首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The influence on wheat flour gluten-starch separation of a xylanase from Aspergillus aculeatus (XAA) with hydrolysis selectivity toward water extractable arabinoxylan (WE-AX) and that is not inhibited by wheat flour xylanase inhibitors was compared to that of a xylanase from Bacillus subtilis (XBS) with hydrolysis selectivity toward water unextractable arabinoxylan (WU-AX) and that is inhibited by such inhibitors. XAA improved gluten agglomeration through degradation of WE-AX and concomitant reduction in viscosity, which in the laboratory scale batter procedure with a set of vibrating sieves (400, 250, and 125 microm), increased protein recoveries on the 400 microm sieve. In contrast, XBS had a negative effect as it decreased gluten protein recovery on this sieve, probably as a result of the viscosity increase that accompanied WU-AX solubilization. Hence, it was active even if most likely a considerable part of its activity was prevented by xylanase inhibitors. A combination of XAA and XBS at a low dosage yielded a distribution of gluten proteins on the different sieves comparable to that of the control. At a high combined dosage, the gluten agglomeration was better than that with XAA alone, indicating that both WE-AX and WU-AX have a negative impact on gluten agglomeration. Finally, experiments with endoxylanase addition at different moments during the separation process suggest that the status of the arabinoxylan population during dough mixing is far less critical for its impact on gluten agglomeration than that during the batter phase.  相似文献   

2.
The impact mechanism of endoxylanases in straight dough bread-making was investigated in fractionation-reconstitution experiments. To this end, two European flours with different bread-making characteristics were separated in gluten, prime starch, a squeegee fraction (SQF), and a water-extractable fraction. Whereas the former fractions contained negligible levels of arabinoxylan (AX), the latter contained, respectively, most of the water-unextractable AX (WU-AX) and all of the water-extractable AX (WE-AX). In vitro modification with a Bacillus subtilis endoxylanase allowed controlled solubilization of WU-AX from SQF and controlled degradation of solubilized AX and WE-AX from the water-extractables. It followed from bread-making tests with the reconstituted flours that endoxylanases exert positive loaf volume effects in bread-making by lowering the concentration of WU-AX and increasing that of total soluble AX. Limited degradation of WE-AX and significant breakdown of solubilized AX by endoxylanases, on the other hand, resulted in volume losses when compared to their nondegraded counterparts. The volume increasing effects of endoxylanases are therefore related to their ratio of solubilizing to degrading activity and thus to their substrate specificity.  相似文献   

3.
The relationship between syruping in refrigerated doughs upon prolonged storage and different aspects of arabinoxylan (AX) hydrolysis was investigated using Triticum aestivum xylanase inhibitor (TAXI) and different xylanases in the dough formula. Dough characteristics were evaluated with strong emphasis on the AX population and its fate as a function of storage time. Selective reduction of part of the flour endogenous xylanase activity in dough by added TAXI reduced dough syruping after 12 and 20 days of storage by 50%, providing straightforward evidence for the involvement of xylanases and, thus, AX in the syruping phenomenon. Addition of xylanases with different inhibitor sensitivities [an inhibition-sensitive Bacillus subtilis xylanase (XBS(i)) as well as a noninhibited mutant (XBS(ni)) thereof] to dough confirmed the importance of xylanases in dough syruping, on one hand, and the power of wheat flour TAXI to constitute a significant barrier against xylanase-mediated dough syruping, on the other hand. Use of xylanases with different substrate selectivities [an Aspergillus aculeatusxylanase (XAA) versus XBS(ni)] showed degradation of water-extractable AX (WE-AX) and solubilized AX to low molecular weight molecules rather than the conversion of water-unextractable AX (WU-AX) to high molecular weight water extractable components to be the main factor influencing dough syruping.  相似文献   

4.
Three industrial pasta processing lines for different products (macaroni, capellini and instant noodles) were sampled at three subsequent stages (semolina, extruded, and dried end products) in the process. Arabinoxylans (AX) and arabinogalactan peptides (AGP) were analyzed. Although very low endoxylanase activities were measured, the level of water-extractable AX (WE-AX) increased, probably because of mechanical forces. No change was observed in the level and structural characteristics of AGP. The WE-AX molecular weight (MW) profiles showed a very small shift toward lower MW profiles; those of AGP revealed no changes as a result of the production process. After separation of WE-AX and AGP, (1)H NMR analysis and gas chromatography of the alditol acetates obtained following hydrolysis, reduction, and acetylation revealed no changes in the arabinose substitution profile of the WE-AX samples during pasta processing. At optimal cooking times, WE-AX losses in the cooking water are small (maximally 5.9%). However, the loss of AGP is more pronounced (maximally 25.0%). Overcooking led to more losses of both components.  相似文献   

5.
A Bacillus subtilis endoxylanase (XBS(i)) sensitive to inhibition by Triticum aestivum L. endoxylanase inhibitor (TAXI) and a mutant thereof (XBS(ni)), uninhibited by TAXI, were used in straight-dough breadmaking to assess the importance of endoxylanase inhibition sensitivity on endoxylanase functionality in the process. With two European wheat flours, the loaf volume improving effect of XBS(ni) at much lower enzyme dosages was substantially larger than that brought about by XBS(i). This coincided with differences in arabinoxylan (AX) hydrolysis. Although XBS(ni) had a lower substrate selectivity for water-unextractable arabinoxylan (WU-AX) than XBS(i), the former solubilized significantly more WU-AX than XBS(i). Because of inhibition, XBS(i) solubilized most of the WU-AX during mixing, whereas, with XBS(ni), the rate of solubilization decreased less with increasing processing time than that with XBS(i). During fermentation and baking and at the highest dosage (600 U/kg of flour of XBS(i) and 60 U/kg of flour of XBS(ni)), XBS(ni) induced a stronger degradation of enzymically solubilized and water-extractable AX than XBS(i). Taken together, the data clearly demonstrate that endoxylanases, which in vitro are inhibited by endoxylanase inhibitors and still are active in the breadmaking process, as demonstrated by their functional (bread volume) enhancing effect, gradually lose their activity in the process.  相似文献   

6.
A Bacillus subtilis endoxylanase (XBS) with a strong selectivity for hydrolysis of water‐unextractable arabinoxylan (WU‐AX) and an Aspergillus aculeatus endoxylanase (XAA) with a strong selectivity for hydrolysis of water‐extractable arabinoxylan (WE‐AX) were used in straight‐dough breadmaking with two European wheat flours. Dough, fermented dough, and bread characteristics with different levels of enzyme addition were evaluated with a strong emphasis on the arabinoxylan (AX) population. The WU‐AX solubilized by XBS during breadmaking were mainly released during mixing and had higher molecular weight, in contrast to their counterparts solubilized by XAA, which were mainly released during fermentation and had lower molecular weight. This coincided with increased loaf volume with XBS and a negative to positive loaf volume response with XAA. Bread firmness and dough extract viscosity also were affected by endoxylanase addition. Results confirmed that WU‐AX are detrimental for breadmaking, while WE‐AX and solubilized AX with medium to high molecular weight have a positive impact on loaf volume.  相似文献   

7.
Carboxymethyl cellulose (CMC) is added to tortillas to maintain a pliable texture during storage. A need exists to optimize or replace CMC in masa and tortilla manufacturing with cheaper yet adequate alternatives. Change in water distribution upon gum addition may be key to understanding stability of cooked masa. Therefore, the objective of this study was to characterize the state and distribution of water in masa systems containing two types of CMC and guar gum. Masa was mixed with 10% (1% in viscosity measurements) of different gums (either one of two CMCs varying in viscosity or guar) then hydrated to 50% moisture content. Viscosity, water holding capacity (WHC), total moisture content (TGA) as well as “freezable” (FW) and “unfreezable” (UFW) water (DSC) of all samples were obtained and compared. Viscosity measurements indicated guar gum may provide a good substitution for high viscosity CMC. The two water measurements, WHC and UFW, differed as to the effect of viscosity on water entrapment. WHC represented the short‐term imbibing of gums, while UFW indicated how the hydrocolloids responded in masa given full hydration time. UFW in guar gum was lower than in medium viscosity CMC. These initial results indicate that guar gum may prove a good substitute for CMC in masa applications.  相似文献   

8.
To gain insight into the distribution of arabinoxylans (AX), endoxylanases, and endoxylanase inhibitors in industrial wheat roller milling, all streams, that is, 54 flour fractions, 4 bran fractions, and the germ, were analyzed for ash, starch, and protein contents, alpha-amylase activity levels, total (TOT-AX) and water-extractable arabinoxylan (WE-AX) contents, endoxylanase activity levels, and endoxylanase inhibitor (TAXI and XIP) contents. In general, bran fractions were significantly richer in TOT-AX and WE-AX contents, endoxylanase activity levels, and endoxylanase inhibitor contents than germ and, even more so, than flour fractions. In the 54 different flour fractions, minimal and maximal values for TOT-AX and WE-AX contents differed by ca. 2-fold, whereas they differed by ca. 15-fold for endoxylanase activity levels. The latter were positively correlated with ash and negatively correlated with starch content, suggesting that the endoxylanase activity in flour is strongly influenced by the level of bran contamination. TAXI contents in the flour fractions varied ca. 4-fold and were strongly correlated with bran-related parameters such as ash content and enzyme activity levels, whereas XIP contents varied ca. 3-fold and were not correlated with any of the parameters measured in this study. The results can be valuable in blending and optimizing wheat flour fractions to obtain flours with specific technological and nutritional benefits.  相似文献   

9.
《Cereal Chemistry》2017,94(5):840-846
Currently, production of pasta that is either gluten‐free or having lower content of gluten, using low‐cost nonwheat cereals and legumes, is becoming increasingly popular worldwide. This is mainly done to increase the nutritional value and reduce the allergenicity of the product. The quality attributes of pasta prepared from micronized maize flour with additives such as guar gum (MPG) and a combination of guar and xanthan gum (MPGX) were compared with pasta prepared from unmicronized flour with guar gum (UMPG). The optimum cooking time for pasta in all three cases (UMPG, MPG, and MPGX) was 3 min. The cooked weight of pasta MPG and MPGX was less compared with UMPG, indicating limited water penetration during cooking. The solid loss of pasta ranged between 8 and 9.5% and was within acceptable levels (<12%). Micronization increased the firmness in MPG (3.7 N) and MPGX (4.5 N) compared with UMPG pasta (2.7 N). MPGX pasta exhibited improved texture, color, and overall acceptability compared with UMPG, and these quality attributes were also comparable to commercial wheat pasta. The study indicated that micronized maize flour with gums can be used in the preparation of maize pasta with good quality attributes.  相似文献   

10.
A new method, a magnetic resonance imaging (MRI) technique characterized by T(2) relaxation time, was developed to study the water migration mechanism between arabinoxylan (AX) gels and gluten matrix in a whole wheat dough (WWD) system prepared from whole wheat flour (WWF) of different particle sizes. The water sequestration of AX gels in wheat bran was verified by the bran fortification test. The evaluations of baking quality of whole wheat bread (WWB) made from WWF with different particle sizes were performed by using SEM, FT-IR, and RP-HPLC techniques. Results showed that the WWB made from WWF of average particle size of 96.99 μm had better baking quality than those of the breads made from WWF of two other particle sizes, 50.21 and 235.40 μm. T(2) relaxation time testing indicated that the decreased particle size of WWF increased the water absorption of AX gels, which led to water migration from the gluten network to the AX gels and resulted in inferior baking quality of WWB.  相似文献   

11.
Endoxylanases seriously affect the rheological properties of durum wheat (Triticum durum Desf.) semolina spaghetti doughs prepared with, and as evaluated, by the farinograph. Under the experimental conditions, control doughs (34.9% moisture content) made from two semolinas (semA and semB) yielded a maximal consistency of 525 and 517 farinograph units (FU), with, respectively, 19.4 and 16.4% of the total level of arabinoxylans (TOT-AX) being water-extractable (WE-AX). When 75.4 Somogyi units/50 g of semolina of the endoxylanases from Trichoderma viride (XTV), rumen microorganisms (XRM), Bacillus subtilis (XBS), and Aspergillus niger (XAN) were used, the maximal consistencies at 34.9% moisture decreased for semA to 467, 436, 448, and 417 FU, respectively. This was accompanied by increased WE-AX contents of 60.8, 71.2, 70.7, and 73.0%, respectively. Similar results were observed for semB. By reducing the total water content of doughs, it was possible to recover the maximal consistency of the original doughs. Both the decrease in maximal consistency and the amount of water to be omitted were significantly related to the decrease in molecular weight (MW) of the WE-AX and the percentage of WE-AX solubilized as a result of the enzymic action. At the same time, it was clear that endogenous endoxylanase inhibitors were present in the durum wheat semolinas and that they inhibited the endoxylanases used to different degrees. Part of the differences in effects between the different endoxylanases (decrease in maximal consistency, amount of AX solubilized, MWs of the WE-AX, and amount of water that could be omitted) could be ascribed to the differences in inhibition of the endoxylanases by endogenous inhibitors.  相似文献   

12.
Guar gum, a nonionic galactomannan, is used as an economical thickener and stabilizer in the food industry and is often combined with xanthan, locust bean gum (LBG), or carboxymethylcellulose (CMC) to promote synergistic changes in viscosity or gelling behavior via intermolecular interactions; however, the adulteration of LBG with guar gum is a well-known industrial problem. The ability to identify the purity of gums and concentrations of individual gums in mixtures would be advantageous for quality control in the food industry. Fourier transform infrared spectroscopy (FTIR) methods are rapid and require minimum sample preparation. The objectives of this study were to evaluate the ability of FTIR techniques to (1) differentiate LBG with a variety of mannose/galactose (M/G) ratios, (2) differentiate guar, LBG, tara, and fenugreek gums, (3) differentiate pure guar gum from guar gum mixed with LBG, xanthan gum, or CMC, (4) quantify LBG, xanthan gum, and CMC in guar gum, and (5) quantify guar gum in LBG. Two FTIR methods were used: diffuse reflectance (DRIFT) on powdered gum samples added to KBr at 5%, w/w, and attenuated total reflectance (ATR) on 1%, w/w, gum solutions. Spectra were collected and then analyzed by multivariate statistical procedures (chemometrics). The DRIFT method provided better discrimination and quantitative results than the ATR method. Canonical variate analysis (CVA) of DRIFT spectra (1200-700 cm(-1)) was able to classify LBG with various M/G ratios, pure galactomannans, and pure versus mixtures of gums with 100% accuracy. Quantification of an individual gum in gum mixtures (0.5-15%, w/w) was possible using partial least-squares (PLS) analysis of DRIFT spectra with R2 > 0.93 and using this approach for quantifying guar gum added to LBG resulted in an R2 > 0.99, RMSEC = 0.29, and RMSEP = 3.31. Therefore, the DRIFT FTIR method could be a useful analytical tool for quality control of select gums and gum mixtures used in the food industry.  相似文献   

13.
Three fibrous corn wet-milling fractions, coarse fiber, fine fiber, and spent flake, were isolated. More highly valued uses are sought for these milling products, which are generally directed into the corn gluten feed product stream. Coarse fiber was further dissected into pericarp and aleurone layers. An alkaline hydrogen peroxide process was used to efficiently extract corn fiber gum (CFG) from each of the materials. CFG is a hemicellulose B arabinoxylan which also contains low levels of D,L-galactose and D-glucuronic acid. CFG yield information was obtained from each source, as well as structural information in terms of degrees of branching of the beta-D-xylopyranose backbone with alpha-L-arabinofuranosyl moieties. There were significant differences in degree of branching among the CFGs from the various fractions. A novel capillary electrophoresis procedure was developed to measure these differences. Solution viscosity differences among the CFGs were also observed.  相似文献   

14.
Arabinoxylans (AX) are well known to have a wide‐ranging influence on wheat (Triticum aestivum L.) end‐use quality and are associated with health benefits. There is little information on the effects of processing on AX properties in high‐water‐content batter‐based products and on the associations between AX properties and end‐use quality in such products. The objective of this study was to track total and water‐extractable AX (TAX and WEAX, respectively) contents and determine changes in AX characteristics throughout the baking process of pancakes, a batter‐based wheat product. The TAX and WEAX contents along with the arabinose‐to‐xylose (A/X) ratio were quantified in refined flour and wholemeal as well as batter and pancakes from two soft and three hard wheat varieties. ANOVA F values indicated that the variation in TAX content was influenced most by sample type differences (flour versus batter versus pancakes), whereas varietal differences were responsible for the greatest differences in WEAX. In separate analyses on refined and wholemeal flours, the highest F values were for variety WEAX, largely attributed to the higher WEAX content of the three hard varieties. WEAX levels generally increased slightly from flour to batter to pancakes in refined flour. The WEAX content in flour, batter, and pancakes of both refined flour and wholemeal was highly correlated with pancake volume. These observations suggest moderate changes in wheat AX characteristics during processing and a positive association of WEAX levels with end‐product volume in a batter‐based product.  相似文献   

15.
Hydrocolloid interaction with water, protein, and starch in wheat dough   总被引:1,自引:0,他引:1  
Interaction of hydrocolloids (xanthan gum, locust bean gum, guar gum, and high-methoxyl pectin) with macrocomponents of dough (water, starch, and protein) was evaluated by different techniques. (1)H spin-spin NMR relaxation assays were applied to study the mobility of the gluten-hydrocolloid-water matrix, and the amount of freezable water was determined by differential scanning calorimetry (DSC). Starch gelatinization parameters (T, enthalpy) were also analyzed by DSC. The influence of additives on the protein matrix was studied by Fourier transform (FT) Raman assays; analysis of the extracted gliadins and glutenins was performed by electrophoresis (SDS-PAGE). A significantly higher molecular mobility was found in matrices containing xanthan gum, whereas pectin led to the lowest molecular mobility. Freezable water showed a trend of increasing in the presence of hydrocolloids, particularly under conditions of water restriction. Starch gelatinization final temperature was decreased when hydrocolloids were added in the presence of enough water. In general, FT-Raman and SDS-PAGE indicated that hydrocolloid addition promoted a more disordered and labile network, particularly in the case of pectin addition. On the other hand, results obtained for dough with guar gum would indicate a good compatibility between this hydrocolloid and the gluten network.  相似文献   

16.
Arabinoxylans are hydrophilic nonstarch polysaccharides found in wheat grain as minor constituents. Arabinoxylans can associate with large amounts of water through hydrogen bonding and can form oxidative gels. These properties are important factors in end‐use quality of wheat. The objective of this study was to delineate the influence of wheat cultivar and growing environment on variation in water‐soluble (WS‐AX), waterinsoluble (WI‐AX), and total (TO‐AX) arabinoxylan contents of flour and whole grain meal. This study included seven spring and 20 winter soft white wheat cultivars grown in 10 and 12 environments, respectively (each evenly split over two crop years). Univariate analysis of variance (ANOVA) and multivariate analysis of variance with canonical analysis (MANOVA) was used to evaluate sources of variation. Variation in arabinoxylan contents and absolute amounts (xylose equivalents) among the two cultivar sample sets (spring and winter) was similar, and both cultivar and environment were significant sources of variation. The cultivar‐by‐environment interaction was relatively unimportant. Results indicate that the variation in arabinoxylan content is primarily influenced by cultivar and secondarily influenced by environment. Within arabinoxylan fractions, WS‐AX content is primarily influenced by genotype, while WI‐AX content is more greatly influenced by the environment.  相似文献   

17.
The main nonstarch polysaccharide of rye is arabinoxylan (AX), but rye contains significant levels of (1→3)(1→4)‐β‐d ‐glucan, which unlike oat and barley β‐glucan, is not readily extracted by water, possibly because of entrapment within a matrix of AX cross‐linked by phenolics. This study continues objectives to improve understanding of factors controlling the physicochemical behavior of the cereal β‐glucans. Rye β‐glucan was extracted by 1.0N NaOH and increasing concentrations of ammonium sulfate were used to separate the β‐glucan from AX and prepare a series of eight narrow molecular weight (MW) distribution fractions. Composition and structural characteristics of the isolated β‐glucan and the eight fractions were determined. High‐performance size‐exclusion chromatography (HPSEC) with both specific calcofluor binding and a triple detection (light scattering, viscometry, and refractive index) system was used for MW determination. Lichenase digestion followed by high‐performance anion exchange chromatography of released oligosaccharides, was used for structural evaluation. The overall structure of all fractions was similar to that of barley β‐glucan.  相似文献   

18.
《Cereal Chemistry》2017,94(5):897-902
A satisfactory chemically leavened gluten‐free sorghum bread method was developed by using a blend of 90% commercially milled sorghum flour and 10% rice, tapioca, or potato starch as the “flour.” The most effective starch/hydrocolloid combinations in the formula were potato starch with 4% xanthan, tapioca starch with 3% hydroxypropyl methylcellulose, and rice starch with 3% xanthan. Overall, there was not a significant difference in the quality of loaves made with each starch/hydrocolloid combination. Rapid visco analysis showed that batter viscosity did not have a significant impact on loaf volume index but did affect crumb grain properties. Batters with lower viscosity produced loaves with better crumb grain.  相似文献   

19.
Oat and barley (1→3)(1→4)‐β‐d ‐glucans (β‐glucan) are readily extracted by hot water but rye β‐glucan is resistant to such extraction. This poor extractability might be due to entrapment within a matrix of arabinoxylan (AX) cross‐linked through phenolic constituents. AX are the major nonstarch polysaccharides of the rye kernel. In this study, several approaches were compared in an effort to determine optimum conditions for extraction of high yields, high molecular weight (MW), and high purity of β‐glucan from Canadian rye whole meal. Variables investigated included sodium hydroxide concentrations, extraction time, sample prehydration, extraction under low temperature, and prior extraction of AX with barium hydroxide. There was a linear relationship between the strength of NaOH and amount of β‐glucan extracted and because MW was essentially the same up to 1.0N NaOH, this extraction agent, at room temperature for 90 min, was selected to isolate rye β‐glucan. The β‐glucan was then purified and structure and molecular weight distribution studied.  相似文献   

20.
Viscosity is an important end-use attribute for some soft wheat flour formulations. Specifically, in formulations with minimal gluten development, such as batters (as in cake, pancake, and doughnut) and coatings (as in tempura), viscosity is important to leavening gas retention and flow characteristics. Current tests for predictors of viscosity leave considerable unexplained variation. The potential for water-extractable arabinoxylans to form oxidative gels through ferulic acid dimerization may represent an important component of viscosity variation. A method was developed to identify variation in viscosity due to oxidative gelation. This method, comparing viscosity of flour slurries made with water, a peroxide-peroxidase system, and a system with xylanase, indicated that two, and likely three, types of oxidative gelation were contributing to viscosity. Predicted viscosity due to inter-arabinoxylan gelation through ferulic acid dimerization, dityrosine formation among proteins, and ferulic acid-tyrosine bond formation varied among wheat cultivars. Oxidative gel formation increased batter viscosity probably due to water sequestration; this effect was correlated with reduction in the sugar snap cookie spread (diameter). Results indicate that oxidative gelation is an important contributor to batter viscosity and also contributes to the quality attributes of dough systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号