首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TIBL-1RS wheat-rye translocation cultivars utilized in wheat programmes worldwide carry powdery mildew resistance gene Pm8. Cultivar‘Amigo’possesses resistance gene Pm17 on its TIAL-1RS translocated chromosome. To be able to use Pm17efficiently in breeding programmes, this gene was transferred to a TIBL-1RS translocation in line Helami-105, and allelism between Pm8 and Pm17was studied. The progenies of the hybrids in the F2 generation and F3 families provided evidence that the two genes are allelic. Genetic studies using monosomic analyses confirmed that in cultivar‘Amigo', Pm17 and leaf rust resistance gene Lr24 are located on a translocated chromosome involving 1 A and 1B, respectively.  相似文献   

2.
Summary The expression of rust resistances conferred by closely linked genes derived from VPM1 varied with environmental conditions and with genetic backgrounds. Under low light and low temperature conditions seedlings carrying Yr17 showed susceptible responses. Stem rust and leaf rust resistance genes Sr38 and Lr37 tended to confer more resistance at 17±2° C than at normal temperatures above > 20° C. These studies supported the hypothesis that Yr17, Lr37 and Sr38 were derived from Aegilops ventricosa, whereas Pm4b was probably derived from T. persicum. Studies on certain addition lines and parental stocks indicated that wheat cytoplasm may enhance the expression of Sr38.  相似文献   

3.
The powdery mildew resistance allele Pm5d in the backcross-derived wheat lines IGV1-455 (CI10904/7*Prins) and IGV1-556 (CI10904/7*Starke) shows a wide spectrum of resistance and virulent pathotypes have not yet been detected in Germany. Although this allele may be distinguished from the other documented Pm5 alleles by employing a differential set of Blumeria graminis tritici isolates, the use of linked molecular markers could enhance selection, especially for gene pyramiding. Pm5d was genetically mapped relative to six microsatellite markers in the distal part of chromosome 7BL using 82 F3 families of the cross Chinese Spring × IGV1-455. Microsatellite-based deletion line mapping placed Pm5d in the terminal 14% of chromosome 7BL. The closely linked microsatellite markers Xgwm577 and Xwmc581 showed useful variation for distinguishing the different Pm5 alleles except the ones originating from Chinese wheat germplasm. Their use, however, would be limited to particular crosses because they are not functional markers. The occurrence of resistance genes closely linked to the Pm5 locus is discussed. Ghazaleh Nematollahi and Volker Mohler equally contributed to this work.  相似文献   

4.
5.
Z. J. Pu    G. Y. Chen    Y. M. Wei    W. Y. Yang    Z. H. Yan    Y. L. Zheng 《Plant Breeding》2010,129(1):53-57
Stripe rust, caused by Puccinia striiformis f. sp. tritici (PST), is one of the most devastating diseases in common wheat ( Triticum aestivum L.). With the objective of identifying and tagging a new gene for resistance to stripe rust in wheat line P81, F1, F2 and F2:3 populations from the cross 'Chuanmai 28'/P81 were inoculated with Chinese PST race CYR32 in greenhouse and field trials. P81 carried a single dominant gene for resistance (designated YrP81 ) to CYR32. Tests of allelism showed that YrP81 was different from Yr5 , Yr10 , Yr15 and Yr26 . Simple sequence repeat (SSR) and resistance gene-analogue polymorphism (RGAP) between the parents were used for genotyping the F2 populations. YrP81 was closely linked to four SSR loci on chromosome 2BS with genetic distances of 18.3 cM ( Xwmc25 ), 1.8 cM ( Xgwm429 ), 4.1 cM ( Xwmc770 ) and 5.3 cM ( Xgwm148 ). Two RGAP markers RGA1 (NLRR/XLRR) and RGA2 (Pto kin4/NLRR-INV2) were also closely linked to YrP81 with genetic distances of 4.7 and 6.3 cM, respectively. The linkage map of YrP81 and molecular markers was established in the order Xwmc25 - RGA2 - RGA1 - Xgwm429 - YrP81 - Xwmc770 - Xgwm148 . Pedigree analysis, response patterns with Chinese PST races and associations with markers suggested that YrP81 is a novel stripe rust resistance gene. The PCR-based microsatellite and RGAP markers identified here could be applied in selection of YrP81 in wheat breeding.  相似文献   

6.
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating wheat diseases worldwide. Triticum aestivum-Haynaldia villosa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B, are resistant to most races of Pst used in virulence tests. In order to better utilize Yr26 for wheat improvement, we attempted to screen SSR and EST-based STS markers closely linked with Yr26. A total of 500 F2 plants and the F2:3 progenies derived from a cross between 92R137 and susceptible cultivar Yangmai 5 were inoculated with race CYR32. The analysis confirmed that stripe rust resistance was controlled by a single dominant gene, Yr26. Among 35 pairs of genomic SSR markers and 81 pairs of STS markers derived from EST sequences located on chromosome 1B, Yr26 was flanked by 5 SSR and 7 STS markers. The markers were mapped in deletion bins using CS aneuploid and deletion lines. The closest flanking marker loci, Xwe173 and Xbarc181, mapped in 1BL and the genetic distances from Yr26 were 1.4 cM and 6.7 cM, respectively. Some of these markers were previously reported on 1BS. Eight common wheat cultivars and lines developed from the T. aestivum-H. villosa 6VS/6AL translocation lines by different research groups were tested for presence of the markers. Five lines with Yr26 carried the flanking markers whereas three lines without Yr26 did not. The results indicated that the flanking markers should be useful in marker-assisted selection for incorporating Yr26 into wheat cultivars.  相似文献   

7.
The 1BL.1RS wheat-rye translocation from Petkus rye has contributed substantially to the world wheat production. However, following the breakdown of disease resistance genes in 1RS, its importance for wheat improvement decreased. We have developed a new 1BL.1RS line, R14, by means of crossing rye inbred line L155, selected from Petkus rye to several wheat cultivars. One new gene each, for stripe rust and powdery mildew resistance, located on 1RS of the line R14, are tentatively named YrCn17 and PmCn17. YrCn17 and PmCn17 confer resistance to Puccinia striiformis f. sp. tritici pathotypes that are virulent on Yr9, and Blumeria graminis f. sp. tritici pathotypes virulent on Pm8. These two new resistances, YrCn17 and PmCn17, are now available for wheat improvement programs. The present study indicates that rye cultivars may carry yet untapped variations as potential sources of resistance.  相似文献   

8.
杨作民  唐伯让 《作物学报》1994,20(4):385-394
自1979年起,逐步形成了一套包括抗源搜集、筛选、分析、遗传研究和转育等5个步骤的抗源搜集、研究和应用体系。目的在于寻求尽可能多的,不同于1BL/1RS所含有的Yr9,Lr26和Pm8的,多样化的第二线抗源,并将它们转育到较好的遗传背景中去。至目前为止,已找到33个不同于上述基因的二线抗源,并用其中一些育成了62个农艺性状大  相似文献   

9.
白粉病是影响小麦产量和品质的一种主要病害。小偃麦衍生品系CH1357对白粉病具有较好的成株抗性,苗期对27个菌株表现为免疫或高抗,是一个高抗白粉病的优异抗源。为了明确其抗白粉病基因在染色体上的位置,对台长29/CH1357和绵阳11/CH1357的F_1、BC_1及F_(2:3)家系进行了遗传分析,并利用分离群体分组分析法(bulked segregantanalysis,BSA)将其初步定位。CH1357的白粉病抗性受1对显性核基因控制,位于染色体5DS,暂命名为PmCH1357。其侧翼连锁标记为Xcfd81和Xbwm8,在2个作图群体台长29/CH1357和绵阳11/CH1357中的遗传距离分别为2.0 cM/11.3 cM和1.5 cM/8.9 cM。PmCH1357与5DS染色体上已报道的其他抗白粉病基因抗谱不同,可能是一个新的抗源。  相似文献   

10.
Summary Genes Yr1 for resistance to stripe rust and Pm4a for resistance to powdery mildew showed linkage of 2.0±0.6 cM. Close repulsion linkage probably accounts for the absence in European wheats of genes Yr1 and Pm4b in combination.  相似文献   

11.
四川省是小麦条锈菌新小种产生的重要地区之一,了解2016年以来四川小麦育成品种(系)对当前流行的条锈菌生理小种和致病类型的抗性水平以及明确其抗条锈病基因的分布状况,可为四川育种防控小麦抗条锈病和品种布局提供理论依据。本研究选择2个小种CYR32和CYR34对78份四川小麦育成品种(系)进行苗期鉴定,利用当前小麦条锈菌优势小种CYR32、CYR33、CYR34,以及贵22-14、贵农致病类群等混合菌进行成株期人工接种鉴定,并利用19个抗条锈病QTL和基因QYr.nwafu-4BL、Yr5、Yr10、Yr15、Yr17、Yr18、Yr26、Yr28、Yr29、Yr30、Yr36、Yr39、Yr41、Yr48、Yr65、Yr67、Yr78、Yr80和Yr81的分子标记对供试材料进行抗条锈病基因检测。结果表明,在78份供试材料的苗期鉴定中,对CYR32表现出抗性的有60份,占76.92%;对CYR34表现出抗性的有40份,占51.28%;同时对CYR32和CYR34表现抗性的有36份,占46.15%。78份小麦品种(系)在成株期均表现抗条锈病,其中绵麦835、蜀麦1743、蜀麦1829和蜀麦1...  相似文献   

12.
While studying powdery mildew resistance in a recombinant line (code 81882) derived from a Hordeum vulgare (cv. ‘Vada’) ×Hordeum bulbosum hybrid, a low infection type of resistance to leaf rust was observed. To determine the mode of inheritance of the leaf rust resistance and whether there was linkage between the two resistances, F2 and F3 progenies from crosses between 81882 and ‘Vada’ were inoculated with the leaf rust and powdery mildew pathogens. Southern blots were prepared using restricted DNA extracted from leaves of 82 F2 plants and four chromosome 2HS sequences were hybridized with the blots to define the length of the introgression. The leaf rust resistance appears to be inherited as a single dominant gene on chromosome 2HS, which co-segregates with the powdery mildew resistance. There was an almost complete association between the resistances and the respective molecular markers, but it is likely that the strong linkage results from the frequent inheritance of the introgressed H. bulbosum DNA as an intact segment of chromatin with only low levels of recombination within the segment.  相似文献   

13.
小麦品系抗小麦白粉病基因分子标记鉴定   总被引:8,自引:2,他引:6  
利用与3个抗小麦白粉病基因(PmPS5A, PmPS5B, PmY39)连锁的微卫星标记对分别由波斯小麦PS5和(或)小伞山羊草Y39衍生的72个小麦抗病品系进行了抗白粉病基因鉴定。在24个由波斯小麦PS5和小伞山羊草Y39合成的双二倍体Am9衍生的品系中,有2个品系含有PmPS5A的标记,有19个品系含有PmPS5B的标记,有7个品系含有PmY39的标记,还有  相似文献   

14.
J. S. Niu    B. Q. Wang    Y. H. Wang    A. Z. Cao    Z. J. Qi    T. M. Shen 《Plant Breeding》2008,127(4):346-349
Wheat lines known as 'Lankao 90(6)', derived from the cross 'Mzalenod Beer' (hexaploid triticale)/'Baofeng 7228'//'90 Xuanxi', carry a recessive powdery mildew resistance gene temporarily named PmLK906 . Gene PmLK906 appears to be different from known wheat powdery mildew resistance genes. PmLK906 was tagged using microsatellite markers in a segregating population derived from the cross 'Chinese Spring'/'Lankao 90(6)21-12'. The dominant microsatellite marker Xgwm265-2AL was linked in repulsion with PmLK906 at a genetic distance of 3.72 cM, whereas the co-dominant Xgdm93-2AL was linked to PmLK906 at a genetic distance of 6.15 cM. Both markers were placed on chromosome arm 2AL using 'Chinese Spring' nulli-tetrasomic lines. The recessive PmLK906 has a different specificity to the dominant resistance alleles located at the Pm4 locus and appeared to be located to a locus different from Pm4 .  相似文献   

15.
Liu Shubing  Wang Honggang 《Euphytica》2005,143(1-2):229-233
Among the progenies of a hybrid between common wheat Triticum aestivum L. cv. Yannong 15 and Thinopyron intermedium, plant E99018 was identified with the chromosome number 2n = 42 and stable agronomic traits. An analysis of the metaphase chromosome pairing indicated that it formed 21 bivalents but that 2 univalents were present in the F1 hybrid of this plant with common wheat. Resistance verification by race 15 and with mixed races of Blumeria graminis f. sp. tritici at the seedling and adult stages showed that at both stages, the plant was immune to powdery mildew. In situ hybridization with the genomic Th. intermedium and the St genome DNAs as probes and wheat DNA as a block has shown that it contained a pair of Th. intermedium chromosomes. On the basis of the hybridization pattern of the St genome probe to the critical chromosome, a conclusion was reached that this pair of chromosomes belonged to the E genome. Therefore, plant E99018 was a spontaneously formed substitution line. An analysis by 116 SSR markers indicated that the substituted wheat chromosome was 2D and the most likely substitution in E99018 is 2E(2D).  相似文献   

16.
Special and degenerate primers are designed according to the conservative sequence of barley powdery mildew resistance genes Mla1, Mla6, and Mla13. Two wheat Mla-like orthologs, TaMla-2 and TaMla-3 are cloned and sequenced from the cDNA of wheat resistant-powdery mildew line TAM104R by RT-PCR method. TaMla-2 and TaMla-3 encode distinct but highly related coiled-coil nucleotide-binding site leucine-rich repeat type (NBS-LRR) resistant disease proteins and both reveal about 74 and 81% identity with amino acid sequence of Mla1, respectively. They are multiple copies in wheat genomes, one copy of them is mapped on wheat chromosome 1AL and two on 1BL using Chinese Spring nulli-tetra-somic lines and ditelosomic lines of 1A, 1B and 1D in southern analysis. This result suggests that may be the two Mla-like genes originated from the two diploid ancestral genomes, respectively. The expression pattern analysis of semi-quantitative PCR shows the TaMla genes are mainly expressed in leaf and sheath, and expression level is enhanced in organs infected by Erysiphe graminis, suggesting that TaMla-2 and TaMla-3 are powdery mildew resistance related-genes in wheat. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

17.
18.
The powdery mildew resistance gene Pm6, transferred to common wheat from the tetraploid Triticum timopheevii, is effective in most epidemic areas for powdery mildew in China. RFLP probe BCD135 was previously associated with Pm6. In the present research, four STS primers (NAU/STSBCD135-1, NAU/STSBCD135-2, STS003 and STS004) were designed from the sequence data of BCD135. These primers were used for PCR amplification using the genomic DNA of resistant near-isogenic lines with Pm6 and their recurrent parent, cv. Prins. No polymorphic product was observed using primers STS003 and STS004; however, primers NAU/STSBCD135-1 and NAU/STSBCD135-2 amplified two and one bands, respectively, polymorphic between the resistant near-isogenic-lines and Prins. The two primers were then used to amplify the F2 population from the cross IGV1-465 (FAO163b/7*Prins) × Prins. The amplification and the powdery mildew resistance identification data were analyzed using the software Mapmaker 3.0. The results indicated that both NAU/STSBCD135-1 and NAU/STSBCD135-2 were closely linked to Pm6 with a genetic distance of 0.8 cM. A total of 175 commercial varieties without Pm6 from different ecological areas of China were tested using marker NAU/STSBCD135-2 and none of them amplified the 230 bp-specific band. This marker thus has high practicability and can be used in MAS of Pm6 in wheat breeding programs for powdery mildew resistance. Jianhui Ji and Bi Qin contributed equally to this work.  相似文献   

19.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

20.
Summary Four spring wheat (Triticum aestivum L.) varieties differing in origin and reaction in the seedling stage to pathotype CDL-6 (extant in California) were intercrossed and examined in greenhouse conditions in F1, F2, and F3 generations. Digenic and transgressive segregation was found in all crosses. The four varieties each had infection types (1 immune, 9 susceptible) and putative resistance genes as follows: Anza, IT 7, YrA; Glennson 81, IT 2, Yr9; Yecora Rojo, IT 6, YrC; and Ollanta, IT 4–6, YrL. Anza was classified as susceptible, Yecora Rojo and Ollanta as intermediate in seedling resistance, and Glennson 81 as resistant in the seedling stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号