首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the effects of preoperative extradural morphine on the end-tidal isoflurane (Fe'ISO) concentration and on physiological variables in pigs undergoing abdominal surgery. STUDY DESIGN: Prospective, randomized, blinded study. ANIMALS: Fourteen healthy pigs (20 +/- 4 kg) undergoing intestinal cannulation. MATERIALS AND METHODS: Anaesthesia was induced with a combination of medetomidine (50 microg kg(-1)) and tiletamine-zolazepam (2.5 mg kg(-1)) injected intramuscularly, and was maintained with isoflurane in air and oxygen (FiO(2) = 50% O(2)). In the first group, morphine (0.1 mg kg(-1)) was administered extradurally before surgery. The second group received an equivalent volume of extradural saline as control. During the experiment, heart and respiratory rates, mean arterial blood pressure, tidal volume and minute ventilation were recorded every 10 minutes. The concentration of Fe'ISO was adjusted, according to the depth of anaesthesia, by an experienced animal nurse. Within treatment groups, time-related changes in Fe'ISO and physiological variables were analysed using a repeated measurement anova. Differences in data between treatment groups were analysed at specific time points using a Mann-Whitney U-test. Results are presented as mean +/- SD; p < 0.05 was considered as significant. RESULTS: After the onset of action of the morphine, the Fe'ISO required to maintain anaesthesia was significantly lower in the extradural morphine group compared with control. During the expected maximal effect of the drug, Fe'ISO was significantly lower in the morphine group (0.6 +/- 0.2%) than in the control group (0.9 +/- 0.2%). The decrease in Fe'ISO indicated that the onset of action of morphine was approximately 30 minutes after injection. No significant differences in other clinical variables were found between the groups. CONCLUSION: Pigs that received extradural morphine before abdominal surgery achieved surgical anaesthetic depth at a lower Fe'ISO concentration. CLINICAL RELEVANCE: Extradural morphine allows abdominal surgery to be performed at a lower Fe'ISO concentrations.  相似文献   

2.
3.
OBJECTIVE: To evaluate the effects of three anaesthetic combinations in adult European badgers (Meles meles). STUDY DESIGN: Prospective, randomized, blinded, experimental trial. ANIMALS: Sixteen captive adult badgers. METHODS: The badgers were each anaesthetized by intramuscular injection using the three techniques assigned in random order: romifidine 0.18 mg kg(-1), ketamine 10 mg kg(-1) and butorphanol 0.1 mg kg(-1) (RKB); medetomidine 0.1 mg kg(-1), ketamine 9 mg kg(-1) and butorphanol 0.1 mg kg(-1) (MKB); and medetomidine 0.1 mg kg(-1) and ketamine 10 mg kg(-1) (MK). Initial drug doses were calculated based on a body mass of 10 kg. Additional anaesthetic requirements, time to drug effect, duration of action and recovery from anaesthesia were recorded. Heart rate and rhythm, respiratory rate and rhythm, rectal and subcutaneous microchip temperature and oxygen saturation were recorded every 5 minutes. Depth of anaesthesia was assessed using: muscle tone; palpebral and pedal reflexes; and tongue relaxation at these time points. Blood samples and a tracheal aspirate were obtained under anaesthesia. Atipamezole was administered if the badger had not recovered within 60 minutes Parametric data were analysed using anova for repeated measures, and nonparametric data using Friedman's, and Cochran's Q tests: p < 0.05 was considered significant. RESULTS: All combinations produced good or excellent muscle relaxation throughout the anaesthetic period. RKB had the shortest duration of anaesthesia (16.8 minutes compared with MKB 25.9 minutes and MK 25.5 minutes) and antagonism was not required. RKB depressed respiratory rate less than MK and MKB. There was no significant difference between techniques for heart rate and rhythm. CONCLUSIONS AND CLINICAL RELEVANCE: All combinations provided anaesthetic conditions suitable for sampling and identification procedures in adult badgers. The RKB protocol provided a significantly shorter period of anaesthesia when compared with the combinations containing medetomidine.  相似文献   

4.
A dose of supplementary ketamine was used to evaluate the anaesthetic sparing effect of adding local anaesthesia to general anaesthesia in cats undergoing ovariectomy. Fifty-six healthy cats were randomly assigned to receive lidocaine 2% (group L) as skin infiltration (1 mg kg(-1)), topical application (splash block) on both the ovaries (2 mg kg(-1), each) and on abdominal muscular layers (1 mg kg(-1)), or an equal volume of NaCl 0.9% at the same sites (group S). Anaesthesia was induced with a mixture of 20 microg kg(-1) medetomidine and 5 mg kg(-1) ketamine administered intramuscularly. Rectal temperature, ECG, heart rate and respiratory rate were measured continuously. Ketamine supplemental boli (1 mg kg(-1), intravenously) were administered in response to movements during surgery. Local lidocaine significantly reduced the need for supplementary ketamine. All animals were returned to their owners without complications. With this protocol, local anaesthetics reduced the need for injectable anaesthetic during feline ovariectomy.  相似文献   

5.
ObjectiveTo evaluate medetomidine as a continuous rate infusion (CRI) in horses in which anaesthesia is maintained with isoflurane and CRIs of ketamine and lidocaine.Study designProspective, randomized, blinded clinical trial.AnimalsForty horses undergoing elective surgery.MethodsAfter sedation and induction, anaesthesia was maintained with isoflurane. Mechanical ventilation was employed. All horses received lidocaine (1.5 mg kg?1 initially, then 2 mg kg?1 hour?1) and ketamine (2 mg kg?1 hour?1), both CRIs reducing to 1.5 mg kg?1 hour?1 after 50 minutes. Horses in group MILK received a medetomidine CRI of 3.6 μg kg?1 hour?1, reducing after 50 minutes to 2.75 μg kg?1 hour?1, and horses in group ILK an equal volume of saline. Mean arterial pressure (MAP) was maintained above 70 mmHg using dobutamine. End-tidal concentration of isoflurane (FE′ISO) was adjusted as necessary to maintain surgical anaesthesia. Group ILK received medetomidine (3 μg kg?1) at the end of the procedure. Recovery was evaluated. Differences between groups were analysed using Mann-Whitney, Chi-Square and anova tests as relevant. Significance was taken as p < 0.05.ResultsFE′ISO required to maintain surgical anaesthesia in group MILK decreased with time, becoming significantly less than that in group ILK by 45 minutes. After 60 minutes, median (IQR) FE′ISO in MILK was 0.65 (0.4–1.0) %, and in ILK was 1 (0.62–1.2) %. Physiological parameters did not differ between groups, but group MILK required less dobutamine to support MAP. Total recovery times were similar and recovery quality good in both groups.Conclusion and clinical relevanceA CRI of medetomidine given to horses which were also receiving CRIs of lidocaine and ketamine reduced the concentration of isoflurane necessary to maintain satisfactory anaesthesia for surgery, and reduced the dobutamine required to maintain MAP. No further sedation was required to provide a calm recovery.  相似文献   

6.
Objective To determine, in mildly hypercapnic horses under isoflurane–medetomidine balanced anaesthesia, whether there is a difference in cardiovascular function between spontaneous ventilation (SV) and intermittent positive pressure ventilation (IPPV). Study design Prospective randomized clinical study. Animals Sixty horses, undergoing elective surgical procedures under general anaesthesia: ASA classification I or II. Methods Horses were sedated with medetomidine and anaesthesia was induced with ketamine and diazepam. Anaesthesia was maintained with isoflurane and a constant rate infusion of medetomidine. Horses were assigned to either SV or IPPV for the duration of anaesthesia. Horses in group IPPV were maintained mildly hypercapnic (arterial partial pressure of carbon dioxide (PaCO2) 50–60 mmHg, 6.7–8 kPa). Mean arterial blood pressure (MAP) was maintained above 70 mmHg by an infusion of dobutamine administered to effect. Heart rate (HR), respiratory rate (fR), arterial blood pressure and inspiratory and expiratory gases were monitored continuously. A bolus of ketamine was administered when horses showed nystagmus. Cardiac output was measured using lithium dilution. Arterial blood‐gas analysis was performed regularly. Recovery time was noted and recovery quality scored. Results There were no differences between groups concerning age, weight, body position during anaesthesia and anaesthetic duration. Respiratory rate was significantly higher in group IPPV. Significantly more horses in group IPPV received supplemental ketamine. There were no other significant differences between groups. All horses recovered from anaesthesia without complications. Conclusions There was no difference in cardiovascular function in horses undergoing elective surgery during isoflurane–medetomidine anaesthesia with SV in comparison with IPPV, provided the horses are maintained slightly hypercapnic. Clinical relevance In horses with health status ASA I and II, cardiovascular function under general anaesthesia is equal with or without IPPV if the PaCO2 is maintained at 50–60 mmHg.  相似文献   

7.
8.
OBJECTIVE: To investigate alterations in peri-operative body temperatures and oesophageal-skin temperatures in isoflurane-anaesthetized rabbits following either ketamine-midazolam or ketamine-medetomidine induction of anaesthesia. ANIMAL POPULATION: Fifty client-owned rabbits, (25 male, 25 female) of different breeds anaesthetized for elective neutering (age range: 3-42 months; mass range: 1.15-4.3 kg). STUDY DESIGN: Randomized, blinded clinical study. METHODS: Pre-anaesthetic rectal temperature was measured. A 24 SWG catheter was placed in a marginal ear vein after local anaesthesia. Ketamine (15 mg kg(-1)) with medetomidine (0.25 mg kg(-1)) (group KMT) or with midazolam (3 mg kg(-1)) (group KMZ) was injected intramuscularly (IM). Following endotracheal intubation anaesthesia was maintained with isoflurane in oxygen. Carprofen (3 mg kg(-1)) and glucose saline (5 mL kg(-1) hour(-1)) were administered through the intravenous catheter. Room temperature and humidity, skin temperature (from tip of pinna) and oesophageal temperature were measured during anaesthesia. Ovariohysterectomy or castration was performed. Rectal temperature was taken when isoflurane was discontinued (time zero) and 30, 60 and 120 minutes thereafter. Atipamezole (0.5 mg kg(-1)) was administered IM to rabbits in group KMT at zero plus 30 minutes. Mass, averaged room temperature and duration of anaesthesia data were compared using a two-tailed t-test. Age, averaged room humidity, rectal temperature decrease, oesophageal temperature decrease and oesophageal-skin difference data were compared using a Kruskal-Wallis test. p < 0.05 was considered significant. RESULTS: The averaged oesophageal-skin temperature difference was significantly greater in group KMT [median 9.85 degrees C (range 6.42-13.85 degrees C)] than in group KMZ [4.38 degrees C (2.83-10.43 degrees C)]. Rectal temperature decreased over the anaesthetic period was not significantly different between the two groups; however, oesophageal temperature decrease was significantly less in group KMT [1.1 degrees C (-0.1-+2.7 degrees C)] than in group KMZ [1.4 degrees C (0.6-3.1 degrees C)]. CONCLUSIONS: Oesophageal-skin temperature difference is larger in rabbits anaesthetized with ketamine-medetomidine combination than ketamine-midazolam. CLINICAL RELEVANCE: The oesophageal temperature in rabbits anaesthetized with ketamine-medetomidine and isoflurane decreases significantly less than in animals anaesthetized with ketamine-midazolam and isoflurane, during anaesthesia.  相似文献   

9.
An effective anaesthesia protocol was developed for adult free-ranging gemsbok (Oryx gazella) using a combination of A3080, medetomidine and ketamine. A short induction time; good muscle relaxation, adequate oxygenation and stable heart rate and respiration rate characterised this anaesthetic regime. Equal doses of A3080 and medetomidine (22-45 microg/kg) plus 200 mg of ketamine were administered to each animal. The anaesthesia was rapidly and completely reversed by intramuscular naltrexone at a dose of X = 0.9 +/- 0.2 mg/kg and atipamezole at a dose X +/- 90 +/- 20 microg/kg. No mortality or morbidity occurred with this protocol.  相似文献   

10.
This clinical study analysed the anaesthetic sparing effect of a medetomidine constant rate infusion (CRI) during isoflurane anaesthesia in horses. Forty healthy horses undergoing different types of orthopaedic and soft tissue surgeries were studied in a randomized trial. Orthopaedic surgeries were primarily arthroscopies and splint bone extractions. Soft tissue surgeries were principally castrations with one ovariectomy. All horses received 0.03 mg kg?1 acepromazine IM 1 hour prior to sedation. Group A (11 orthopaedic and nine soft tissue surgeries), was sedated with 1.1 mg kg?1 xylazine IV, group B (13 orthopaedic and seven soft tissue surgeries) with 7 µg kg?1 medetomidine IV. Anaesthesia was induced in both groups with 2.2 mg kg?1 ketamine and diazepam 0.02 mg kg?1 IV. Maintenance of anaesthesia was with isoflurane (ISO) in 100% oxygen, depth of anaesthesia was always adjusted by the first author. Group B received an additional CRI of 3.5 µg kg?1 hour?1 medetomidine. Respiratory rate (RR), heart rate (HR), mean arterial blood pressure (MAP), Fe ′ISO and Fe ′CO2 were monitored with a methane insensitive monitor (Cardiocap 5, Ohmeda, Anandic, Diessenhofen) and noted every 5 minutes. Arterial blood was withdrawn for gas analysis (PaO2, PaCO2) 5 minutes after the induction of anaesthesia and every 30 minutes thereafter. Dobutamine (DOB) was given as a CRI to maintain mean arterial blood pressure above 70 mm Hg. Data were averaged over time (sum of measurements/number of measurements) and tested for differences between groups by unpaired t‐tests. There were no significant differences between the groups in terms of body mass (group A, 508 ± 73.7 kg; group B, 529.25 ± 78.4 kg) or duration of anaesthesia (group A, 125.5 ± 36 minutes; group B, 121.5 ± 48.4 minutes). The mean Fe ′ISO required to maintain a surgical plane of anaesthesia was significantly higher in group A (1.33 ± 0.13%) than in group B (1.07 ± 0.19%; p = 2.78 × 10?5). Heart rate was different between the two groups (group A, 42.2 ± 8.3; group B, 32.6 ± 3.5; p = 8.8 × 10?5). Dobutamine requirements were higher in group A (group A, 0.72 ± 0.24 μg kg?1 minute?1; group B, 0.53 ± 0.23 μg kg?1 minute?1; p = 0.023). Respiratory rate, Fe ′CO2, PaO2, PaCO2 were not different between the groups. Adjustment of anaesthetic depth subjectively was easier with the medetomidine infusion and isoflurane (group B) than with isoflurane as a sole agent (group A). In group A 12 horses and in group B five horses showed purposeful movements on 27 (A) and 12 (B) occasions. They were given thiopental (group A, 0.0114 mg kg?1 minute?1; group B, 0.0023 mg kg?1 minute?1). In group A, a further 17 horses were given ketamine to deepen anaesthesia (52 occasions, 0.00426 mg kg?1 minute?1) whereas in group B only nine horses needed ketamine (34 occasions, 0.00179 mg kg?1 minute?1). An infusion of 3.5 µg kg?1 MED during ISO anaesthesia resulted in a significantly reduced ISO requirement.  相似文献   

11.
OBJECTIVE: To study the effects of morphine on haemodynamic variables, blood gas values and the requirement for additional anaesthetic drugs in horses undergoing surgery. STUDY DESIGN: Prospective randomized study. METHODS: Thirty-eight client-owned horses, ASA(American Society of Anesthesiologists) category I or II, undergoing elective surgical procedures, were studied. Horses were divided between two groups, and were paired according to operation, anaesthetist, body position during surgery, mass and breed. Group M+ received morphine by intravenous (IV) injection (0.15 mg kg(-1)) before induction of anaesthesia and then by infusion (0.1 mg kg(-1) hour(-1)) throughout anaesthesia. Group M- received the same anaesthetic technique (pre-anaesthetic medication with romifidine (100 microg kg(-1)) IV; induction with ketamine (2.2 mg kg(-1)) and diazepam (50 microg kg(-1)) IV; maintenance with halothane), except that morphine was excluded. Both groups received flunixin IV (1.1 mg kg(-1)) before surgery. Both groups also received 50% nitrous oxide for the first 10 minutes of anaesthesia. During anaesthesia, end-tidal halothane was maintained at 0.9% (+/-0.1%) in both groups. Heart rate (HR) and respiratory rate (fr), systolic, mean and diastolic arterial pressures were recorded every 5 minutes. Arterial blood samples were analysed every 20 minutes. Additional anaesthetics (ketamine and midazolam) were administered whenever the horse moved. Dobutamine was infused to maintain mean arterial pressure (MAP) > 58 mm Hg, but was discontinued when MAP reached 68 mm Hg. Mechanical ventilation was imposed when PaCO(2) exceeded 9.3 kPa (70 mm Hg). RESULTS: Haemodynamic data (HR and MAP) and blood gas measurements were analysed using repeated measure analysis using a mixed covariance pattern model (SAS version 8.2). A Student's t-test was used to investigate differences between groups in the doses of additional anaesthetics required. There were no significant differences between M+ or M- groups in MAP (p = 0.65), HR (p = 0.74), PaO2 (p = 0.40) or PaCO2 (p = 0.20). Fewer horses in the M+ group received additional anaesthetics (15.8% compared to 21.1% in M- group), and the mean dose of ketamine required was higher in the M- group (mean +/- SD: M-, 0.93 +/- 0.70; M+, 0.45 +/- 0.17). These differences were not statistically significant (p = 0.28). CONCLUSIONS: Pre-anaesthetic and peri-operative morphine administration is not associated with significant haemodynamic or ventilatory changes. Horses receiving morphine tended to receive fewer and lower doses of additional anaesthetic drugs, although this was not statistically significant.  相似文献   

12.
A dose range was determined for anaesthesia of 20 recently boma-captured roan antelope (Hippotragus equinus) with the synthetic opiate A3080 combined with medetomidine and ketamine. A dose of 10-30 micro/kg A3080 (x = 20+/-8 microg/kg) combined with 5-21 microg/kg medetomidine (x = 13+/-7 microg/kg) plus 0.29-1.11 mg/kg ketamine (x = 0.71+/-0.24 mg/kg) was found to be safe and effective for the field conditions in this study. The anaesthesia produced by this drug combination was predictable and characterised by a short induction time, good muscle relaxation, and acceptable physiological parameters for anaesthesia periods ranging from 49-103 min (x = 64+/-19 min). The wide range (3-4-fold) of doses with acceptable results is also an indication that this drug combination has a wide margin of safety in roan antelope, making it desirable for field use. When 2 dose levels (2-3-fold dif ference) were retrospectively evaluated, no statistical difference was found in induction times, and no observable clinical differences in the anaesthetic episodes were seen. Based on this study, the recommended dose range in roan antelope for this combination is 10-13 microg/kg A3080, 5-6 microg/kg medetomidine and 0.3-0.6 mg/kg ketamine. The anaesthesia produced by this combination was rapidly and completely reversed by i.m. or i.v. injections of naltrexone at 30 times the A3080 dose (x = 0.60+/-0.25 mg/kg) and atipamezole at 3 times the medetomidine dose (x = 38+/-20 microg/kg). No residual effects from ketamine were noted following reversal of A3080 and medetomidine. No mortality was associated with this protocol.  相似文献   

13.
OBJECTIVE: To compare the quality of surgical anaesthesia and cardiorespiratory effects of three intramuscular (IM) anaesthetic combinations in rabbits. STUDY DESIGN: Prospective randomized cross-over experimental study. ANIMALS: Nineteen adult female chinchilla mixed-bred rabbits weighing 3.9 +/- 0.8 kg. METHODS: Rabbits were given one of three IM anaesthetic combinations: 0.25 mg kg(-1) medetomidine and 35.0 mg kg(-1) ketamine (M-K), 0.20 mg kg(-1) medetomidine and 0.02 mg kg(-1) fentanyl and 1.0 mg kg(-1) midazolam (M-F-Mz) and 4.0 mg kg(-1) xylazine and 50 mg kg(-1) ketamine (X-K). The effects of anaesthesia on nociceptive reflexes, circulatory and respiratory function were recorded. Statistical analyses involved repeated measures anova with paired Student's t-test applied post hoc. P-values <0.05 were considered as significant. RESULTS: Reflex loss was most rapid and complete in M-K recipients, whereas animals receiving M-F-Mz showed the longest tolerance of endotracheal intubation (78.1 +/- 36.5 minutes). Loss of righting reflex was significantly most rapid (p < 0.05) in the X-K group (114.7 +/- 24.0 minutes). Surgical anaesthesia was achieved in 16 of 19 animals receiving M-K, in 14 animals receiving M-F-Mz, and in seven animals with X-K, but only for a short period (7.1 +/- 11.6 minutes). This was significantly (p < 0.001) shorter than with M-K (38.7 +/- 30.0 minutes) and M-F-Mz (31.6 +/- 26.6 minutes). Heart rates were greatest in X-K recipients; lowest HR were seen in animals receiving M-F-Mz. Mean arterial blood pressure was significantly higher (about 88 mmHg) during the first hour in the M-K group. During recovery, the greatest hypotension was encountered in the X-K group; minimum values were 53 +/- 12 mmHg. Six of 19 animals in the M-F-Mz group showed a short period of apnoea (30 seconds) immediately after endotracheal intubation. Respiratory frequency was significantly lower in this group (p < 0.001). Highest values for arterial carbon dioxide partial pressures (PaCO(2)) (6.90 +/- 0.87 kPa; 52.5 +/- 6.5 mmHg) occurred after induction of anaesthesia in group M-F-Mz animals. There was a marked decrease in PaO(2) in all three groups (the minimum value 5.28 +/- 0.65 kPa [39.7 +/- 4.9 mmHg] was observed with M-K immediately after injection). Arterial PO(2) was between 26.0 and 43.0 kPa (196 and 324 mmHg) in all groups during O(2) delivery and decreased - but not <7.98 kPa - on its withdrawal. Immediately after drug injection, pH(a) values fell in all groups, with lowest values after 30 minutes (7.23 +/- 0.03 with M-K, 7.28 +/- 0.05 with M-F-Mz, and 7.36 +/- 0.04 with X-K). The X-K animals showed significantly (p < 0.001) higher pH values than medetomidine recipients. During 1 hour of anaesthesia pH values in the medetomidine groups remained below those of the X-K group. CONCLUSIONS: Surgical anaesthesia was induced in most animals receiving medetomidine-based combinations. Arterial blood pressure was maintained at baseline values for about 1 hour after M-K. Transient apnoea occurred with M-F-Mz and mandates respiratory function monitoring. Oxygen enrichment of inspired gases is necessary with all three combinations. Endotracheal intubation is essential in rabbits receiving M-F-Mz. CLINICAL RELEVANCE: The quality of surgical anaesthesia was greatest with M-K. All combinations allowed recoveries of similar duration. It is theoretically possible to antagonize each component of the M-F-Mz combination.  相似文献   

14.
OBJECTIVE: To compare the sedative, anaesthetic-sparing and arterial blood-gas effects of two medetomidine (MED) doses used as pre-anaesthetic medication in sheep undergoing experimental orthopaedic surgery. STUDY DESIGN: Randomized, prospective, controlled experimental trial. ANIMALS: Twenty-four adult, non-pregnant, female sheep of various breeds, weighing 53.9 +/- 7.3 kg (mean +/- SD). METHODS: All animals underwent experimental tibial osteotomy. Group 0 (n = 8) received 0.9% NaCl, group L (low dose) (n = 8) received 5 microg kg(-1) MED and group H (high dose) (n = 8) received 10 microg kg(-1) MED by intramuscular (IM) injection 30 minutes before induction of anaesthesia with intravenous (IV) propofol 1% and maintenance with isoflurane delivered in oxygen. The propofol doses required for induction and endtidal isoflurane concentrations (F(E')ISO) required to maintain anaesthesia were recorded. Heart and respiratory rates and rectal temperature were determined before and 30 minutes after administration of the test substance. The degree of sedation before induction of anaesthesia was assessed using a numerical rating scale. Arterial blood pressure, heart rate, respiratory rate, FE'ISO, end-tidal CO2 (FE'CO2) and inspired O2 (FIO2) concentration were recorded every 10 minutes during anaesthesia. Arterial blood gas values were determined 10 minutes after induction of anaesthesia and every 30 minutes thereafter. Changes over time and differences between groups were examined by analysis of variance (anova) for repeated measures followed by Bonferroni-adjusted t-tests for effects over time. RESULTS: Both MED doses produced mild sedation. The dose of propofol for induction of anaesthesia decreased in a dose-dependent manner: mean (+/-SE) values for group 0 were 4.7 (+/-0.4) mg kg(-1), for group L, 3.2 (+/-0.4) mg kg(-1) and for group H, 2.3 (+/-0.3) mg kg(-1)). The mean (+/-SE) FE'ISO required to maintain anaesthesia was 30% lower in both MED groups [group L: 0.96 (+/-0.07) %; group H: 1.06 (+/-0.09) %] compared with control group values [(1.54 +/- 0.17) %]. Heart rates were constantly higher in the control group with a tendency towards lower arterial blood pressures when compared with the MED groups. Respiratory rates and PaCO2 were similar in all groups while PaO2 increased during anaesthesia with no significant difference between groups. In group H, one animal developed a transient hypoxaemia: PaO2 was 7.4 kPa (55.7 mmHg) 40 minutes after induction of anaesthesia. Arterial pH values and bicarbonate concentrations were higher in the MED groups at all time points. CONCLUSION AND CLINICAL RELEVANCE: Intramuscular MED doses of 5 and 10 microg kg(-1) reduced the propofol and isoflurane requirements for induction and maintenance of anaesthesia respectively. Cardiovascular variables and blood gas measurements remained stable over the course of anaesthesia but hypoxaemia developed in one of 16 sheep receiving MED.  相似文献   

15.
REASONS FOR PERFORMING STUDY: Lidocaine and ketamine are administered to horses as a constant rate infusion (CRI) during inhalation anaesthesia to reduce anaesthetic requirements. Morphine decreases the minimum alveolar concentration (MAC) in some domestic animals; when administered as a CRI in horses, morphine does not promote haemodynamic and ventilatory changes and exerts a positive effect on recovery. Isoflurane-sparing effect of lidocaine, ketamine and morphine coadministration has been evaluated in small animals but not in horses. OBJECTIVES: To determine the reduction in isoflurane MAC produced by a CRI of lidocaine and ketamine, with or without morphine. HYPOTHESIS: Addition of morphine to a lidocaine-ketamine infusion reduces isoflurane requirement and morphine does not impair the anaesthetic recovery of horses. METHODS: Six healthy adult horses were anaesthetised 3 times with xylazine (1.1 mg/kg bwt i.v.), ketamine (3 mg/kg bwt i.v.) and isoflurane and received a CRI of lidocaine-ketamine (LK), morphine-lidocaine-ketamine (MLK) or saline (CTL). The loading doses of morphine and lidocaine were 0.15 mg/kg bwt i.v and 2 mg/kg bwt i.v. followed by a CRI at 0.1 mg/kg bwt/h and 3 mg/kg bwt/h, respectively. Ketamine was given as a CRI at 3 mg/kg bwt/h. Changes in MAC characterised the anaesthetic-sparing effect of the drug infusions under study and quality of recovery was assessed using a scoring system. Results: Mean isoflurane MAC (mean ± s.d.) in the CTL, LK and MLK groups was 1.25 ± 0.14%, 0.64 ± 0.20% and 0.59 ± 0.14%, respectively, with MAC reduction in the LK and MLK groups being 49 and 53% (P<0.001), respectively. No significant differences were observed between groups in recovery from anaesthesia. Conclusions and clinical relevance: Administration of lidocaine and ketamine via CRI decreases isoflurane requirements. Coadministration of morphine does not provide further reduction in anaesthetic requirements and does not impair recovery.  相似文献   

16.
OBJECTIVE: To compare propofol, thiopental and ketamine as induction agents before halothane anaesthesia in goats. STUDY DESIGN: Prospective, randomized cross-over study. Animals Seven healthy adult female goats with mean (+/-SD; range) body mass of 38.9 +/- 3.29 kg; 35-45 kg. METHODS: The seven animals were used on 21 occasions. Each received all three anaesthetics in a randomized cross-over design, with an interval of at least 2 weeks before re-use. Anaesthesia was induced with intravenous (IV) propofol (3 mg kg(-1)), thiopental (8 mg kg(-1), IV) or ketamine (10 mg kg(-1), IV). Following tracheal intubation, anaesthesia was maintained with halothane for 30 minutes. Indirect blood pressure, heart rate, respiratory rate and arterial blood gases were monitored. The quality of induction and recovery, recovery times and incidence of side-effects were recorded. RESULTS: Induction of anaesthesia was smooth and uneventful, and tracheal intubation was easily performed in all but two goats receiving ketamine. Changes in cardiopulmonary variables and acid-base status were similar with all three induction agents and were within clinically acceptable limits. Mean recovery times (time to recovery of swallowing reflex and to standing) were significantly shorter, and side-effects, e.g. apnoea, regurgitation, hypersalivation and tympany, were less common in goats receiving propofol, compared with the other treatments. CONCLUSIONS AND CLINICAL RELEVANCE: Propofol 3 mg kg(-1) IV is superior to thiopental and ketamine as an induction agent before halothane anaesthesia in goats. It provides uneventful recovery which is more rapid than thiopental or ketamine, so reduces anaesthetic risk.  相似文献   

17.
OBJECTIVE: To evaluate the effectiveness of four ketamine-based anaesthetics in badgers using a quantitative anaesthesia assessment technique. STUDY DESIGN: Prospective randomized 'blinded' experimental trial. METHODS: The quality of induction, of anaesthesia (at 5-minute intervals) and of recovery were assessed in 93 badgers, given either one of three ketamine (K)-medetomidine (M)-butorphanol (B) combinations: group A - M K B at 20/40/80 microg kg(-1); group B - M K B at 20/40/60 microg kg(-1); and group C - M K B at 20/60/40 microg kg(-1), or ketamine (K) alone at 2 mg kg(-1) (group D). The assessor was ignorant of the combination administered. Physiological variables (heart and respiratory rates and rectal temperature) were measured at 5-minute intervals during anaesthesia. Gingival mucus membrane colour was also recorded. RESULTS: Induction to anaesthesia was most rapid with ketamine (2 mg kg(-1)) although induction quality did not differ between techniques. Ketamine used alone gave the poorest score for anaesthesia quality. Heart rate (HR) and scores for gingival mucus membrane colour were higher in animals anaesthetized with ketamine alone. Rectal temperature did not differ significantly between the techniques at any time during anaesthesia. Ketamine used alone produced the poorest quality of recovery. CONCLUSION AND CLINICAL RELEVANCE: The M-K-B combinations investigated overcame several side effects associated with ketamine anaesthesia, but at the expense of more variable induction times, lower HRs, and poorer mucus membrane coloration.  相似文献   

18.
REASONS FOR PERFORMING STUDY: Recovery from inhalant anaesthesia in the horse is a critical and difficult period to manage; however, several factors could help to obtain a calm recovery period including choice of anaesthetic and analgesic procedure used and the conditions under which anaesthetic maintenance and recovery occur. OBJECTIVES: The objective of this study was to evaluate and compare the quality of recovery in horses administered saline, xylazine, detomidine or romifidine during recovery from isoflurane anaesthesia. METHODS: Six mature and healthy horses were premedicated with i.v. xylazine and butorphanol, and anaesthesia induced using ketamine. After 2 h of inhalant anaesthesia with isoflurane vaporised in oxygen, saline solution, xylazine (0.1 mg/kg bwt), detomidine (2 microg/kg bwt) or romifidine (8 pg/kg bwt) were administered. The quality of recovery of each horse and the degree of sedation and ataxia were evaluated. Cardiovascular and respiratory parameters were recorded, and arterial blood samples obtained and analysed for pH, PO2 and PCO2 during recovery. RESULTS: Quality of recovery was better in groups treated with alpha-2 adrenergic receptors agonists, showing less ataxia. Degree of sedation was greater in the romifidine group. CONCLUSIONS: We concluded that the administration of alpha-2 adrenoceptor agonists during recovery from isoflurane anaesthesia in horses prolonged and improved the quality of recovery without producing significant cardiorespiratory effects. POTENTIAL CLINICAL RELEVANCE: Administration of alpha-2 adrenoceptor agonists after inhalent anaesthesia could prevent complications during the recovery period.  相似文献   

19.
OBJECTIVE: To investigate the onset and duration of neuromuscular blockade of rocuronium bromide and its associated haemodynamic effects at three doses in healthy horses. STUDY DESIGN: Prospective, randomized experimental study. ANIMALS: Seven adult horses aged 3-20 (mean 10.3) years and weighing 466 +/- 44 (mean +/- SD) kg. METHODS: Horses were anaesthetized three times with at least 2 weeks between. They were pre-medicated with 0.6 mg kg(-1) xylazine and 0.01 mg kg(-1) butorphanol i.v.. Anaesthesia was induced with 2.2 mg kg(-1) ketamine and 0.1 mg kg(-1) diazepam i.v.. Following orotracheal intubation anaesthesia was maintained with isoflurane in 100% oxygen. Intermittent positive pressure ventilation was initiated and the horses were ventilated at a respiratory rate (fr) of 4-8 breaths minute(-1). Neuromuscular function was monitored with an acceleromyograph. The peroneal nerve was stimulated with train-of-four (TOF) mode at 2 Hz every 15 seconds. Each horse received, in randomly assigned order, one of the three doses of rocuronium: 0.2 mg kg(-1) (D02), 0.4 mg kg(-1) (D04) or 0.6 mg kg(-1) (D06) i.v.. Lag time, onset time, time of no response, duration of action and the TOF ratio 0.7 and 0.9 were measured. Recovery time (T1(25-75)) was calculated. Vital parameters were recorded at 5-minute intervals on a standard anaesthetic record form. RESULTS: Rocuronium produced a dose-dependent duration of action in isoflurane-anaesthetized horses. 100% block was observed in D04 and D06 but not in D02, in which the maximum decrease of the first twitch of TOF attained was 91.5 +/- 16.5%. Time to T1(25) was 13.1 +/- 5.5 minutes, 38.6 +/- 10.1 minutes and 55 +/- 9.8 minutes in D02, D04 and D06 respectively. There was a significantly shorter time for TOFR 0.9 with 0.2 mg kg(-1) compared with 0.4 and 0.6 mg kg(-1) rocuronium. T1(25-75) in D04 and D6 was not statistically significantly different. Heart rate, systolic, diastolic and mean arterial blood pressure increased slightly during the observation period. CONCLUSION: Rocuronium is an effective nondepolarizing muscle relaxant in horses under isoflurane anaesthesia. It had a dose-dependent onset and duration of action. Rocuronium did not produce significant changes in the measured cardiovascular parameters.  相似文献   

20.
ObjectiveTo test if the addition of butorphanol by constant rate infusion (CRI) to medetomidine–isoflurane anaesthesia reduced isoflurane requirements, and influenced cardiopulmonary function and/or recovery characteristics.Study designProspective blinded randomised clinical trial.Animals61 horses undergoing elective surgery.MethodsHorses were sedated with intravenous (IV) medetomidine (7 μg kg?1); anaesthesia was induced with IV ketamine (2.2 mg kg?1) and diazepam (0.02 mg kg?1) and maintained with isoflurane and a CRI of medetomidine (3.5 μg kg?1 hour?1). Group MB (n = 31) received butorphanol CRI (25 μg kg?1 IV bolus then 25 μg kg?1 hour?1); Group M (n = 30) an equal volume of saline. Artificial ventilation maintained end-tidal CO2 in the normal range. Horses received lactated Ringer’s solution 5 mL kg?1 hour?1, dobutamine <1.25 μg kg?1 minute?1 and colloids if required. Inspired and exhaled gases, heart rate and mean arterial blood pressure (MAP) were monitored continuously; pH and arterial blood gases were measured every 30 minutes. Recovery was timed and scored. Data were analyzed using two way repeated measures anova, independent t-tests or Mann–Whitney Rank Sum test (p < 0.05).ResultsThere was no difference between groups with respect to anaesthesia duration, end-tidal isoflurane (MB: mean 1.06 ± SD 0.11, M: 1.05 ± 0.1%), MAP (MB: 88 ± 9, M: 87 ± 7 mmHg), heart rate (MB: 33 ± 6, M: 35 ± 8 beats minute?1), pH, PaO2 (MB: 19.2 ± 6.6, M: 18.2 ± 6.6 kPa) or PaCO2. Recovery times and quality did not differ between groups, but the time to extubation was significantly longer in group MB (26.9 ± 10.9 minutes) than in group M (20.4 ± 9.4 minutes).Conclusion and clinical relevanceButorphanol CRI at the dose used does not decrease isoflurane requirements in horses anaesthetised with medetomidine–isoflurane and has no influence on cardiopulmonary function or recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号