首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate the effect of tibial plateau leveling on joint motion in canine stifle joints in which the cranial cruciate ligament (CCL) had been severed. STUDY DESIGN: In vitro cadaver study. ANIMALS: Six canine cadaver hind legs. METHODS: Radiographs of the stifle joints were made to evaluate the tibial plateau angle with respect to the long axis of the tibia. The specimens were mounted in a custom-made testing device to measure cranio-caudal translation of the tibia with respect to the femur. An axial load was applied to the tibia, and its position was recorded in the normal stifle, after transection of the CCL, and after tibial plateau leveling. Further, the amount of caudal tibial thrust was measured in the tibial plateau leveled specimen while series of eight linearly increasing axial tibial loads were applied. RESULTS: Transection of the CCL resulted in cranial tibial translation when axial tibial load was applied. After tibial plateau leveling, axial loading resulted in caudal translation of the tibia. Increasing axial tibial load caused a linear increase in caudal tibial thrust in all tibial plateau-leveled specimens. CONCLUSIONS: After tibial plateau leveling, axial tibial load generates caudal tibial thrust, which increases if additional axial load is applied. CLINICAL RELEVANCE: Tibial plateau leveling osteotomy may prevent cranial translation during weight bearing in dogs with CCL rupture by converting axial load into caudal tibial thrust. The amount of caudal tibial thrust seems to be proportional to the amount of weight bearing.  相似文献   

2.
OBJECTIVE: To evaluate the effect of tibial tuberosity advancement (TTA) on tibiofemoral shear force as reflected by measurement of cranial tibial subluxation (CTS) and patella tendon angle (PTA) in the canine cranial cruciate ligament (CrCL) deficient stifle joint. STUDY DESIGN: In vitro cadaver study. ANIMALS: Canine cadaveric hind limbs (n=10). METHODS: CTS and PTA were evaluated from lateral radiographic projections in axially loaded intact CrCL stifle joints, after transection of the CrCL, at a maximally advanced tibial tuberosity position, and at a critical point position. A custom-designed hinge plate allowed alteration of the tibia to tibial tuberosity distance (Ti-TT) under axial load. Digitized radiographic images were used to quantify CTS, PTA, and Ti-TT. Comparisons within groups were made using 1-way repeated measures ANOVA. A post hoc Tukey's HSD test was used to determine post-ANOVA pair-wise comparison within these groups. Significance was set at a value of P<.05. RESULTS: CTS occurred after CrCL transection, which was significantly different from the intact position (P<.01). Subsequent stability of the stifle joint was obtained by advancing the tibial tuberosity. In the maximally advanced tibial tuberosity position, caudal tibial thrust was generated resulting in caudal tibial subluxation that was significantly different from the transected CrCL position (P<.01) and from the intact CrCL position (P<.01). Despite a stable joint, there was slight CTS at the critical point position, which was significantly different from the intact CrCL position (P<.05). The PTA at the maximally advanced position was significantly different from the intact, critical point and reference 90 degrees PTAs (P<.01). The PTA at the critical point position was significantly different from the intact and maximally advanced tibial tuberosity PTAs (P<.01), but not different (P>.05) from the reference 90 degrees PTA. CONCLUSION: We demonstrated that advancement of the tibial tuberosity neutralized cranial tibial thrust, and converted cranial tibial thrust into caudal tibial thrust. Neutralization of tibiofemoral shear forces occurred at a PTA of 90.3+/-9.0 degrees. CLINICAL RELEVANCE: TTA can effectively change the magnitude and direction of the tibiofemoral shear force, and thus may be used to prevent craniotibial translation in a CrCL deficient stifle joint.  相似文献   

3.
OBJECTIVES: To compare centered versus distal tibial plateau leveling osteotomy (TPLO) position on cranial tibial subluxation, postoperative tibial plateau angle (TPA), and tibial long axis shift (TLAS). STUDY DESIGN: In vitro biomechanical evaluation. ANIMALS: Six pairs of canine cadaveric hind limbs. METHODS: One limb of each pair was randomly assigned to the distal (TPLO-D) or centered (TPLO-C) osteotomy group. Cranial tibial subluxation (CTS) under load was quantified sequentially under 3 conditions: intact, after cranial cruciate ligament transection, and after TPLO; a corrected CTS value was also calculated. Postoperative TPA and TLAS were measured. Comparisons were made using 1-way repeated measures ANOVA with a Tukey's multiple comparison post hoc test for CTS, and a Wilcoxon's sign rank test for TPA and TLAS. Significance was set at P<.05. RESULTS: TPLO-C had a significantly lower mean CTS than TPLO-D (P<.01). Corrected CTS was also significantly lower in TPLO-C than in TPLO-D (P<.001). Postoperative TPA and TLAS were less in TPLO-C than in TPLO-D (P=.0312). CONCLUSION: Our results confirm that distal centering of the TPLO leads to craniodistal translation of the tibial plateau, TLAS, and a postoperative TPA that is greater than expected. This geometric effect has the biomechanical effect expected of inadequate tibial plateau leveling, namely incomplete neutralization of cranial tibial thrust. CLINICAL RELEVANCE: The centered osteotomy position is geometrically more precise, and biomechanically more effective than the distal position.  相似文献   

4.
This study was designed to determine the ability of tibial plateau leveling osteotomy (TPLO) to eliminate cranial tibial translation (CTT) through a loaded range of motion. Twenty-four large-breed canine cadaver limbs were compared. Each limb was placed in a custom designed jig at 120° of stifle extension under an axial load of 20% body weight. A force of approximately 10 N/s mimiced the action of the quadriceps muscle and allowed the limb to move from 120° to maximal extension. Positional data were acquired using electromagnetic motion-tracking sensors. Each limb was tested under normal, cranial cruciate ligament (CrCL)-deficient, and TPLO-treated conditions. Cranial tibial translation significantly increased after transection of the CrCL. The TPLO failed to normalize CTT within the CrCL deficient stifle; however, values trended towards intact values throughout the range of motion. The TPLO was more effective at higher angles of flexion. These altered biomechanics may help explain the continued progression of osteoarthritis in TPLO repaired stifles. This loaded model may serve as a method for future evaluation of other surgical techniques.  相似文献   

5.
OBJECTIVE: To evaluate the effect of tibial plateau leveling on the biomechanics of the canine stifle. STUDY DESIGN: Analysis of a 3-dimensional (3-D) anatomically accurate theoretical model of the canine stifle. METHODS: A 3-D, 3-segment mathematical model of the normal canine stifle was modified to simulate the effect of rotation of the tibial plateau during tibial plateau leveling osteotomy (TPLO). The model examined the normal stifle, the stifle with a tibial plateau angle (TPA) of 0 degrees, and the stifle with a TPA of 5 degrees. Analysis of the models at 10 consecutive equally spaced positions during the stance phase yielded data such as ligament forces and joint reaction forces at each position. RESULTS: Rotation of the tibial plateau to a TPA of 0 degrees almost eliminates forces in the cranial cruciate ligament (CCL) throughout the stance phase. Rotation to a TPA of 5 degrees did not, however, substantially decrease the load in the CCL. Both procedures increased the load in the caudal cruciate ligament (CaCL). CONCLUSIONS: Cranial tibial thrust (CTT) is converted into caudal tibial thrust when the TPA is 0 degrees ; however, rotating the plateau to a TPA of 5 degrees does not eliminate the CTT. CLINICAL RELEVANCE: The TPLO procedure performed as currently recommended (rotating the tibial plateau to a TPA of 5 degrees) may not eliminate the CTT, but only reduce it. Both TPLO procedures evaluated here were found to increase the load in the CaCL.  相似文献   

6.
OBJECTIVE: To describe a surgical technique, and outcome, for treatment of cranial cruciate ligament (CrCL) deficient stifle joints with excessive tibial plateau angle (TPA) by combined tibial plateau leveling osteotomy and cranial closing wedge osteotomy (TPLO/CCWO). STUDY DESIGN: Retrospective clinical study. ANIMALS: Fifteen client-owned dogs (18 stifle joints). METHODS: Medical records of dogs that had TPLO/CCWO were reviewed. Pre- and postoperative TPA, CCWO technique, method of fixation and complications were recorded. In-hospital re-evaluation of limb function and length of time to radiographic healing was reviewed. Long-term outcome was assessed by owner telephone interview. RESULTS: Mean pre- and postoperative TPA was 42 degrees and 8 degrees, respectively. The Slocum biradial saw was used to create the CCWO in 4 stifle joints (mean postoperative TPA, 16 degrees) and a sagittal saw was used in 14 stifle joints (mean postoperative TPA, 5 degrees). Postoperative surgical complications were documented in 77.8% of cases; including patellar tendon thickening (61.1%), and implant loosening or breakage (27.8%), seroma formation (11.1%), and local irritation (11.1%). A second surgical procedure was performed in one-third of cases primarily to retrieve implants. Mean time to documented radiographic healing was 18 weeks. Final in-hospital re-evaluation of limb function (mean, 23 weeks postoperatively) was recorded as no lameness in 73.3% and mild lameness in 26.7%. All interviewed owners were satisfied with outcome and 90.9% reported marked improvement or a return to preinjury status. CONCLUSIONS: Long-term clinical outcome of TPLO/CCWO was very good in dogs with excessive TPA, with high owner satisfaction. Longer healing times and a higher complication rate were observed compared with TPLO alone. CLINICAL RELEVANCE: TPLO/CCWO of the tibia in stifle joints with excessive TPA allows for full correction of the TPA to 5 degrees without eliminating buttress support of the tibial tuberosity.  相似文献   

7.
OBJECTIVE: To compare application time, accuracy of tibial plateau slope (TPS) correction, presence and magnitude of rotational and angular deformities, and mechanical properties of 5 canine tibial plateau leveling methods. SAMPLE POPULATION: 27 canine tibial replicas created by rapid prototyping methods. PROCEDURE: The application time, accuracy of TPS correction, presence and magnitude of rotational and angular deformation, and construct axial stiffness of 3 internal fixation methods (tibial plateau leveling osteotomy, tibial wedge osteotomy, and chevron wedge osteotomy [CWO]) and 2 external skeletal fixation (ESF) methods (hinged hybrid circular external fixation and wedge osteotomy linear fixation [WOLF]) were assessed. RESULTS: Mean bone model axial stiffness did not differ among methods. Mean application time was more rapid for WOLF than for other methods. Mean TPSs did not differ from our 5 degrees target and were lower for ESF methods, compared with internal fixation methods. Mean postoperative rotational malalignment did not differ from our target or among groups. Mean postoperative medio-lateral angulation did not differ from our target, except for CWO. Internal fixation methods lead to axially stiffer constructs than ESF methods. Reuse of ESF frames did not lead to a decrease in axial stiffness. CONCLUSIONS AND CLINICAL RELEVANCE: The 5 tibial plateau leveling methods had acceptable geometric and mechanical properties. External skeletal fixation methods were more accurate as a result of precise data available for determining the exact magnitude of correction required to achieve a 5 degrees TPS.  相似文献   

8.
Objective: To assess the effect of autogenous cancellous bone graft (autograft) and novel plate use on radiographic healing and complications in tibial tuberosity advancement (TTA) for treatment of cranial cruciate ligament (CrCL)‐deficient stifles in dogs. Study Design: Prospective clinical study. Animals: Consecutive dogs (n=125) with unilateral CrCL‐deficient stifles. Methods: Four treatment groups: CPG, conventional plate with autograft; CPNG, conventional plate without autograft; NPG, novel plate with autograft; NPNG, novel plate without autograft were studied. Radiographs from 60 dogs were scored for healing at 6 and 10 weeks postoperatively; all 125 dogs were assessed for radiographic complications. Variables evaluated for relationship with healing scores and radiographic complications were age, weight, sex, cage and plate size, implant type, and graft use. Results: Dogs with autograft had overall higher healing scores at 6 and 10 weeks. Radiographic complications occurred in 13 dogs (12 minor, 1 major), and were not influenced by graft or novel plate use. Conclusion: Autograft increases healing scores, but was not found to have a significant impact on the rate of complications in TTA. The novel plate was not found to have healing scores or radiographic complication rates significantly different from the conventional plate design.  相似文献   

9.
OBJECTIVE: To evaluate the influence of a tibial plateau leveling jig on osteotomy orientation, fragment reduction, and postoperative tibial plateau angle (TPA) during tibial plateau leveling osteotomy (TPLO). STUDY DESIGN: In vitro experimental study. ANIMALS: Large-breed canine cadavers (n=20). METHODS: TPLO was performed on 40 hindlimbs using 4 methods. Group 1: Jig; dogs in dorsal recumbency with the osteotomy parallel to the distal jig pin. Groups 2-4: No jig; dogs in lateral recumbency with the osteotomy in a vertical orientation (group 2: tibia parallel to the table top; group 3: controlled superimposition of the femoral condyles; group 4: internal rotation of the tibia). Postoperative TPA, fragment reduction, and osteotomy orientation relative to the tibial plateau were compared. Positive or negative values denoted deviation from parallel relative to the tibial plateau. RESULTS: Postoperative TPA, fragment reduction, and proximodistal osteotomy orientation were not significantly different between groups. Craniocaudal osteotomy orientation was significantly different (P<.005) from the tibial plateau. Median deviations were -4.0 degrees (group 1), 11.8 degrees (group 2), 11.2 degrees (group 3), and 0.2 degrees (group 4). Group 1 was not significantly different from group 4. CONCLUSIONS: A jig is not essential for osteotomy orientation, tibial plateau rotation, or fragment reduction. Comparable results were achieved performing a vertical osteotomy with the tibia slightly internally rotated (10 degrees -15 degrees) and parallel to the table surface. CLINICAL RELEVANCE: TPLO without use of a jig reduces surgical trauma, is less time consuming, and reduces cost.  相似文献   

10.
11.
12.
OBJECTIVE: To investigate tibial plateau angles (TPA) in normal and cranial cruciate ligament (CCL) deficient stifles of Labrador retrievers. STUDY DESIGN: Prospective clinical study. ANIMALS: Eighty-one client-owned purebred Labrador retrievers. METHODS: Lateral radiographs of the tibia were obtained from 2 groups of dogs. Group I (42 dogs) had CCL rupture diagnosed by arthrotomy or arthroscopy. Group II (39 dogs) had no history of orthopedic problems, no radiographic evidence of CCL rupture, and dogs were >8 years of age. The tibial axis and the tibial plateau were determined on the radiographs, and the TPA was measured using image measurement software. The TPA measurement results of groups I and II were compared. RESULTS: Group I (CCL rupture) had a mean TPA (+/-SD) of 23.5 (+/-3.1) degrees, and group II (normal) had a mean TPA (+/-SD) of 23.6 (+/-3.5) degrees. With a P value of.97, no statistical difference was detected between the 2 groups. CONCLUSIONS: No correlation between the magnitude of TPA and CCL rupture was identified in this group of Labrador retrievers. CLINICAL RELEVANCE: In Labrador retrievers, TPA should not be used as a predictor of CCL rupture.  相似文献   

13.
OBJECTIVE: To determine the microchemical and surface composition of tibial plateau leveling osteotomy (TPLO) plates before and after explantation. SAMPLE POPULATION: 7 TPLO plates surgically removed from host dogs 6 to 54 months after implantation; 2 raw unpolished-and-unpassivated 316L TPLO plates; and 2 heat-treated, polished-and-passivated, and cleaned 316L TPLO plates. PROCEDURES: Samples were removed by use of standard techniques to ensure the plate surface was not damaged. Sample pieces were dissolved and analyzed by inductively coupled plasma-mass spectrometry (ICP-MS) to determine bulk elemental composition. Other sample pieces were investigated by use of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray photoelectron spectroscopy (XPS) for determination of sample morphology, near-surface elemental composition, and surface elemental composition, respectively. To investigate the possibility of corrosion in situ, some samples were chemically corroded and analyzed. RESULTS: ICP-MS confirmed that elemental composition of samples was consistent with 316L stainless steel. The SEM and EDS analyses revealed trace amounts of polishing materials and a nonuniform carbonaceous biofilm on < 1% of the surface area of samples removed from the host dogs. The XPS analysis indicated an increase in the chromium-to-iron ratio on passivated surfaces, with no difference between passivated samples before implantation and after explantation. CONCLUSIONS AND CLINICAL RELEVANCE: Composition of the TPLO plates was consistent with 316L stainless steel. No chemical or topographic changes were detected in TPLO plates that had been implanted in dogs for up to 54 months. A small amount of biofilm was evident on the surface of 2 plates.  相似文献   

14.
15.
OBJECTIVE: To design and manufacture custom titanium bone plates and a custom cutting and drill guide by use of free-form fabrication methods and to compare variables and mechanical properties of 2 canine tibial plateau leveling methods with each other and with historical control values. SAMPLE POPULATION: 10 canine tibial replicas created by rapid prototyping methods. PROCEDURES: Application time, accuracy of correction of the tibial plateau slope (TPS), presence and magnitude of rotational and angular deformation, and replica axial stiffness for 2 chevron wedge osteotomy (CWO) methods were assessed. One involved use of freehand CWO (FHCWO) and screw hole drilling, whereas the other used jig-guided CWO (JGCWO) and screw hole drilling. RESULTS: Replicas used for FHCWO and JGCWO methods had similar stiffness. Although JGCWO and FHCWO did not weaken the replicas, mean axial stiffness of replicas after JGCWO was higher than after FHCWO. The JGCWO method was faster than the FHCWO method. Mean +/- SD TPS after osteotomy was lower for FHCWO (4.4 +/- 1.1 degrees ) than for JGCWO (9.5 +/- 0.4 degrees ), and JGCWO was more accurate (target TPS, 8.9 degrees ). Slight varus was evident after FHCWO but not after JGCWO. Mean postoperative rotation after JGCWO and FHCWO did not differ from the target value or between methods. CONCLUSIONS AND CLINICAL RELEVANCE: The JGCWO method was more accurate and more rapid and resulted in more stability than the FHCWO method. Use of custom drill guides could enhance the speed, accuracy, and stability of corrective osteotomies in dogs.  相似文献   

16.
OBJECTIVE: To evaluate the biomechanical effects of medial meniscal release (MMR) and medial, caudal pole hemimeniscectomy (MCH) on joint stability in the cranial cruciate ligament (CCL)-deficient canine stifle before and after tibial plateau leveling osteotomy (TPLO). STUDY DESIGN: Experimental study. ANIMALS: Thirty-one dogs. METHODS: In experiment 1, 16 pairs of normal hindlimbs randomly assigned to an intact or transected CCL group were studied to determine the magnitude of tibial translation after MMR and MCH under 20% body weight load using radiographic imaging of radio-opaque markers. In experiment 2, 15 pairs of CCL-deficient hindlimbs were randomly assigned to a TPLO or sham TPLO group. The remainder of the experiment was performed as described for experiment 1. The effect of CCL transection, MMR, MCH and TPLO were analyzed using 2-way repeated measures ANOVA; P<.05 was considered significant. RESULTS: We found a greater effect of MMR on tibial translation in transected CCL stifles than in intact stifles (P=.0016). We found no further effect of MCH after MMR (P>.05). We found a greater effect of MMR in sham TPLO than TPLO stifles (P=.0013) but no further effect of MCH after MMR (P>.05). CONCLUSIONS: By resisting tibial translation the medial meniscus might be at greater risk of tearing in CCL-deficient stifles. TPLO may spare the medial meniscus by neutralizing the tibial thrust and eliminating the wedge effect of the medial meniscus. CLINICAL RELEVANCE: MMR may not be indicated in the CCL-deficient stifle stabilized by TPLO.  相似文献   

17.
18.
19.
Objective— To assess the effect of 9 mm tibial tuberosity advancement (TTA) on cranial tibial translation (CTT) in a cranial cruciate ligament (CCL)-deficient canine stifle model.
Study Design— In vitro cadaveric study.
Animals— Canine pelvic limbs (n=12).
Methods— Each stifle was placed in a jig at 135° with a simulated quadriceps force and tibial axial force. CTT distance was measured with the CCL intact (iCCL), transected (tCCL), and after performing TTA using a 9 mm cage.
Results— Mean CTT for iCCL was 0.42 mm, 1.58 mm after severing the CCL, and 1.06 mm post-TTA. The tCCL CTT measured without any quadriceps force was 2.59 mm. Differences between the intact and tCCL ( P <.0001) and tCCL and TTA ( P =.0003) were significant. The difference between the tCCL with and without the quadriceps force was not significant ( P =.0597).
Conclusions— These data confirm that TTA does reduce CTT in tCCL stifles in this model. The CTT noted was less than that noted clinically. The addition of a simulated quadriceps force to a CCL-deficient stifle before a TTA, by itself, may not significantly lessen CTT.
Clinical Relevance— Whereas this in vitro model demonstrated that TTA reduced CTT in canine stifles with CCL transected, the model limitations preclude extrapolation to the effect of TTA in a live dog.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号