway in either network, contributing <4%. Relatively high concentrations of oxygen in the aquifer following recent filling by stream water may have reduced the importance of these two anaerobic pathways. Alternatively, denitrification may have been underestimated using the in-situ acetylene block technique. In the laboratory, soils taken from two depths at each well network were incubated with four nitrate-N treatments (ranging from ambient concentration to an addition of 15 mg N l−1), with and without added acetylene. Potential rates of denitrification, N2O production and N2O:N2 ratios increased with nitrate additions, particularly in shallow soils. Potential rates of denitrification observed in the laboratory were equivalent in magnitude to nitrate removal measured in the field (mean 0.26 ± 0.12 mg N kg of dry soil−1 d−1), but were two orders of magnitude greater than denitrification measured in the field with added acetylene. The relative importance of assimilatory vs. dissimilatory processes of nitrate removal depends on environmental conditions in the aquifer, particularly hydrology and its effects on dissolved oxygen concentrations. Depending on seasonal conditions, aquifers of ephemeral streams like the study site are likely to fluctuate between oxic and anoxic conditions; nevertheless they may still function as effective buffers. While denitrification to N2 is a desirable outcome from a management perspective, assimilation into biomass can provide a rapid sink for nitrate, thus helping to reduce short-term delivery of nitrate downstream. Longer-term studies are needed to determine the overall effectiveness of riparian buffers associated with ephemeral streams in mitigating nitrate loads reaching downstream ecosystems.  相似文献   

19.
氧化亚氮(N_2O)是主要的温室气体之一,对大气环境质量与全球气候变化具有重要的影响。N_2O排放不仅增加温室效应,同时也会导致陆地生态系统氮损失与平流层臭氧消耗。长期以来土壤被认为是陆地生态系统N_2O的主要排放源,但近年来越来越多的证据表明,植物可能是陆地生态系统N_2O排放的另一重要来源。近年来有关植物排放N_2O的报道逐年增多,但对植物排放N_2O的途径及其调控机制方面还缺乏文献综述。本文首先在总结长期以来人们普遍认为的N_2O源与汇的基础上,提出陆地植物可能是另一个尚未被广泛认可的重要的N_2O的排放源。植物排放N_2O可能有两种潜在途径:1)植物作为土壤中通过微生物产生的N_2O的运输通道,2)植物通过自身代谢或内生菌的作用产生N_2O并排放到大气中。然后分析了关键因素(养分、光照、温度和植物器官及生长阶段)对植物排放N_2O的影响机制。最后指出未来需进一步探明植物体内产生N_2O的具体途径及其对全球N_2O排放的贡献,重点是探明植物自身的生理生化过程以及与其伴生、共生的微生物在N_2O产生中的作用。  相似文献   

20.
Soil N2O emissions can affect global environments because N2O is a potent greenhouse gas and ozone depletion substance. In the context of global warming, there is increasing concern over the emissions of N2O from turfgrass systems. It is possible that management practices could be tailored to reduce emissions, but this would require a better understanding of factors controlling N2O production. In the present study we evaluated the spatial variability of soil N2O production and its correlation with soil physical, chemical and microbial properties. The impacts of grass clipping addition on soil N2O production were also examined. Soil samples were collected from a chronosequence of three golf courses (10, 30, and 100-year-old) and incubated for 60 days at either 60% or 90% water filled-pore space (WFPS) with or without the addition of grass clippings or wheat straw. Both soil N2O flux and soil inorganic N were measured periodically throughout the incubation. For unamended soils, cumulative soil N2O production during the incubation ranged from 75 to 972 ng N g−1 soil at 60% WFPS and from 76 to 8842 ng N g−1 soil at 90% WFPS. Among all the soil physical, chemical and microbial properties examined, soil N2O production showed the largest spatial variability with the coefficient of variation ~110% and 207% for 60% and 90% WFPS, respectively. At 60% WFPS, soil N2O production was positively correlated with soil clay fraction (Pearson's r = 0.91, P < 0.01) and soil NH4+–N (Pearson's r = 0.82, P < 0.01). At 90% WFPS, however, soil N2O production appeared to be positively related to total soil C and N, but negatively related to soil pH. Addition of grass clippings and wheat straw did not consistently affect soil N2O production across moisture treatments. Soil N2O production at 60% WFPS was enhanced by the addition of grass clippings and unaffected by wheat straw (P < 0.05). In contrast, soil N2O production at 90% WFPS was inhibited by the addition of wheat straw and little influenced by glass clippings (P < 0.05), except for soil samples with >2.5% organic C. Net N mineralization in soil samples with >2.5% organic C was similar between the two moisture regimes, suggesting that O2 availability was greater than expected from 90% WFPS. Nonetheless, small and moderate changes in the percentage of clay fraction, soil organic matter content, and soil pH were found to be associated with large variations in soil N2O production. Our study suggested that managing soil acidity via liming could substantially control soil N2O production in turfgrass systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号