首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 877 毫秒
1.

Purpose

This study assessed the effect of biosolid application on the bioavailable fraction of some trace elements (Cu, Cr, Ni, and Zn) using a bioassay with sunflower (Helianthus annuus) and a chemical assay, diffusion gradient in thin films (DGT).

Materials and methods

Five surface soil samples (0–20 cm) were collected from an agricultural zone in Central Chile where biosolids are likely to be applied. Municipal biosolids were mixed with the soil at concentrations of 0, 30, 90, and 200 Mg ha?1. The experiment to determine the bioavailability of metals in the soil using the bioassay was performed using sunflower. The DGT technique and Community Bureau of Reference (BCR) sequential extraction were used to determine the bioavailable fractions of the metals.

Results and discussion

The application of biosolids increased the phytoavailability of Zn, Ni, and Cr in most of the soils, as indicated by the increasing concentrations in sunflower plants as the biosolid application rate increased. In two of the soils, Codigua and Pelvín, this increase peaked at an application rate of 90 Mg ha?1. Decreases in the bioavailable fractions of Zn, Ni, and Cr were observed with higher biosolid application rates. The bioavailability of metals was estimated through multiple linear regression models between the metals in the sunflower plants and the different chemical fractions of metals in the soils treated with different biosolid rates, which displayed a positive contribution of the labile (water soluble, carbonate, and exchangeable), oxide, and organic metal forms in the soil, particularly with respect to Ni and Zn at application rates of 30 and 90 Mg ha?1. The bioavailable fraction of metals was determined in soils using the DGT technique. The effective concentration (C E) results were compared with those in sunflower plants. The DGT technique could effectively predict the bioavailable fractions of Cr, Ni, and Zn in the Taqueral soil but only that of Zn in the Polpaico soil.

Conclusions

The application of biosolids significantly increased the labile fraction of most of the metals in the studied soils, particularly at the highest biosolid application rate. C E increased as the concentration of biosolids increased for most of the metals. The effectiveness of the DGT technique for predicting the bioavailability of metals was dependent on the soil type and the metal. However, the C E for soil Cu was not related to plant Cu for all soils studied.  相似文献   

2.

Purpose

The objective of this study was to determine the changes in the main soil chemical properties including pH, electrical conductivity (EC), available phosphorus (P), soil organic carbon (SOC) and total nitrogen (TN) stocks after long-term (31 years) additions of two types of organic matters—rice straw and rice straw compost, combined with NPK fertilizers in single rice paddy in a cold temperate region of Japan.

Materials and methods

A long-term experiment on combined inorganic fertilizers and organic matters in paddy rice cultivation began in May 1982 in Yamagata, northeastern Japan. After the 31st harvest, soil samples were collected from five treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)] at five soil depths (0–5, 5–10, 10–15, 15–20, and 20–25 cm). Soil chemical properties of pH, EC, available P, SOC, and TN were analyzed.

Results and discussion

The pH decreased significantly only at the higher compost rate of 30 Mg ha?1, while EC increased in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock increased by 67.2, 21.4, and 8.6 %, and soil TN stock by 64.1, 20.2, and 8.5 % in CM3, RS, and CM1, respectively, compared to NPK treatment.

Conclusions

Significant changes in soil properties were observed after 31 years of organic matter applications with reference to PK- and NPK-fertilized rice paddy soils. A significant decrease in pH was observed with the application of a high rate (30 Mg ha?1) of rice straw compost but not with the conventional rate of 10 Mg ha?1. However, EC increased significantly relative to that of the PK- and NPK-fertilized plots in all the organic matter treatments. Available P significantly increased in the CM1 and CM3 treatments by 55.1 and 86.4 %. The amounts of SOC stock expressed as a percentage of total C applied to the soil were higher from 10 Mg ha?1 compost (28.7 %) than that from 6 Mg ha?1 rice straw (17.4 %), indicating a more effective soil organic C accumulation from rice straw compost than that from original rice straw.
  相似文献   

3.
Abstract

Two Ferralsols (350 and 600 g kg?1 clay) from the Brazilian Cerrado Region were evaluated for long‐term effects (5 and 8 years) of no tillage on carbon (C) stocks in particulate (>53 µm) and mineral‐associated (<53 µm) soil organic matter (SOM) fractions. Carbon stocks in particulate SOM increased under no tillage compared with conventional tillage, and the rate was higher in the clayey soil (0.62 Mg C ha?1 yr?1) than in the sandy clay loam soil (0.31 Mg C ha?1 yr?1). In contrast, the mineral‐associated SOM in the top soil layer (0–20 cm) was not affected by tillage system. Sequestration of atmospheric C in tropical no‐tillage soils seems to be due to accumulation of C in labile SOM fractions, with highest rates in clayey soils probably due to physical protection.  相似文献   

4.

Purpose

The present research aimed to assess the influence of two phosphorous (P) amendments on metal speciation in rhizosphere soil and the soil–plant transfer of metals.

Materials and methods

Complementary experiments were performed: field experiments on a contaminated cultivated soil and laboratory experiments on an uncultivated contaminated soil to highlight the mechanisms involved in metal-phosphorous interactions. In laboratory experiment, P amendments were added at 120 mg P/kg of soluble KH2PO4 amendment and 9,000 mg P/kg of solid Ca5(PO4)3OH amendment.

Results and discussion

Field-culture results showed the possible food-chain contamination due to Pb, Cd, Cu, and Zn phytoaccumulation by pea and mustard plants from a cultivated agricultural soil. Moreover, P-metal complexes were observed by microscopy in the rhizosphere soil. In laboratory experiments, the application of P amendments significantly increased Pb and Zn level in rhizosphere soil compared to control. Phosphate amendments significantly increased metal-P fraction and decreased “oxides” and “organic matter” fractions of Pb and Zn. Soluble-P amendment was more effective than solid P amendment in changing Pb and Zn speciation. The changes in metal speciation are higher in the rhizosphere soil of pea than tomato. Application of P amendments increased Pb and Zn TF root/soil but decreased TF shoot/root.

Conclusions

The effectiveness of in situ metal immobilization technique varies with the type and quantity of applied P amendment as well as plant and metal type.  相似文献   

5.
Shuman  L. M.  Dudka  S.  Das  K. 《Water, air, and soil pollution》2001,128(1-2):1-11
Compost can be used to remediate metal-contaminatedsites because it binds metals and reduces metal uptakeby plants. A greenhouse experiment was conducted totest the effectiveness of compost to remediate Zntoxicity to plants and to determine its effect on zinc(Zn) distribution among operationally defined forms. Cecil soil (Typic kanhapludults) was amendedwith 0 to 5000 mg kg-1 Zn and biosolid compost at0, 100, and 300 tons ha-1, and then corn (Zea mays L.) was planted. After 42 days of growthplants were weighed and analyzed for Zn concentration. Soil was analyzed for Mehlich 1-extractable Zn andfractionated by a sequential extraction procedure forforms of Zn. Compost lowered soil pH while increasingCEC, exchangeable hydrogen and percent carbon. Concentrations of Mehlich 1-extractable Zn weredecreased by compost addition. Compost additionsdecreased plant Zn concentration and allowed moreplant survival with toxic levels of soil Zn. Compostamendment redistributed Zn from the water soluble andexchangeable fractions to the manganese oxide andamorphous iron oxide fractions, which shows a changein form of Zn from more plant available to less plantavailable. Biosolid compost soil amendments decreaseplant availability of Zn making it less toxic toplants even where it decreases soil pH, which wouldtend to have the opposite effect.  相似文献   

6.
Compost may improve the soil quality and contribute to C sequestration. The short-term effects of compost application on soil properties of soil cropped with maize are reported here. Soil plots to which mature compost was added (at 50 Mg ha?1 and 85 Mg ha?1) were analyzed for total organic carbon (TOC), nutrients, heavy metals and other soil properties. In addition, maize plants were weighed at the end of the trial and analyzed for carbon (C), nitrogen (N), phosphorus (P) and heavy metals. The results demonstrate that soil amended with compost has an increased TOC content. The increase was proportional to the amount of compost used. At the highest dose used, compost also increased soil N and P content and the pH. Moreover, after compost application, the total heavy metal contents in soils did not increase. There was no difference between the maize yield from compost treated plots and the control plots. However, maize grains were found to be C, N and P enriched due to the increased nutrient status of the amended soil. In conclusion, the addition of mature compost improves soil properties by increasing the soil TOC content and this depends on the characteristics and the amount of compost used.  相似文献   

7.
Solid-phase transformations of Cd, Cu, Cr, Ni and Zn, added as soluble salts at several levels to two arid-zone soils, were studied over a period of one year. The soils were maintained under a saturated-paste regime and sampled periodically. A selective sequential dissolution procedure was employed to determine the changes in metal distribution among six operationally defined solid-phase fractions. A function,U ts was introduced to measure the fractional attainment of equilibrium of the soils following a perturbation. The direction and rate of redistribution of the added metals in the soils were affected by the nature of the metal, the soil properties and the metal loading level. Cd added to the soils was transferred from the exchangeable (EXC) into the carbonate (GARB) fraction. When soluble Cu, Cr, Ni and Zn were added at low loading levels, metals were transferred from the reducible oxides(RO) bound and easily reducible oxides (ERO) bound fractions and the EXC fraction, into the CARB fraction. However, at the higher loading level, metals were transferred from the EXC and CARB fractions into the organic matter bound (OM), ERO and RO fractions. TheU ts function approached lower values as incubation continued but remained removed from 1. The overall flux of metals among fractions was the combined result of the readjustment of the metals in the native soil to changing conditions due to saturation, and the transfer of added soluble metals to the less labile fractions.  相似文献   

8.

Purpose

Soil organic matter (SOM) plays a vital role in controlling metal bioavailability. However, the relationship between SOM and its fractions, including water-soluble substances (WSS), fulvic acid (FA), humic acid (HA), and soil microbial biomass (SMB), to metal bioavailability in plants has not been thoroughly investigated. This study examined the compositional change of SOM after tea polyphenols (TPs) were added to the soil and its correlation with Pb bioavailability.

Materials and methods

Ultisol samples were collected from Fuyang, spiked with two levels (0 and 300 mg kg?1 DW) of Pb, and aged for 30 days. Four uniform seedlings were transplanted to each plastic pot, which were filled with 3 kg of air-dried soil. After successful transplantation, three levels (0, 300, and 600 mg kg?1 DW) of TPs were amended as irrigation solution for the pots. The Pb concentrations in different tissues of the tea plants were determined after 6 months. SOM, WSS, FA, HA, and SMB were extracted and quantified using a Multi N/C Total Organic Carbon Analyser.

Results and discussion

Adding TPs to Pb-polluted soils alleviated Pb toxicity to microorganisms and increased SMB and the rhizosphere effect. The rhizosphere SOM was lower than bulk SOM in Pb-unspiked soils, while the opposite results were observed in Pb-spiked soils. A similar inconsistency for HA in the rhizosphere and bulk soil between Pb-unspiked and Pb-spiked soils might explain the difference in SOM. FA increased with the addition of TPs in both the rhizosphere and bulk soils, which might be the result of TP transformation. Positive correlations are present between the compositions of rhizosphere SOM and Pb in different tissues of the tea plant. SMB correlated negatively with Pb in young leaves and stems. Compared to rhizosphere soil, SOM components in bulk soil were less strongly correlated with Pb in tea plants.

Conclusions

Addition of TPs to soil changes the components of SOM and Pb bioavailability. SOM and its fractions, including WSS, FA, HA, and SMB, show a close relationship to Pb in different tissues of the tea plants.  相似文献   

9.
A field study evaluated the effects of NPK (21:17:17) and compost on vegetative growth, proteins, and carbohydrates of Moringa oleifera. The experimental design was randomized complete block design (RCBD) with six treatments replicated three times. Compost and NPK fertilizers were applied together which include control (without fertilizer) 5 t ha?1 (Compost), 120 kg ha?1 (NPK), 50 + 50% ha?1 (NPK + Compost), 10 + 50% ha?1 (NPK + Compost), and 50 + 10% ha?1 (NPK + Compost) per plot. For NPK fertilizer, the rate was 10 and 50% of 120 kg ha?1 and for compost it was 10 and 50% of 5 t ha?1. The measured growth parameters were plant height (cm), stem girth (mm), number of leaves, and number of branches per plant. Results showed that 120 kg ha?1 (NPK) treatment produced plants of more height, stem girth, more number of leaves, maximum number of branches as compared to other treatments at week 8 with higher protein. Carbohydrate content was high in 50 + 50% (NPK + Compost) compared to others.  相似文献   

10.
Abstract

Dairy manure increases the yields of dry bean (Phaseolus vulgaris L.) and spring wheat (Triticum aestivum L.) from eroded, furrow‐irrigated soils and may increase corn (Zea mays L.) silage yield from steeper eroded areas under sprinkler irrigation. In a 2‐year field study in southern Idaho on Portneuf silt loam (coarse silty, mixed, superactive, mesic Durinodic Xeric Haplocalcid), the effects of a one‐time, fall application of 29 or 72 Mg ha?1 of dry manure or 22 or 47 Mg ha?1 of dry compost on subsequent silage yield and nitrogen (N) uptake from previously eroded, sprinkler‐irrigated hill slopes were evaluated. In October 1999, stockpiled or composted dairy manure was disked to a depth of 0.15 m into plots with slopes from 0.8 to 4.4%. After planting field corn in 2000 and 2001, a low‐pressure, six‐span traveling lateral sprinkler system was utilized to apply water at 28 mm h?1 in amounts sufficient to satisfy evapotranspiration to 6.4‐×36.6‐m field plots. Yields in 2000 were 27.5 Mg ha?1, similar among all rates of all amendments and a fertilized control. In 2001, compost applied at oven‐dry rates up to 47 Mg ha?1 increased yield compared to controls. Silage yield in 2001 increased initially then decreased with increasing manure applications. Where compost or manure was applied, regardless of rate, 2‐year average N uptake was 15% greater than controls. Regardless of treatment or year, yields decreased linearly as soil slope increased.  相似文献   

11.
A field study was carried out to evaluate long-term heavy metal (HM) accumulation in the top 20 cm of a Tunisian clayey loam soil amended for (four years) with municipal solid waste compost (MSWC) at three levels (0, 40 and 80 t ha?1 year?1). HM uptake and translocation within wheat plants grown on these soils were also investigated. Compared to untreated soils, MSWC-amended soils showed significant increases in the content of all measured HM (Cd, Cr, Cu, Ni, Pb and Zn) in the last three years, especially for the 80 t ha?1 year?1 MSWC-amended plots. Wheat plants grown on MSWC-amended soils showed a general increase in metal uptake and translocation, especially for Cr and Ni. This HM uptake was about three fold greater for treatment 80 t h?1 as compared to plots amended at a rate of 40 t h?1. At times, the diluting effect resulting from enhanced growth rates of the plants with compost application resulted in lower concentrations in the plants grown (grain part) on treated plots. On the other hand, Cr and Ni were less mobile in the aerial part of wheat plants and were accumulated essentially in root tissues. Plant/soil transfer coefficients for MSWC-amended treatments were higher than threshold range reported in the literature, indicating that there was an important load/transfer of HM ions from soils to wheat plants.  相似文献   

12.

Background

Fertilization with organic waste compost can close the nutrient cycles between urban and rural environments. However, its effect on yield and soil fertility must be investigated.

Aim

This study investigated the long-term effect of compost on soil nutrient and potentially toxic elements (PTEs) concentration, nutrient budgets, and nitrogen (N) mineralization and efficiency.

Methods

After 21 years of annual compost application (100/400 kg N ha–1 year–1 [100BC/400BC]) alone and combined with mineral fertilization, soil was analyzed for pH, organic carbon (SOC), nutrient (total N and P, Nmin, extractable CAL-P, CAL-K, and Mg), and PTE (Cu, Ni, Zn) concentrations. Yields were recorded and nutrient/PTE budgets and apparent net mineralization (ANM, only 2019) were calculated.

Results

N efficiency was the highest in maize and for mineral fertilization. Compost application led to lower N efficiencies, but increased ANM, SOC, pH, and soil N, and surpluses of N, P, and all PTEs. Higher PTE concentrations were only found in 400BC for Cu. Nutrient budgets correlated with soil nutrient concentration. A surplus of 16.1 kg P ha–1 year–1 and 19.5 kg K ha–1 year–1 resulted in 1 mg kg–1 increase in CAL-P and CAL-K over 21 years.

Conclusion

Compost application supplies nutrients to crops with a minor risk of soil-accumulation of PTEs. However, the nutrient stoichiometry provided by compost does not match crop offtakes causing imbalances. Synchronization of compost N mineralization and plant N demand does not match and limits the yield effect. In winter wheat only 65–70% of N mineralization occurred during the growth period.  相似文献   

13.
A pot experiment was conducted to test the hypothesis that the interaction of changes in pH and urease activity induced by biochar addition affects ammonia (NH3) volatilization on acid soils following application of urea. The results showed that the difference in accumulative NH3 volatilization between biochar addition rates of 20 and 0 Mg ha–1 was not significant, while the biochar addition rate of 40 Mg ha–1 had 42% higher accumulative NH3 volatilization than the biochar addition rate of 0 Mg ha–1. Soil pH significantly increased with increasing biochar addition rate. The soil urease activity was significantly reduced by biochar addition, but there was no significant difference between biochar addition rates of 20 and 40 Mg ha–1. These results support our hypothesis and suggest that the biochar addition rate may need to be properly selected in order to minimize fertilizer-N loss through NH3 volatilization on urea-fertilized acid paddy soils.  相似文献   

14.

Purpose

The use of chlordecone (CLD) has caused pollution of soils, which are now a source of contamination for crops and ecosystems. Because of its long-term impacts on human health, exposure to CLD is a public health concern and contamination of crops by CLD must be limited. To this end, we conducted field trials on chlordecone sequestration in soil with added compost.

Materials and methods

The impact of added compost on chlordecone sequestration was measured in nitisols. After characterization of the soil, the transfer of chlordecone from soil to water was assessed in a leaching experiment and from soil to two crop plants in a nitisol plot. Finally, to understand the underlying processes, changes in CLD content were measured in soil fractions and soil porous properties were assessed after the addition of compost.

Results and discussion

A rapid seven-fold decrease in water extractable CLD was observed in amended soils. Five percent amendment led to a significant reduction in the contamination of crops by CLD; edible radish tubers were 50% more contaminated without added compost and cucumber fruits were 60% more contaminated. After the addition of compost, CLD content increased in the fraction of pre-humified or partially mineralized organic debris. Finally, in contrast to andosols, adding compost to nitisols did not affect the soil microstructure.

Conclusions

Increasing chlordecone sequestration by adding compost could be an alternative solution until soil decontamination techniques become available. This could be a provisional way to control further release of CLD from contaminated soils towards other environmental compartments.  相似文献   

15.
A long-term experiment on combined inorganic fertilizers and organic matter in paddy rice (Oryza sativa L.) cultivation began in May 1982 in Yamagata, northeastern Japan. In 2012, after the 31st harvest, soil samples were collected from five fertilizer treatments [(1) PK, (2) NPK, (3) NPK + 6 Mg ha?1 rice straw (RS), (4) NPK + 10 Mg ha?1 rice straw compost (CM1), and (5) NPK + 30 Mg ha?1 rice straw compost (CM3)], at five soil depths (0–5, 5–10, 10–15, 15–20 and 20–25 cm), to assess the changes in soil organic carbon (SOC) content and carbon (C) decomposition potential, total nitrogen (TN) content and nitrogen (N) mineralization potential resulting from long-term organic matter addition. The C decomposition potential was assessed based on the methane (CH4) and carbon dioxide (CO2) produced, while the N mineralization potential was determined from the potassium chloride (KCl)-extractable ammonium-nitrogen (NH4+-N), after 2, 4, 6 and 8 weeks of anaerobic incubation at 30°C in the laboratory. Compared to NPK treatment, SOC in the total 0–25 cm layer increased by 67.3, 21.0 and10.8%, and TN increased by 64.2, 19.7 and 10.6%, in CM3, RS and CM1, respectively, and SOC and TN showed a slight reduction in the PK treatment by 5.2 and 5.7%, respectively. Applying rice straw compost (10 Mg ha?1) instead of rice straw (6 Mg ha?1) to rice paddies reduced methane production by about 19% after the soils were measured under 8 weeks of anaerobic incubation at 30°C. Soil carbon decomposition potential (Co) and nitrogen mineralization potential (No) were highly correlated with the SOC and TN contents. The mean ratio of Co/No was 4.49, lower than the mean ratio of SOC/TN (13.49) for all treatments, which indicated that the easily decomposed organic matter was from soil microbial biomass and soil proteins.  相似文献   

16.
The distribution in soil and plant uptake of zinc (Zn) and lead (Pb) as influenced by pine bark-goat manure (PBG) compost additions were investigated from the soils artificially contaminated with Zn or Pb ions using maize (Zea mays L.) as a test crop. Soils were amended with four rates of pine bark-goat manure compost (0, 50, 100, and 200 tons ha?1) and four rates (0, 300, 600 and 1200 mg kg?1) of Zn or Pb. Maize was planted and grown for 42 days. At harvest, plants samples were analyzed for Zn and Pb concentration. Soils samples were analyzed for pH, extractable and diethylene triamine pentaacetic acid (DTPA) extractable Zn and Pb. Extractable Zn and Pb was lower in PBG compost amended soils than in unamended soils and steadily declined with increasing amount of compost applied. The extractable fraction for Zn dropped by 62.2, 65.0 and 44.6% for 300, 600 and 1200 mg Zn kg?1, respectively when 200 t ha?1 of PBG compost was applied. Metal uptake by maize plants were directly related to the rate of applied heavy metal ions with greater concentrations of metals ions found where metal ions were added to non-amended soils.  相似文献   

17.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

18.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

19.
Mineral soils in southern Florida are very low in organic matter content and most of the nitrogen (N) for sugarcane (Saccharum spp.) must be supplied in split fertilizer applications. Information is needed regarding how the interaction of organic amendments and fertilizer N influences sugarcane yields. A field study on a sand soil (Alfisol) was established to determine (1) potential sugarcane yield benefits of a compost/sludge amendment, and (2) the influence of the amendment on N fertilizer requirement. A split-plot Latin square design was used with five N rates (main plots) and presence or absence of compost/sludge broadcast at 113 m3 ha?1 (subplots). Annual N rates were 0, 67, 134, 202, and 269 kg N ha?1. Compost/sludge application increased cumulative t sucrose ha?1 by 36% averaged across N rates. The amendment also lowered annual N requirement by an average of 38%, but maintenance applications of compost/sludge will be required every four years.  相似文献   

20.
Abstract

Many countries have reported that green revolution (GR) technology caused some adverse effects on agricultural lands, but there is no research on the effects of GR in Indonesia. To evaluate the effect of GR technology on sawah soil in Indonesia, a comparative study between seedfarms, where GR technology has been continuously applied, and non-seedfarms was conducted in Java as a pioneer place of GR technology in Indonesia and, in particular, on the carbon and nitrogen status in sawah soils. The term sawah refers to a leveled and bounded rice field with an inlet and outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sampling sites were analyzed and compared. During the period 1970–2003 the land-use pattern of sawah in seedfarms and non-seedfarms did not change, but cultivation intensity increased. The results showed that total carbon (TC) and total nitrogen (TN) contents significantly increased from 31.90 to 40.42 Mg ha?1 and from 3.04 to 3.97 Mg ha?1, respectively, and TC and TN were mostly found accumulated in the surface soil layer. The difference in land management practices between seedfarms and non-seedfarms affected the change in TC and TN content in the 0–20 cm soil layer from 1970 to 2003. In seedfarms, where rice had been planted in a monoculture system, TC and TN contents in the 0–20 cm soil layer increased from 34.50 to 39.24 Mg ha?1 and from 3.16 to 3.95 Mg ha?1, respectively. In non-seedfarms, TC and TN increased more than in seedfarms from 29.77 to 41.37 Mg ha?1 and from 2.94 to 3.98 Mg ha?1, respectively. Within the 0–100 cm soil layer, TC and TN increased from 92.68 to 112.83 Mg ha?1 and from 9.34 to 12.03 Mg ha?1 and from 79.60 to 114.86 Mg ha?1 and from 8.93 to 11.44 Mg ha?1 for seedfarms and non-seedfarms, respectively. No significant difference was observed between the two main soil types, Inceptisols and Vertisols, in Java. Intensive use of sawah over a long time may eliminate the original difference in the properties of these two soil types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号