首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of urea concentration, soil moisture content, period of storage of soil samples, temperature and toluene on the urease activity of fifteen Trinidad soils were investigated. From the multiple regression analysis of clay content, organic carbon, CEC and amorphous Fe and Al and the urease activity of the soils, it was found that the urease activity in the presence of toluene was largely associated with the clay-organic matter complex whereas in the absence of toluene it was associated with the organic matter of the soils.  相似文献   

2.
汞和镉对土壤脲酶活性影响   总被引:27,自引:2,他引:27  
研究结果表明 ,汞、镉对土壤脲酶活性具有显著的抑制作用 ,抑制幅度和强度分别以汞镉和汞为最大 ;相关分析显示 ,脲酶活性可作为土壤Hg及Hg Cd污染程度的生化监测指标 ;当Hg、Cd含量分别达到 1 6 1 3~ 2 6 4 7mgkg- 1 和 477 78mgkg- 1 时 ,土壤已受到严重污染 ;在汞镉复合条件下 ,抑制仍以单独影响为主 ,且汞、镉间存在较弱的拮抗作用 ;温度和尿素浓度升高 ,可增强重金属对土壤脲酶活性的抑制作用。  相似文献   

3.
Summary Soil enzyme activities (acid and alkaline phosphatase, arylsulfatase, -glucosidase, urease and amidase) were determined (0- to 20-cm depth) after 55 years of crop-residue and N-fertilization treatment in a winter wheat (Triticum aestivum L.)-fallow system on semiarid soils of the Pacific Northwest. All residues were incorporated and the treatments were: straw (N0), straw with fall burn (N0FB), straw with spring burn (N0SB), straw plus 45 kg N ha–1 (N45), straw plus 90 kg N ha–1 (N90), straw burned in spring plus 45 kg N ha–1 (N45SB), straw burned in spring plus 90 kg N ha–1 (N90SB), straw plus 2.24 T ha–1 pea-vine residue and straw plus 22.4 T ha–1 of straw-manure. Enzyme activities were significantly (P<0.001) affected by residue management. The highest activities were observed in the manure treated soil, ranging from 36% (acid phosphatase) to 190% increase in activity over the control (N0). The lowest activities occurred in the N0FB (acid phosphatase, arylsulfatase and -glucosidase) and N90 treated soils (alkaline phosphatase, amidase and urease). Straw-burning had a significant effect only on acid phosphatase activity, which decreased in spring burn treated soil when inorganic N was applied. Urease and amidase activity decreased with long-term addition of inorganic N whereas the pea vine and the manure additions increased urease and amidase activity. There was a highly significant effect from the residue treatments on soil pH. Arylsulfatase, urease, amidase and alkaline phosphatase activities were positively correlated and acid phosphatase activity was negatively correlated with soil pH. Enzyme activities were strongly correlated with soil organic C and total N content. Except for acid phosphatase, there was no significant relationship between enzyme activity and grain yield.Journal Paper No. 8072 of the Agricultural Experimental Station, Oregon State University, Corvallis, OR 97331, USA  相似文献   

4.
Urease activity (by buffer and non-buffer method) of soils of different agro-ecosystems in alluvial soil was studied. Urease activity by buffer method records a higher value than the non-buffer method. Both the methods showed significant positive correlation (0.99**) between each other. Urease activity by both methods showed positive correlation with organic matter (0.88** and 0.89**, buffer method) and clay content (0.91** and 0.83*, non-buffer method)) of the soils. Multiple regression analysis showed that the stabilization of urease activity in the soils studied was due to an organic matter?–?enzyme complex. Among the organic matter humus C plays a dominating role to control the urease activity of the soils.  相似文献   

5.
Determination of urease activity by two different methods in some soils and underwater soils Two methods differing in microbial activity during incubation with urea were used for the determination of urease activity. The results obtained showed a better relationship with natural conditions such as pH, organic substance-, or clay content, if the microbial activity was not inhibited during incubation. This effect was found to be particularly pronounced in underwater soils, where addition of a bacteriostatic substance (toluene) resulted in practically uniform values that reflected neither bacterial nor nutrient status.  相似文献   

6.
不同栽培条件下蔬菜塑料大棚土壤氮磷生物转化特征   总被引:2,自引:0,他引:2  
为了从土壤生物学角度评价太湖地区不同栽培条件下蔬菜塑料大棚土壤肥力与质量,该研究调查了江苏省宜兴市不同蔬菜品种、不同栽培年限、不同栽培方式及不同土壤深度的蔬菜塑料大棚土壤氮磷生物学特性.结果显示,土壤脲酶活性受不同蔬菜品种影响,栽种黄瓜的土壤脲酶活性显著小于栽种茄子的土壤.随着栽培年限的增加,土壤脲酶活性与氨氧化细菌数量明显增加.在种植同一种蔬菜(黄瓜)条件下,基质槽培下理化性状与部分生物学指标优于土壤栽培.蔬菜塑料大棚土壤脲酶活性与氨氧化细菌数量随着土壤深度的增加总体呈缓慢降低的趋势,中性磷酸酶活性随土壤深度增加先升高而后降低;与相同土层的露地土壤相比,蔬菜塑料大棚土壤理化性状逐渐恶化,土壤脲酶活性和氨氧化细菌数量相对较高.这些结果可以为该地区蔬菜塑料大棚土壤的可持续利用提供初步的土壤生物学依据.  相似文献   

7.
东北黑土有机碳的分布及其损失量研究   总被引:11,自引:0,他引:11  
为了分析东北黑土土壤有机碳(SOC)的分布特征及其开垦以来黑土SOC的损失程度,我们于2004~2005年在黑龙江和吉林两省采集了32个自然黑土剖面样品,在每个自然黑土样品附近对应采集32个景观条件相似的耕作黑土样品。结果表明,自然黑土样品0~30cm土层SOC含量平均为32.20 g kg-1,最高可达63.46 g kg-1,黑龙江省自然黑土SOC含量(34.55 g kg-1)高于吉林省(23.80 g kg-1)。耕作土壤SOC平均含量为22.71 g kg-1,远低于自然土壤。受温度的影响,随着纬度的增加,自然黑土与耕作黑土SOC含量逐渐递增。由于土壤侵蚀以及耕垦和去除作物残留物等农业管理措施的综合作用,使得耕作黑土表层SOC含量小于自然黑土。与自然黑土相比,耕作黑土0~10cm土层SOC损失量在26.84%~46.57%之间,亚表层损失相对较少。黑土SOC含量下降也是土壤水土流失致使黑土层变薄的一个直接表现。耕作黑土表层流失厚度可以通过自然与耕作黑土剖面SOC含量的分异差值来估算。通过对土壤剖面上SOC的分布进行校正剔除土壤侵蚀的影响后得到的同等深度SOC含量的差值才可视为由耕作以及有机质输入量差异等因素造成的SOC损失量。未经校正而进行的自然黑土和耕作黑土同一深度SOC含量的比较可能过高估计了农业管理措施对土壤SOC损失量的影响。  相似文献   

8.
A simple method of studying the abilities of different compounds to inhibit urease activity in soils is described. It involves determination of the effect of the test compound on the amount of urea hydrolyzed by incubation of soils with urea and toluene at 37°C for 5 hr, urea hydrolysis being estimated by colorimetric determination of urea in the extracts obtained by treatment of the incubated samples with 2 M KC1 containing a urease inhibitor (phenylmercuric acetate). The method is rapid and precise, and it is readily adapted for studies of the rate of inactivation of urease inhibitors in soils.  相似文献   

9.
Knowledge of the cycling and compartmentalization of soil C that influence C storage may lead to the development of strategies to increase soil C storage potentials. The objective of this study was to use soil hydrolases and soil aggregate fractionation to explore the relationship between C cycling activity and soil aggregate structure. The prairie chronosequence soils were native prairie (NP) and agricultural (AG) and tallgrass prairies restored from agriculture in 1979 (RP-79) and 1993 (RP-93). Assays for -glucosidase (E.C. 3.2.1.21) and N-acetyl--glucosaminidase (NAGase, EC 3.2.1.30) activities were conducted on four aggregate size fractions (>2 mm, 1–2 mm, 250 m–1 mm, and 2–250 m) from each soil. There were significantly greater amounts of >2-mm aggregates in the RP-79 and RP-93 soils compared to the NP and AG soils due to rapid C accumulation from native plant establishment. Activities for both enzymes (g PNP g–1 soil h–1) were greatest in the microaggregate (2–250 m) compared to the macroaggregate (>2 mm) fraction; however, microaggregates are a small proportion of each soil (<12%) compared to the macroaggregates (75%). The RP soils have a hierarchical aggregate system with most of the enzyme activity in the largest aggregate fractions. The NP and AG soils show no hierarchical structure based on aggregate C accretion and significant C enzyme activity in smaller aggregates. The distribution of enzyme activity may play a role in the storage of C whereby the aggrading restored soils may be more susceptible to C loss during turnover of macroaggregates compared to the AG and NP soils with less macroaggregates.  相似文献   

10.
潮土和潮褐土中重金属形态与土壤酶活性的关系   总被引:21,自引:0,他引:21  
刘霞  刘树庆  唐兆宏 《土壤学报》2003,40(4):581-587
采用大田取样 ,运用连续提取方法 ,研究了河北平原潮土、潮褐土两种土壤中Cd、Pb的化学形态特征与四种土壤酶 (脲酶、H2 O2 酶、转化酶、碱性磷酸酶 )活性间的关系。结果表明 :大田两种土壤中交换态Cd、Pb对脲酶活性有显著抑制作用。因此 ,在石灰性土壤中 ,把交换态Cd、Pb和脲酶活性共同作为评价土壤Cd、Pb污染程度的主要生化指标是可行的  相似文献   

11.
Urease activity, phosphatase activity, and sulfatase activity were detected in soils at ?10 and ?20°C. The occurrence of enzyme activity in soils at subzero temperatures is attributed to enzyme-substrate interaction in unfrozen water at the surfaces of soil particles. Support for this explanation was obtained from experiments showing that hydrolysis of urea by jackbean urease occurs at ?10 or ?20°C in the presence, but not in the absence, of clay minerals or autoclaved soils. No enzyme activity could be detected in soils at ?30°C.  相似文献   

12.
I. Celik   《Soil & Tillage Research》2005,83(2):270-277
Forest and grassland soils in highlands of southern Mediterranean Turkey are being seriously degraded and destructed due to extensive agricultural activities. This study investigated the effects of changes in land-use type on some soil properties in a Mediterranean plateau. Three adjacent land-use types included the cultivated lands, which have been converted from pastures for 12 years, fragmented forests, and unaltered pastures lands. Disturbed and undisturbed soil samples were collected from four sites at each of the three different land-use types from depths of 0–10 cm and 10–20 cm in Typic Haploxeroll soils with an elevation of about 1400 m. When the pasture was converted into cultivation, soil organic matter (SOM) pool of cultivated lands for a depth of 0–20 cm were significantly reduced by, on average 49% relative to SOM content of the pasture lands. There was no significant difference in SOM between the depths in each land-use type, and SOM values of the forest and pasture lands were almost similar. There was also a significant change in soil bulk density (BD) among cultivation (1.33 Mg m−3), pasture (1.19 Mg m−3), and forest (1.25 Mg m−3) soils at depth of 0–20 cm. Only for the pasture, BD of the depth of 0–10 cm was significantly different from that of 10–20 cm. Depending upon the increases in BD and disruption of pores by cultivation, total porosity decreased accordingly. Cultivation of the unaltered pasture obviously increased the soil erodibility measured by USLE-K factor for each soil depth, and USLE-K factor was approximately two times greater in the cultivated land than in the pasture indicating the vulnerability of the cultivated land to water erosion. The mean weight diameter (MWD) and water-stable aggregation (WSA) were greater in the pasture and forest soils compared to the cultivated soils, and didn’t change with the depth for each land-use type. Aggregates of >4.0 mm size were dominant in the pasture and forest soils, whereas the cultivated soils comprised aggregates of the size ≤0.5 mm. I found that samples collected from cultivated land gave the lowest saturated hydraulic conductivity values regardless of soil depths, whereas the highest values were measured on samples from forest soils. In conclusion, the results showed that the cultivation of the pastures degraded the soil physical properties, leaving soils more susceptible to the erosion. This suggests that land disturbances should be strictly avoided in the pastures with the limited soil depth in the southern Mediterranean highlands.  相似文献   

13.

Purpose

Rice paddy soils undergo pedogenesis driven by periodic flooding and drainage cycles that lead to accumulation of organic matter and the stratification of nutrients and oxygen in the soil profile. Here, we examined the effects of continuous rice cultivation on microbial community structures, enzyme activities, and chemical properties for paddy soils along a chronosequence representing 0–700 years of rice cropping in China.

Materials and methods

Changes in the abundance and composition of bacterial and fungal communities were characterized at three depths (0–5, 5–10, and 10–20 cm) in relation to organic carbon, total nitrogen, dissolved organic carbon, microbial biomass carbon/nitrogen, and activities of acid phosphatase, invertase, and urease.

Results and discussion

Both soil organic carbon and total nitrogen increased over time at all three depths, while pH generally decreased. Microbial abundance (bacteria and fungi) and invertase and urease activity significantly increased with the duration of rice cultivation, especially in the surface layer. Fungal abundance and acid phosphatase activity declined with depth, whereas bacterial abundance was highest at the 5–10-cm soil depth. Profiles of the microbial community based on PCR-DGGE of 16S rRNA indicated that the composition of fungal communities was strongly influenced by soil depth, whereas soil bacterial community structures were similar throughout the profile.

Conclusions

Soil bioactivity (microbial abundance and soil enzymes) gradually increased with organic carbon and total nitrogen accumulation under prolonged rice cultivation. Microbial activity decreased with depth, and soil microbial communities were stratified with soil depth. The fungal community was more sensitive than the bacterial community to cultivation age and soil depth. However, the mechanism of fungal community succession with rice cultivation needs further research.
  相似文献   

14.
水旱轮作地区土壤长期休闲与耕种的肥力效应   总被引:3,自引:1,他引:3  
长期定位试验水旱轮作地区土壤长期休闲和耕种对土壤肥力的影响研究结果表明,长期休闲土壤有机质、全N含量显著高于连续种植作物的土壤,其差异随土壤深度的增加而减小;休闲地15cm以上土层土壤N素矿化势高于耕种地;耕种土壤连续施入猪粪、作物秸秆等有机肥可保持与休闲土壤相当或远高于休闲土壤的有效磷水平,单施化肥或不施肥料的耕种土壤有效磷均低于休闲土壤;休闲和耕种对15-30cm土层土壤缓效钾含量无影响响,15cm以上土层土壤缓效钾含量休闲高于耕种;休闲土壤速效钾含量在整个耕作层(30cm)均高于耕种土壤;休闲土壤PH值略低于耕种土壤。  相似文献   

15.
The activity and kinetic properties of urease in several Malaysian soils were examined. The values for Km and Vmax of the soils computed according to the Hanes equation were in general agreement with other reports as far as magnitudes were concerned. A significant correlation between Km and Vmax was also obtained. The urease activity of the soils was variable, and it was noted that expression of the activity as the time required to hydrolyze half of the applied urea has limited use in soils of low activity. In all soils studied, inhibition of urease activity was effectively achieved using Ag+, while Cu2+ was only effective in two soils, and marginally effective in the other two soils. Urease inhibitors have potential applications in reducing volatilization losses of ammonia derived from urea applied to soils.  相似文献   

16.
Summary Dehydrogenase activity (a measure of microbial biomass), urease activity and CO2 evolution were measured in soils planted to rice (Oryza sativa L.) under three different agricultural practices prevalent in hill regions. The effects of hill slope, terrace and valley agriculture were investigated for two cropping seasons. The valleys and terraces were kept flooded during each cropping season while the hill slopes were cultivated with dryland practices. The type of agricultural practice and the date of observation had a significant influence on enzyme activity and CO2 evolution. A positive correlation was observed between dehydrogenase and urease activity and soil moisture content. Dehydrogenase and urease activity and soil respiration were positively correlated among themselves. The activity of both enzymes and CO2 evolution were highest in valley soils followed by terrace and hill-slope sites.  相似文献   

17.
The influence of air-drying on dehydrogenase, invertase, -glucosidase, urease, phosphatase, arylsulphatase and phenoloxidase activities was measured in three soils affected by anthropogenic activities and in control soils sampled from neighbouring areas. The air-drying changed enzyme activity, but the behaviour was neither site-specific nor enzyme-sensitive. Canonical discriminant analysis of enzymatic activities of both moist fresh and air-dried samples was able to discriminate between altered and unaltered soils irrespective of the site. Numerical alteration indices were developed as a linear function of the seven enzyme activities and the one obtained from fresh sample data was more successful. Air-drying apparently alters in unpredictable ways enzyme activities of soils, which could lead to misinterpretation of results.  相似文献   

18.
Low atmospheric H2 concentrations (0.55 ppmv) are oxidized in soils by a high-affinity activity with typical characteristics of an abiontic soil enzyme. This activity was measured in a meadow cambisol and a forest cambisol. In both soils, the maximum activity was reached at a soil moisture of about 20% water-holding capacity, and was localized in the top Ah horizon. The soils were fractionated by dry sieving and wet filtration into nine different particle-size fractions, ranging from 3 to 2000 m in size. H2 oxidation was measured by three different assays and was compared to the ATP content and microscopic counts of bacteria in the same fractions. In the meadow soil, the specific activities of H2 oxidation increased with the particle size (maximum at 200–500 m), whereas ATP and bacterial counts showed no trend. In the forest soil, the specific activities of H2 oxidation increased with the particle size up to 50–100 m, and then decreased again. ATP and bacterial counts, however, showed the opposite trend, i.e., decreased with an increasing particle size. Thus the H2-oxidizing activity was not correlated with characteristic microbial biomass parameters. Although significant percentage (29–64%) of randomly isolated heterotrophic bacteria was able to oxidize H2, this activity was too small to account for the H2 oxidation in the soil. In both soils, most of the activity present was found in particles of 100–500 m in size. The recovery shifted to smaller size fractions when larger soil aggregates were broken up by wet instead of dry sieving. Attempts to extract the H2-oxidizing activity from the soil particles were unsuccessful.  相似文献   

19.
荒漠盐生植物根际土壤酶活性的变化   总被引:12,自引:0,他引:12  
利用根袋法研究了荒漠盐土和灌耕灰漠土中6种不同荒漠盐生植物根际养分和酶活性特征.结果表明:两种土壤中,根际土全氮含量比非根际土高,但全磷却比非根际土低.根际土有效态养分的变化则与全态相反,6种植物的根际土有效氮含量均显著低于非根际土,除芦苇外,根际土有效磷含量均高于非根际土.6种植物中,钠猪毛菜根际土有效氮亏缺最高,有效磷富集也最少.分析测定了根际土和非根际土转化酶、蛋白酶、过氧化氢酶、脲酶、中性磷酸酶和碱性磷酸酶活性及其与土壤养分的关系.结果表明:过氧化氢酶、脲酶和蛋白酶在两种土壤的植物根际表现出相反的变化,荒漠盐土中,根际土3种酶的活性均高于非根际土;而灌耕灰漠土的根际土3种酶活性均低于非根际土.荒漠盐土碱性磷酸酶、过氧化氢酶和转化酶与几种主要养分含量有很强的相关性,较好地体现了荒漠盐土根际的养分状况,也说明盐生植物对荒漠盐土酶活性有较大的影响.  相似文献   

20.
Summary We compared the effects of N-(n-butyl) thiophosphoric triamide (NBPT), N-(diaminophosphinyl)-cyclohexylamine (DPCA), phenylphosphorodiamidate (PPD), and hydroquinone on transformations of urea N in soils. The ability of these urease inhibitors to retard urea hydrolysis, ammonia volatilization, and nitrite accumulation in soils treated with urea-decreased in the order NBPT > DPCA PPD > HQ. When five soils were incubated at 30°C for 14 days after treatment with urea (1 mg urea N g–1 soil), on average, the gaseous loss of urea N as ammonia and the accumulation of urea N as nitrite were decreased from 52 to 5 % and from 11 to 1%, respectively, by addition of NBPT at the rate of 10 g g–1 soil (0.47 parts of NBPT per 100 parts of urea). The data obtained support previous evidence that NBPT is more effective than PPD for reduction of the problems encountered in using urea as a fertilizer and deserves consideration as a fertilizer amendment for retarding hydrolysis of urea fertilizer in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号