首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Six beef steers (British x Brahman) cannulated at the rumen, duodenum and ileum (avg wt 334 kg) and three mature steers (British x British) cannulated at the esophagus were used in a replicated 3 x 3 latin square design and fed no supplement (C), .5 kg soybean meal (SBM) or .5 kg steam-flaked sorghum grain (SFS).head-1.d-1 (DM basis) while grazing blue grama rangeland. Periods of the latin square included a minimum of 14 d for adaptation and 11 d for esophageal masticate collection and digesta sampling. In September, October and November, respectively, forage collected by esophageally cannulated steers averaged 74.5, 88.8 and 71.0% grasses; 2.06, 1.53 and 1.77% N and 68.3, (P greater than .10) by treatment, but total N intake was greater (P less than .05) for SBM vs C and SFS treatments. No differences (P greater than .10) were detected among treatments in OM, NDF, ADF and N digestibilities in the rumen, small intestine or hindgut, but total tract OM digestibility was greater (P less than .10) for SBM and SFS than for C, and total tract N digestibility was greater (P less than .10) for SBM than for C or SFS. Duodenal ammonia N flow was greater (P less than .05) when SBM was fed that when SFS and C were fed, but microbial N and non-ammonia, non-microbial N flows and microbial efficiency were not altered by treatment. Likewise, ileal N flow was not affected (P greater than .10) by treatment. Particulate passage rate, gastrointestinal mean retention time, forage in vitro OM disappearance and in situ rate of forage NDF digestion also were not affected (P greater than .10) by treatments. Ruminal fluid volume was greater (P less than .05) for SFS vs SBM and C treatments, but no differences were noted in fluid dilution rate. Ruminal fluid ammonia concentration was greater (P less than .05) when SBM was fed than when SFS and C were fed (13.5, 9.9 and 8.7 mg/dl, respectively), whereas pH and total VFA concentrations were not different (P greater than .10). Proportion of acetate in ruminal fluid was less (P less than .10) for SBM and SFS than for C. Small amounts of supplemental SBM and SFS had little effect on forage intake, ruminal fermentation and site of digestion but both increased total tract OM digestion in steers grazing blue grama rangeland.  相似文献   

2.
Five crossbred beef cows (Hereford x Angus, 428 kg), cannulated in the rumen and duodenum, were used in a Latin square experiment to determine the effects of dietary proportions of fescue (F) and bermudagrass (B) hays (0:1, .25: .75, .5:.5, .75: .25 and 1:0) on digestive function. Feed intake was 85% of ad libitum intake of F alone (1.04% of body weight). Fescue contained 1.19% nitrogen (N), 74.8% neutral detergent fibre (NDF) and 6.3% acid detergent lignin (ADL), and B contained 1.99% N, 84.5% NDF and 6.1% ADL. Ruminal ammonia-N decreased and four- and five-carbon fatty acid concentrations increased linearly (P less than .05) with increasing F. Mean particle size of duodenal digesta was not affected by F level, but specific gravity of duodenal particles changed quadratically (P less than .05) as F rose, being greatest with 25 and 50% F. Ruminal fluid volume was constant, but dilution rate increased linearly (P less than .05) as F increased. Passage rate of B was faster than that of F in mixed diets. Organic matter (OM) flow and digestibilities, true ruminal N disappearance and microbial efficiency were not affected (P greater than .10) by F. True ruminal N disappearance and microbial efficiency were not affected (P greater than .10) by F. True ruminal N disappearance ranged from 73 to 78%, and microbial growth efficiency was between 18 and 22 g microbial N/kg OM fermented. Ruminal digestibilities of NDF, acid detergent fibre (ADF), cellulose and hemicellulose decreased linearly (P less than .05) as F increased, being 68.2, 64.9, 65.6, 61.2 and 61.6% for NDF, 58.9, 54.7, 56.2, 53.3 and 53.2% for ADF, 64.7, 61.3, 62.1, 59.0 and 59.1% for cellulose, and 76.1, 74.4, 75.4, 70.1 and 72.2% for hemicellulose for 0, 25, 50, 75 and 100% F, respectively. Digestive function in beef cows fed mixed F-B diets at a low level of intake related directly to dietary forage proportions and digestive characteristics when forages were fed alone.  相似文献   

3.
Tall fescue hay (H) supplemented with corn and urea (HU) or corn gluten meal (HCGM) and ammoniated tall fescue hay supplemented with corn (AH) or corn gluten meal (AHCGM) were fed to steers in two 4 X 4 Latin-square trials. Diets were fed to four Angus-Hereford steers (550 kg) at equal intakes in trial 1 and to four Hereford steers (350 kg) at ad libitum intakes in trial 2. Ammoniation reduced cell wall concentrations of p-coumaric acid and ferulic acid by 48 and 67%, respectively. Concentrations of other phenolics were also reduced. Apparent total tract digestibilities of vanillin, p-coumaric acid and ferulic acid were lower (P less than .05, .001 and .01, respectively) when nontreated hay was fed in trial 1, but were not different between hay types in trial 2. In trial 1, greater negative intestinal digestibilities of p-coumaric acid (P less than .001) and vanillin (P less than .05) occurred for steers fed HU and HCGM vs AH and AHCGM diets. Digestibilities of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were greater (P less than .001) for steers fed ammoniated hay diets in both trials and greater (P less than .05) for HCGM vs HU in trial 1. More than 96% of the NDF and ADF digested by steers in trial 1 was digested in the stomach. Intakes of digestible NDF and ADF, but not indigestible NDF or ADF, were higher (P less than .001) for steers fed AH and AHCGM in trial 2. In situ dry matter disappearance rate of ammoniated hay was greater (P less than .05) than that of nontreated hay, but rate of cotton thread disappearance from bags suspended in the rumen of steers fed the various diets was similar among treatments. In both trials, feeding ammoniated hay resulted in higher (P less than .05) ruminal concentrations of acetate and higher (P less than 0.05) acetate:propionate ratios. Ruminal liquid dilution rates were lower (P less than .05) for steers fed AH and AHCGM in trial 1, but were not different in trial 2. Ruminal dry matter concentration and solids dilution rate were not affected by diet in either trial. The results are interpreted to indicate that increased intake of ammoniated hay is a result of increased rate and extent of fiber digestion.  相似文献   

4.
Twelve ruminally, duodenally, and ileally cannulated (average initial BW 313 +/- 20 kg) and 27 intact Hereford heifers (average initial BW 256 +/- 17 kg) were used in two experiments to evaluate dairy food wash water solids (WWS) as a protein source in medium-quality hay diets. Heifers received a basal diet of orchardgrass hay (7.4% CP) and were assigned to one of three supplement treatments: control (C; .9% CP), WWS (18.8% CP)-, and soybean meal (SBM; 19.1% CP)-based supplements (fed at 1.5 kg of DM/d). Supplements were formulated to have similar ME concentrations. Ruminal ammonia concentrations were greater (P less than .10) for WWS- and SBM-supplemented heifers than for C heifers at most sampling times. Moreover, WWS and SBM increased (P less than .10) total VFA (mM) and acetate (mol/100 mol) and lowered propionate (mol/100 mol) at several sampling times. Ruminal fluid volume (liters) was unchanged (P greater than .10) by treatment; however, fluid dilution and flow rate (liters/h) were less (P less than .10) in C heifers than in heifers fed SBM or WWS supplements. Wash water solids and SBM supplementation increased (P less than .10) OM, NDF, and ADF digestibilities compared with C heifers. Feeding WWS and SBM supplements increased BW at 84 d (P less than .10) compared with C-supplemented heifers. Forage intake at 54 and 84 d by heifers supplemented with SBM or WWS was greater (P less than .10) than by C heifers. Control-supplemented heifers had the least, WWS intermediate, and SBM the greatest ADG at 84 d (P less than .10; .14 vs .35 vs .48 kg/d, respectively). These data indicate that WWS may be used as a protein source without serious adverse effects in heifers consuming medium-quality hay for 84 d.  相似文献   

5.
An experiment was designed to determine the effects of ruminal and postruminal infusions of ruminally degradable protein (casein) on intake and digestion of low-quality hay by beef steers. Twelve ruminally fistulated Angus x Hereford steers (initial BW = 563 kg) were blocked by weight and assigned to one of three treatments: control (C; hay only) or hay plus ruminal (R) or postruminal (P) infusion of 400 g/d of sodium caseinate. The trial consisted of five periods: 1) 10-d adaptation to the hay diet; 2) 7-d measurement of hay intake (without infusions); 3) 10-d adaptation to protein infusion treatments (intake measurements continued); 4) 7-d measurement of hay intake and digestibility (infusions continued); and 5) 3-d ruminal sampling period (infusions continued). Steers were given ad libitum access to tallgrass-prairie hay (3.4% CP, 76.6% NDF) throughout the study. Casein was administered once daily before feeding, either directly into the rumen or via anchored infusion lines into the abomasum. Hay intake was increased by supplementation (P < 0.01). Ruminal infusion elicited a greater (P = 0.04) increase in hay intake than postruminal infusion. Intake tended (P = 0.11) to be lower in period 4 than in period 2 for control steers but was greater in period 4 than in period 2 (P < or = 0.03) for both R and P steers. The increase in intake between periods 2 and 4 was greater for R than for P steers (P = 0.03). Supplementation improved diet OM digestion (P = 0.04) but not NDF digestion (P = 0.18); however, greater relative error for NDF digestion may have limited the ability to elucidate significant treatment effects. There were no differences in either OM digestion (P = 0.42) or NDF digestion (P = 0.35) between R and P steers. Plasma urea N at 0 and 3 h after feeding on the last day of the experiment was lower (P = 0.05) for C than for R and P steers, but no difference (P = 0.48) was evident between R and P steers. Ruminal ammonia N levels also were increased by supplementation (P < 0.01), with a much larger increase for R than for P steers (P < 0.01). Total VFA concentrations were not affected (P = 0.21) by treatment, but R steers exhibited lower proportions of acetate and higher proportions of isobutyrate, valerate, and isovalerate than P steers (P < 0.01). In conclusion, ruminal and postruminal infusion of a degradable protein source improved forage utilization, although the response in forage OM intake and total digestible OM intake was greater for ruminal infusion than for postruminal infusion.  相似文献   

6.
Four ruminally and duodenally cannulated Suffolk wether lambs (34.5 +/- 2 kg initial BW) were used in a 4 x 4 Latin square designed experiment to compare effects of supplemental ruminally degradable protein (RDP) vs. increasing amounts of supplemental ruminally undegradable protein (RUP) on ruminal characteristics and site and extent of digestion in lambs. Lambs were fed a basal diet of crested wheatgrass hay (4.2% CP) for ad libitum consumption, plus 1 of 4 protein supplements: isolated soy protein (RDP source) fed to meet estimated RDP requirements assuming a microbial efficiency of 11% of TDN (CON) or corn gluten meal (RUP source) fed at 50, 100, or 150% of the supplemental N provided by CON (C50, C100, and C150, respectively). Neither NDF nor ADF intake was affected (P >/= 0.18) by protein degradability, but they increased or tended to increase (P /= 0.26) for CON and C100, but increased (P /= 0.33) by protein degradability. However, true ruminal N digestibility was greater (P = 0.03) for CON compared with C100. Ruminal ammonia concentrations were greater (P = 0.002) for CON compared with C100 lambs, and increased (P = 0.001) with increasing RUP. Microbial N flows were not affected (P >/= 0.12) by protein degradability or increasing RUP. Likewise, neither ruminal urease activity (P >/= 0.11) nor microbial efficiency (P >/= 0.50) were affected by protein degradability or level of RUP. Total tract OM, NDF, and ADF digestibility was greater (P 相似文献   

7.
We studied the effects of the addition of liquefied vs prilled mostly saturated fatty acids (FA) to the concentrate portion of total mixed diets on ruminal and total tract digestibilities. Four Holstein steers (270 +/- 23 kg) fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square design with 21-d periods. Diets contained (DM basis) 30.0% corn silage, 22.2% chopped alfalfa hay, 25.0% ground shelled corn, 12.5% soybean meal, and 5% of one of the following fat sources: 1) prilled FA (PFA), 2) choice white grease (triglycerides) added in liquid form (LTG), 3) 2.5% PFA + 2.5% LTG, or 4) 2.5% liquefied PFA (LFA) + 2.5% LTG. Ad libitum OM intake was not different (P > .10) among diets (mean 7.8 kg/d). Ruminal digestibilities of OM (35.7, 39.9, 42.2, and 37.3% for Diets 1 to 4, respectively) were greatest (P < .10) for the combination of PFA + LTG and lowest for PFA alone. Ruminal digestibilities of NDF, ADF, and starch did not differ (P > .10) among diets. Total tract digestibilities of OM, NDF, and ADF were greater (P < .10) for the diet containing LTG alone than for the diet containing LFA + LTG because of trends for greater postruminal digestibilities. The LFA + LTG diet resulted in a greater proportion of acetate and lower proportion of propionate in ruminal fluid than PFA alone (P < .10). The acetate:propionate ratio (3.53, 2.96, 3.10, and 2.89 for Diets 1 to 4, respectively) was lower (P < .05) for LFA + LTG or LTG alone than for PFA alone. Postruminal and total tract digestibilities of total FA (66.0, 76.0, 71.2, and 68.9% for Diets 1 to 4, respectively) were lower (P < .05) for PFA than for other diets. Addition of saturated FA in liquid form resulted in digestibilities and ruminal effects similar to the same saturated FA added in prilled form.  相似文献   

8.
Five crossbred beef cows (Hereford X Angus, 438 kg), cannulated in the rumen and duodenum, were used in a Latin square experiment to determine the effects of dietary proportions of bermudagrass (B) and clover (C) hays (0: 1, .25: .75, .5: .5, .75: .25 and 1: 0) on digestive function. Feed intake was 85% of ad libitum intake of B alone (1.35% of body weight). Bermudagrass contained 1.88% nitrogen (N), 79.6% neutral detergent fibre (NDF) and 5.2% acid detergent lignin (ADL), and C contained 2.30% N, 55.3% NDF and 6.3% ADL. Molar proportion of acetic increased linearly while propionic acid moved in the opposite direction as B replaced C (P less than .05). Mean particle size of duodenal digesta increased linearly (P less than .05) as B increased, but specific gravity of particles was constant (P greater than .10). Fluid passage rate decreased while volume increased linearly with increasing B (P less than .05) so that ruminal fluid outflow rate increased quadratically (P less than .10). Particulate passage rate ranged from 3.0 to 3.4% h. Apparent ruminal organic matter (OM) digestion was 69.0, 54.0, 53.0, 49.1 and 49.7% for 0, 25, 50, 75 and 100% B, respectively, decreasing quadratically as B rose (P less than .05). Postruminal OM digestibilities as percentages of intake and available OM changed quadratically (P less than .05) as dietary B increased, causing total tract OM digestion to decrease linearly (P less than .05; 73.8, 66.4, 63.1, 60.3 and 58.2% for 0, 25, 50, 75 and 100% B diets, respectively). Duodenal microbial-N flow increased quadratically with increasing B (P less than .05), being 45, 108, 103, 105 and 101 g/d, and microbial growth efficiency increased quadratically as well (P less than .05). True ruminal N disappearance ranged from 69.0 to 79.4% and was not affected by diet (P greater than .10). Ruminal digestibilities of fibre fractions were similar to OM. Little digestive function benefit was achieved by mixing warm season grass and legume hays in diets of maintenance-fed beef cows.  相似文献   

9.
Five sheep (average BW 48 kg) with ruminal, duodenal, and ileal cannulas were fed 63% roughage: 37% concentrate diets (CP = 14.5%) in a 5 x 5 Latin square design to study effects of urea and sodium bicarbonate supplementation on nutrient digestion and ruminal characteristics of defaunated sheep. Diets were fed twice daily (DMI = 1,076 g/d). Defaunation was accomplished with 25-ml doses of alkanate 3SL3/sheep daily for 3 d. Control sheep were faunated (Treatment 1) and fed soybean meal as the major N supplement. Remaining sheep were maintained defaunated and fed either the same diet as Treatment 1 (Treatment 2), Treatment 1 with urea replacing 30% of the soybean meal N (Treatment 3), or Treatment 1 with 2% sodium bicarbonate in the diet (Treatment 4). Treatment 5 was a combination of Treatments 3 and 4. Compared with the faunated control, defaunation decreased (P less than .05) total tract DM, OM, NDF, ADF, and CP digestibilities (71.5 vs 69.4, 73.8 vs 71.7, 64.6 vs 61.4, 58.7 vs 55.8, and 74.2 vs 70.6%, respectively) and average (2 to 12 h postfeeding) ruminal fluid ammonia (23.5 vs 13.7 mg/dl) and isobutyrate (.9 vs .7 mM) concentrations. However, defaunation increased (P less than .05) linoleic and linolenic acid flows (.58 vs .45 g C18:2/d; .17 vs .14 g C18:3/d) to and disappearance (.50 vs .39 g C18:2/d; .14 vs .11 g C18:3/d) from the small intestine. Urea supplementation increased (P less than .05) total tract DM (70.2 vs 68.6%) and OM (72.3 vs 71.0%) digestibilities of defaunated sheep but lowered (P less than .05) ruminal fluid isobutyrate concentration (.6 vs .8 mM). Sodium bicarbonate supplementation increased (P less than .05) ruminal fluid pH (6.4 vs 6.2), isobutyrate concentration (.75 vs .60 mM), total tract ADF digestibility (57.6 vs 54.2%), and ruminal NDF (41.6 vs 28.5%), ADF (36.6 vs 22.8%), and CP (-5.5 vs -26.8%) digestibilities in defaunated sheep. Dietary supplementation of urea or sodium bicarbonate increased nutrient digestion by defaunated sheep.  相似文献   

10.
Three digestion experiments and one growth experiment were conducted to determine site, extent and ruminal rate of forage digestion and rate and efficiency of gain by cattle offered alfalfa haylage supplemented with corn or dry corn gluten feed (CGF). In Exp. 1, eight steers were fed alfalfa haylage-based diets with substitution of corn for 0, 20, 40 or 60% of haylage in a 4 X 4 latin square. Increasing dietary corn substitution increased (P less than .05) OM, NDF and ADF digestion by steers but decreased (P less than .05) rate of in situ alfalfa DM digestion. In Exp. 2, five heifers were fed alfalfa haylage-based diets with increasing dietary levels of CGF in a 5 X 5 latin square. Increasing dietary CGF increased (P less than .05) OM, NDF and ADF digestion by heifers. In Exp. 3 and 4, cattle were fed alfalfa haylage-based diets containing either 20 or 60% corn or CGF. In Exp. 3, supplementation increased (P less than .05) OM and NDF digestion but level X supplement source interaction (P less than .05) occurred, with added CGF increasing OM and NDF digestion more than added corn. In Exp. 4, supplementation improved (P less than .05) DM intake, daily gain and feed efficiency. Dry matter intake and daily gain were greater (P less than .05) for 60% supplementation than for 20% supplementation. Overall, whereas increasing the level of dietary supplement increased (P less than .05) OM, NDF and ADF digestion, only corn addition decreased (P less than .05) rate of in situ alfalfa DM digestion. Daily gains and feed efficiencies were similar in cattle fed either corn or CGF with alfalfa haylage.  相似文献   

11.
Five crossbred beef cows (Hereford X Angus, 422 kg) with ruminal and duodenal cannulae were used in a Latin square experiment to determine the effects of dietary proportions of fescue and clover hays (0:1, .25: .75, .5:.5, .75:.25 and 1:0) on digestive function. Feed intake was 85% of ad libitum intake of fescue alone (1.03% of body weight). Fescue contained 1.26% nitrogen (N), 71.0% neutral detergent fibre (NDF) and 7.6% acid detergent lignin (ADL), and clover contained 2.43% N 50.0% NDF and 5.8% ADL in DM. Ruminal fluid ammonia-N concentration increased linearly (P less than .05) with declining dietary fescue level. Total concentration of volatile fatty acids in ruminal fluid and duodenal and rectal digesta mean particle size were not affected by fescue level. Ruminal fluid volume and flow rate increased linearly (P less than .05) with increasing dietary fescue, but fluid and particulate digesta passage rates were unchanged. Apparent ruminal organic matter (OM) digestion decreased quadratically (P less than .05) as fescue increased (74.5, 54.3, 49.8, 46.2 and 42.4% for 0, 25, 50, 75 and 100% fescue, respectively). Postruminal OM digestion as a percentage of intake was partially compensatory, increasing linearly (P less than .05) as dietary fescue level rose (2.3, 3.5, 5.1, 8.6 and 11.1% of intake). Thus, total tract OM digestion declined less as fescue replaced clover (76.8, 57.8, 55.0, 54.8 and 53.5%; linear and quadratic, P less than .05) than did apparent ruminal OM disappearance. Changes in ruminal NDF, acid detergent fibre and cellulose digestibilities were similar to those for OM. Microbial growth efficiency increased quadratically (P less than .10) as fescue intake increased. These results indicate that with low feed intake, ruminal and total tract digestion of an all-legume hay diet is greater than that of a grass hay diet. Little or no digestive advantage was achieved by substituting clover for fescue, except in the case of total replacement of fescue with clover, because of concurrent decreases in microbial growth efficiency, microbial N flow to the intestines and OM digestion in the postruminal tract. Negative associative effects in digestion observed between clover and fescue hays in this experiment deserve further study.  相似文献   

12.
试验选用4头安装永久性三位点瘘管的鲁西黄牛阉牛,采用4×4拉丁方试验设计,瘤胃分别灌注1 000 mL0.9%的生理盐水,100、200、300 g/d的大豆小肽,探讨其对肉牛营养物质消化代谢以及氮平衡的影响。结果表明:灌注大豆小肽对日粮脂肪(EE)、粗蛋白(CP)与酸性洗涤纤维(ADF)的表观消化率无影响(P>0.05);300 g/d组显著提高日粮干物质(DM)、有机物(OM)、中性洗涤纤维(NDF)的表观消化率(P<0.05);灌注小肽显著增加了尿氮的排出量(P<0.05),提高氮的表观消化率与氮沉积(P<0.05);200 g/d与300 g/d组显著降低了十二指肠氮流量占进食量的百分比(P<0.05);300 g/d组显著提高了血浆尿素氮和血浆葡萄糖含量(P<0.05)。试验结果表明,灌注大豆小肽能提高日粮营养成分的消化率,增加氮沉积,综合考虑各因素,在本试验中灌注量以200 g/d最佳。  相似文献   

13.
Nine Angus x Gelbvieh heifers (average BW = 347 +/- 2.8 kg) with ruminal and duodenal cannulas were used in a split-plot designed experiment to determine the effects of soybean oil or corn supplementation on intake, OM, NDF, and N digestibility. Beginning June 8, 1998, heifers continually grazed a 6.5-ha predominantly bromegrass pasture and received one of three treatments: no supplementation (Control); daily supplementation of cracked corn (Corn) at 0.345% of BW; or daily supplementation (0.3% of BW) of a supplement containing cracked corn, corn gluten meal, and soybean oil (12.5% of supplemental DM; Oil). Soybean oil replaced corn on a TDN basis and corn gluten meal was included to provide equal quantities of supplemental TDN and N. Three 23-d periods consisted of 14 d of adaptation followed by 9 d of sample collections. Treatment and sampling period effects were evaluated using orthogonal contrasts. Other than crude fat being greater (P = 0.01) for supplemented heifers, chemical and nutrient composition of masticate samples collected via ruminal evacuation did not differ (P = 0.23 to 0.56) among treatments. Masticate NDF and ADF increased quadratically (P < or = 0.003) and N decreased linearly (P = 0.0001) as the grazing season progressed. Supplementation did not influence (P = 0.37 to 0.83) forage OM intake, total and lower tract OM digestibility, ruminal and total tract NDF digestibility, or total ruminal VFA; however, supplemented heifers had lower ruminal molar proportions of acetate (P = 0.01), higher ruminal molar proportions of butyrate (P = 0.007), and greater quantities of OM digested in the rumen (P = 0.10) and total tract (P = 0.02). As the grazing season progressed, total tract OM and N and ruminal NH3 concentrations and NDF digestibility decreased quadratically (P < or = 0.04). Microbial N flow (P = 0.09) and efficiency (P = 0.04) and postruminal N disappearance (P = 0.02) were greater for Control heifers and declined linearly (P < or = 0.02) as the grazing season advanced. Depressed microbial N flow seemed to be more pronounced for Oil than for the Corn treatment. Although total digestible OM intake increased with supplementation, metabolizable protein supply was reduced in supplemented heifers. Therefore, feeding low levels of supplemental grain with or without soybean oil is an effective strategy to increase dietary energy for cattle grazing high-quality forages, but consideration should be given to reduced supply of metabolizable protein.  相似文献   

14.
Six cannulated beef cows (one Angus, two Hereford and three Angus x Hereford; 405 kg) were used in a 6 x 6 latin square experiment with a 2 x 3 factorial arrangement of treatments. Prairie hay (.77% N, 73% neutral detergent fiber [NDF] and 7% acid detergent lignin) was fed ad libitum from d 1 through 14 and at 90% of ad libitum intake from d 15 through 21 during digesta collection. Periods lasted 21 d. Soybean meal (SBM) was offered at 0 (control, C), .12 (low, L) or .24% of body weight (high, H; dry matter basis). Cows received daily doses of an antibiotic mixture (1 g neomycin and .125 g bacitracin) or saline in the duodenum. Prairie hay dry matter (DM) intake increased (P less than .05) linearly with SBM supplementation, being 25 and 40% greater for L and H than for C, respectively. Ruminal fluid concentrations of NH3-N and total volatile fatty acids increased (P less than .05) linearly as SBM was added to the diet. Ruminal fluid dilution rate increased linearly and particulate passage rate increased (P less than .05) quadratically with increasing SBM. True ruminal digestibilities of organic matter, NDF and N increased (P less than .10) quadratically with increasing SBM (organic matter; 50.3, 57.9 and 58.3%; NDF: 54.7, 60.4 and 59.8%; N: 17.5, 45.1 and 51.4% for C, L and H, respectively). Main effects of antibiotic administration were not significant. Increases in DM intake when SBM was given were large compared with the small elevations in ruminal digestion, implying that metabolic regulation was modifying intake of low-quality forage.  相似文献   

15.
Two digestion studies were conducted to evaluate the use of pretanned leather shavings as a component of a protein supplement. In Exp. 1, the in situ and in vitro disappearance of pretanned leather shavings and soybean meal was evaluated. Results revealed that less than 18.4% of the pretanned leather shavings was solubilized and disappeared when exposed to McDougall's buffer for 48 h, but there was 90.0% disappearance with 48-h exposure to a .1 N HCl/pepsin treatment and 97.0% disappearance with exposure to a two-stage digestion. In situ disappearance following 72 h in the rumen allowed 6.8% disappearance. Thus, leather shavings seem to be relatively indigestible in the rumen, but postruminal digestion may be possible. In Exp. 2, six Angus x Holstein steers, fitted with ruminal and duodenal cannulas, were used in a replicated 3 x 3 Latin square to evaluate ruminal and digestion effects of the following supplements combined with fescue hay at 1.7% of BW (DM basis): no supplementation (control); supplementation intraruminally with soybean meal at .07% of BW (as-fed basis); and supplementation intraruminally with a combination of soybean meal and pretanned leather shavings (17:8 ratio) at .05% of BW (isonitrogenous to soybean meal; as-fed basis). Ruminal fluid passage rate was greater and fluid turnover time was shorter in steers fed leather shavings than in those fed soybean meal (P = .10). Ruminal pH was lower (P = .04) for supplemented steers than for control steers and ruminal NH3 N concentration was greater (P = .01) in steers fed soybean meal than in those fed leather shavings. Total VFA concentration was increased (P = .02) by supplementation. Supplementation with soybean meal increased (P < .05) ruminal molar proportions of butyrate, valerate, and isovalerate compared with leather shavings. Duodenal OM flow and OM disappearing in the intestines were increased by supplementation (P < .10), but not by the type of supplement fed (P > .10). Ruminal digestion of OM and total tract OM digestion were unaffected (P > .10) by supplementation and the type of supplement fed. Flow and digestion of NDF were unaffected (P > .10) by the treatments. Flow of N and the quantity of N disappearing in the intestines were increased (P < .05) by supplementation but did not differ (P > .10) between supplementation groups. Microbial N flow, N utilization for net microbial protein synthesis, and ruminal N disappearance were unaffected (P > .10) by supplementation and the type of supplement provided. Combining pretanned leather shavings with soybean meal seemed to have no deleterious effects on digestion or fermentation and to allow for escape of some N to the lower tract.  相似文献   

16.
Six Hampshire wethers with ruminal and duodenal cannulas were fed three diets in a replicated 3 X 3 latin square to compare phospholipids with triglycerides for their effects on ruminal digestion. The diets (56% concentrate, 44% bermuda-grass hay, air-dried basis) contained either no added fat (control), 5.2% soybean lecithin or 2.4% corn oil on a DM basis. All diets were isonitrogenous and both fat-supplemented diets had similar fatty acid and energy contents. Fat added to the diet, regardless of source, reduced digestibilities of DM, energy, ADF and fatty acids in the rumen but had no effect on total tract digestibility coefficients. Lecithin slightly increased (P = .06) fatty acid digestion in the hindgut compared to corn oil (91.0 and 87.0%, respectively). Both fat sources decreased (P less than .01) ruminal ammonia concentration and increased (P less than .10) N flow to the duodenum. Added fat also reduced ruminal (P less than .01) and total tract (P less than .05) N digestibilities. Microbial N flow to the hindgut was not affected by diet, but adding fat increased (P less than .06) true efficiency of microbial protein synthesis. Overall, phospholipids from soybean lecithin inhibited ruminal fermentation similarly to triglycerides from corn oil. Despite ruminal degradation of lecithin by microbial phospholipases as shown in other studies, feeding lecithin tended to increase fatty acid digestion in the hindgut.  相似文献   

17.
Effects of advancing forage maturity and drought-induced summer dormancy on site and extent of digestion and microbial protein synthesis in beef steers grazing native blue grama rangeland were evaluated in four sampling periods. Five steers (avg initial wt 227 kg) fitted with ruminal, duodenal and ileal cannulae and three steers cannulated at the esophagus freely grazed a 12-ha study pasture. Sampling periods lasted 11 d and started June 2, which was during the early growing season (EGS); June 22, during early summer dormancy (ESD); July 21, during late summer dormancy (LSD); and August 25, 1985, during the late growing season (LGS). Dietary N content was lower (P less than .05) in ESD and LSD than in EGS and LGS. Neutral detergent fiber (NDF) content was lower (P less than .05) in EGS than in other sampling periods. Ruminal organic matter (OM) digestion was lower (P less than .05) in ESD than in EGS, probably because of increased dietary NDF and lower N content. Ruminal OM digestion was greater (P less than .05) in LSD and LGS than in ESD because of increased fiber digestion. Neutral detergent fiber and acid detergent fiber (ADF) digestion occurring in the rumen was greater (P less than .05) in LSD and LGS than in EGS and ESD. Organic matter digestion in the small intestine and OM, NDF and ADF digestion in the hindgut were similar for all sampling periods. Over 90% of the fiber digestion occurred ruminally.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three experiments were conducted to determine the effect of soybean lipid on ruminal proteolysis of soybean meal (SBM) and ground whole soybeans (GSB). Experiment 1 was a 92-d growth experiment using 120 calves (206 kg) allotted to 12 pens of 10 calves each. Three replicate pens were assigned to each of the treatment supplements: low SBM (LSBM), low GSB (LGSB), high SBM (HSBM) and high GSB (HGSB). Calves received ad libitum amounts of corn silage top-dressed with the respective supplement (.81 kg/head). High protein supplements produced greater (P less than .05) gains than low protein supplements, with HSBM calves gaining faster (P less than .05) than HGSB calves and LSBM and LGSB calves having similar (P greater than .10) gains. In Exp. 2, 15 ruminally cannulated Angus X Hereford heifers (380 kg) fed corn silage were used to determine ammonia-N release from the treatment supplements: ground corn (control), GSB, SBM and SBM coated with soybean oil (SBMO). Heifers fed the control supplement had lower (P less than .05) ruminal NH3-N concentrations than those consuming soybean protein. Ruminal NH3-N concentrations were similar (P greater than .10) for GSB and SBM; whereas, SBMO had lower (P less than .10) concentrations than SBM through 3 h. In Exp. 3, two ruminally cannulated Angus X Jersey steers (250 kg) were used to determine in situ disappearance of SBM, GSB and SBMO. Total and feed N disappearances were greater (P less than .001) for GSB than SBM or SBMO.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Laboratory, digestion and growth studies were used to evaluate energy and protein supplements for ammoniated (4% of the forage DM) stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis) hay. Ammoniation increased (P less than .05) total N concentration (.7 to .9% vs 1.7 to 2.0%) and in vitro digestion of OM, NDF and ADF and reduced (P less than .05) NDF concentration of stargrass hay. Two digestion (3 x 3 Latin square, 250-kg steers) and two growth (400-kg Brahman crossbred cull cows, eight head per pasture, two pastures per treatment, November through February) trials evaluated citrus pulp or liquid cane molasses (Trial 1) and molasses or molasses plus cottonseed meal (Trial 2) supplementation of ammoniated hay. Supplementation with byproduct energy sources, citrus pulp or molasses (either alone or with cottonseed meal), improved (P less than .05) OM digestibility but reduced (P less than .05) NDF and ADF digestibilities. Apparent nutrient digestibilities were similar (P greater than .05) between diets supplemented with citrus pulp and molasses and between diets supplemented with molasses and molasses plus cottonseed meal. In Trial 1, ADG by cull cows was greater (P less than .05) for citrus pulp- (.71 kg) or molasses-(.68 kg) supplemented diets than for hay fed alone (.49 kg). In Trial ADG was greater (P less than .05) for cull cows fed ammoniated hay supplemented with molasses plus cottonseed meal (.85 kg) than for those supplemented with molasses only (.69 kg). Feeding cows over the winter increased their (P less than .05) carcass weight, marbling score, USDA quality grade and lipid percentage of the 9-10-11 rib section compared with cows slaughtered at the beginning of the experiment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Two trials were conducted to evaluate effects of, and interactions between, level and source of fiber in the diet on ruminal environment, microbial protein synthesis, nutrient digestion and flow of digesta through the gastrointestinal tract of multiple-fistulated sheep (trial 1; 4 X 4 Latin square design) and on ruminal, digestive and metabolic characteristics of early-weaned lambs (trial 2; randomized complete block design; 3 periods). All diets tested were pelleted and were formulated to contain either 39% or 25% neutral detergent fiber (NDF), with corncobs or cottonseed hulls (CSH) as the major NDF (roughage) sources. In trial 1, dry-matter (DM) and organic-matter (OM) digestibilities were not different (P greater than .05) among treatments. Digestibility of NDF was higher (P less than .05) with high-fiber. Bacterial N synthesis (g N/kg OM truly digested) was not different (P greater than .05) among treatments. Molar proportion acetate was higher (P less than .05) and molar proportion propionate lower (P less than .05) when sheep were fed high-fiber diets. In trial 2, apparent DM digestibility was higher (P less than .05) for lambs fed diets containing corncobs. Energy digestibility was higher (P less than .05) at the low-fiber level and for lambs fed diets containing corncobs. Apparent NDF digestibility by lambs was higher (P less than .05) at the high-fiber level and for lambs fed diets containing corncobs. Nitrogen retained (percentage of N intake) was higher (P less than .05) for lambs fed diets containing CSH. Ruminal pH and molar proportion acetate were higher (P less than .05) and molar proportion propionate lower (P less than .05) for lambs fed high-fiber diets. Although responses to corncob vs CSH inclusion in high-energy pelleted diets differ, both roughages are effective as fiber sources in sheep diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号