首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Kormendy J 《Science (New York, N.Y.)》2000,289(5484):1484-1485
Supermassive black holes (BHs) have long been implicated in explaining active galactic nuclei such as quasars. In his Perspective, Kormendy discusses recent work that suggests a larger role for these objects. The Hubble Space Telescope has provided many new detections of BHs, and these new results indicate that they play an important role in the galaxy formation processes.  相似文献   

2.
The physical nature of ultraluminous x-ray sources is uncertain. Stellar-mass black holes with beamed radiation and intermediate black holes with isotropic radiation are two plausible explanations. We discovered radio emission from an ultraluminous x-ray source in the dwarf irregular galaxy NGC 5408. The x-ray, radio, and optical fluxes as well as the x-ray spectral shape are consistent with beamed relativistic jet emission from an accreting stellar black hole. If confirmed, this would suggest that the ultraluminous x-ray sources may be stellar-mass rather than intermediate-mass black holes. However, interpretation of the source as a jet-producing intermediate-mass black hole cannot be ruled out at this time.  相似文献   

3.
Binary supermassive black holes are produced by galactic mergers as the black holes from the two galaxies fall to the center of the merged system and form a bound pair. The two black holes will eventually coalesce in an enormous burst of gravitational radiation. Here we show that the orientation of a black hole's spin axis would change dramatically even in a minor merger, leading to a sudden flip in the direction of any associated jet. We identify the winged or X-type radio sources with galaxies in which this has occurred. The inferred coalescence rate is similar to the overall galaxy merger rate, implying that of the order of one merger event per year could be detected by gravitational wave interferometers.  相似文献   

4.
Supermassive black holes (SMBHs) are a ubiquitous component of the nuclei of galaxies. It is normally assumed that after the merger of two massive galaxies, a SMBH binary will form, shrink because of stellar or gas dynamical processes, and ultimately coalesce by emitting a burst of gravitational waves. However, so far it has not been possible to show how two SMBHs bind during a galaxy merger with gas because of the difficulty of modeling a wide range of spatial scales. Here we report hydrodynamical simulations that track the formation of a SMBH binary down to scales of a few light years after the collision between two spiral galaxies. A massive, turbulent, nuclear gaseous disk arises as a result of the galaxy merger. The black holes form an eccentric binary in the disk in less than 1 million years as a result of the gravitational drag from the gas rather than from the stars.  相似文献   

5.
Supermassive black holes (SMBHs; mass is greater than or approximately 10(5) times that of the Sun) are known to exist at the center of most galaxies with sufficient stellar mass. In the local universe, it is possible to infer their properties from the surrounding stars or gas. However, at high redshifts we require active, continuous accretion to infer the presence of the SMBHs, which often comes in the form of long-term accretion in active galactic nuclei. SMBHs can also capture and tidally disrupt stars orbiting nearby, resulting in bright flares from otherwise quiescent black holes. Here, we report on a ~200-second x-ray quasi-periodicity around a previously dormant SMBH located in the center of a galaxy at redshift z = 0.3534. This result may open the possibility of probing general relativity beyond our local universe.  相似文献   

6.
Lo KY 《Science (New York, N.Y.)》1986,233(4771):1394-1403
Studies of active galactic nuclei constitute one of the major efforts in astronomy. Massive black holes are the most likely source for the enormous energy radiated from such nuclei. Observations reviewed here suggest unusual activity and the possible existence of a massive black hole in the nucleus of our galaxy. Because of its proximity to Earth, our galactic nucleus can be observed in unsurpassed detail and may serve as the Rosetta stone both for deciphering active galactic nuclei and for confirming the existence of a massive black hole.  相似文献   

7.
在磁场提取黑洞旋转能量的统一模型基础上,给出了MC过程的功率和力矩表达式;并计算了MC过程情况下吸积盘辐射的高发射率指数α.通过研究发现,XMM-Newton天文卫星对Seyfert-1型MCG-6-30-15星系观测到的发射率指数能很好地被有MC过程情况下的薄盘辐射所拟合.  相似文献   

8.
Bally J 《Science (New York, N.Y.)》1986,232(4747):185-193
The interstellar medium in our galaxy contains matter in a variety of states ranging from hot plasma to cold and dusty molecular gas. The molecular phase consists of giant clouds, which are the largest gravitationally bound objects in the galaxy, the primary reservoir of material for the ongoing birth of new stars, and the medium regulating the evolution of galactic disks.  相似文献   

9.
Images of the molecular CO 2-1 line emission and the radio continuum emission from the redshift 4.12 gravitationally lensed quasi-stellar object (QSO) PSS J2322+1944 reveal an Einstein ring with a diameter of 1.5". These observations are modeled as a star-forming disk surrounding the QSO nucleus with a radius of 2 kiloparsecs. The implied massive star formation rate is 900 solar masses per year. At this rate, a substantial fraction of the stars in a large elliptical galaxy could form on a dynamical time scale of 108 years. The observation of active star formation in the host galaxy of a high-redshift QSO supports the hypothesis of coeval formation of supermassive black holes and stars in spheroidal galaxies.  相似文献   

10.
A new computer code can solve Einstein's equations of general relativity for the dynamical evolution of a relativistic star cluster. The cluster may contain a large number of stars that move in a strong gravitational field at speeds approaching the speed of light. Unstable star clusters undergo catastrophic collapse to black holes. The collapse of an unstable cluster to a supermassive black hole at the center of a galaxy may explain the origin of quasars and active galactic nuclei. By means of a supercomputer simulation and color graphics, the whole process can be viewed in real time on a movie screen.  相似文献   

11.
12.
Mergers play an important role in galaxy evolution and are key to understanding the correlation between central-black hole mass and host-galaxy properties. We used the new technology of adaptive optics at the Keck II telescope to observe NGC 6240, a merger between two disk galaxies. Our high-resolution near-infrared images, combined with radio and x-ray positions, revealed the location and environment of two central supermassive black holes. Each is at the center of a rotating stellar disk, surrounded by a cloud of young star clusters. The brightest of these young clusters lie in the plane of each disk, but surprisingly are seen only on the disks' receding side.  相似文献   

13.
High-resolution x-ray observations of the prototype starburst galaxy Messier 82 (M82) obtained with the advanced CCD (charge-coupled device) imaging spectrometer on board the Chandra X-ray Observatory provide a detailed view of hot plasma and energetic processes. Plasma with temperature of about 40,000,000 kelvin fills the inner 1 kiloparsec, which is much hotter than the 1,000,000 to 2,000,000 kelvin interstellar medium component in the Milky Way Galaxy. Produced by many supernova explosions, this central region is overpressurized and drives M82's prominent galactic wind into the intergalactic medium. We also resolved about 20 compact x-ray sources, many of which could be high-mass x-ray binary star systems containing black holes.  相似文献   

14.
Irion R 《Science (New York, N.Y.)》2000,290(5496):1488-1491
A generation of physicists probing the extremes of gravity can trace its scientific heritage to one man: Kip Thorne of the California Institute of Technology. A recent symposium to mark Thorne's 60th birthday brought together nearly 200 experts on gravity at its strongest and strangest: the domains of black holes, colliding neutron stars, and other exotic deep-space objects. Participants came to honor their mentor, who has led the way in converting Albert Einstein's General Theory of Relativity from a purely theoretical science into an astrophysical and observational one.  相似文献   

15.
Of all the galaxies in the visible part of the universe, 500 million are seen through intervening galaxies. In some instances the foreground galaxy will act as a gravitational lens and produce distorted and (in brightness) greatly amplified images of the galaxy behind it; such images may simulate starlike superluminous objects such as quasars (quasi-stellar objects). The number of gravitational lenses is several times greater than the number of quasars yet observed. In other instances the superposition of the image upon a visible foreground galaxy may simulate morphological configurations resembling N-type, dumbbell, spiral, or barred-spiral galaxies.  相似文献   

16.
Pines D 《Science (New York, N.Y.)》1980,207(4431):597-606
During the past 8 years, extended temporal and broadband spectroscopic studies carried out by x-ray astronomical satellites have led to the identification of specific compact x-ray sources as accreting neutron stars, black holes, and degenerate dwarf stars in close binary systems. Such sources provide a unique opportunity to study matter under extreme conditions not accessible in the terrestrial laboratory. Quantitative theoretical models have been developed which demonstrate that detailed studies of these sources will lead to a greatly increased understanding of dense and superdense hadron matter, hadron superfluidity, high-temperature plasma in superstrong magnetic fields, and physical processes in strong gravitational fields. Through a combination of theory and observation such studies will make possible the determination of the mass, radius, magnetic field, and structure of neutron stars and degenerate dwarf stars and the identification of further candidate black holes, and will contribute appreciably to our understanding of the physics of accretion by compact astronomical objects.  相似文献   

17.
Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.  相似文献   

18.
The past 10 years have witnessed a change of perspective in the way astrophysicists think about massive black holes (MBHs), which are now considered to have a major role in the evolution of galaxies. This appreciation was driven by the realization that black holes of millions of solar masses and above reside in the center of most galaxies, including the Milky Way. MBHs also powered active galactic nuclei known to exist just a few hundred million years after the Big Bang. Here, I summarize the current ideas on the evolution of MBHs through cosmic history, from their formation about 13 billion years ago to their growth within their host galaxies.  相似文献   

19.
Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ~100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.  相似文献   

20.
Numerical simulations have revealed two types of physical structures, made from curved spacetime, that are attached to black holes: tendexes, which stretch or squeeze anything they encounter, and vortexes, which twist adjacent inertial frames relative to each other. When black holes collide, their tendexes and vortexes interact and oscillate (a form of nonlinear dynamics of curved spacetime). These oscillations generate gravitational waves, which can give kicks up to 4000 kilometers per second to the merged black hole. The gravitational waves encode details of the spacetime dynamics and will soon be observed and studied by the Laser Interferometer Gravitational Wave Observatory and its international partners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号