首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Valuable information about possible types of linkages, reaction mechanisms, and sequences for oxidative coupling of phenolic compounds in planta is available from in vitro model systems. Ferulate oligomers were generated in a system using ethyl ferulate, peroxidase, and hydrogen peroxide under various conditions. A molar ferulate/H2O2 ratio of 1:1, an ethanol level of 30% in an aqueous sodium phosphate buffer (pH 6.0), and a reaction time of 10 min were considered to be ideal to produce maximal proportions of ferulate trimers and tetramers from ethyl ferulate as starting material. The dominant trimer and tetramer were each isolated from the reaction mixture and identified as 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester and 8-5(cyclic)/4-O-5/8-5(cyclic)-dehydrotetraferulic acid tetraethyl ester. The structure of the 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester revealed that a third ferulate unit is bound to a preformed 8-O-4-diferulate dimer, a surprising reaction sequence considering the dominance of 8-5-coupled dimers among dehydrodiferulates in H2O2/peroxidase-based model reactions. As 4-O-5-coupling is not favored in the dimerization process of ferulates, the main tetramer isolated in this study is probably formed by 4-O-5-coupling of two preformed 8-5(cyclic)-diferulates, a logical step in analogy with reactions occurring in lignin biosynthesis.  相似文献   

2.
Ferulic acid (FA) is a phenolic antioxidant present in plants, which is widely used in the food and cosmetic industry. In the present study, various agricultural wastes such as maize bran, rice bran, wheat bran, wheat straw, sugar cane baggasse, pineapple peels, orange peels, and pomegranate peels were screened for the presence of esterified FA (EFA). Among the sources screened, maize bran was found to contain the highest amount of EFA. Pineapple peels, orange peels, and pomegranate peels were also found to contain traces of EFA. Alkaline extraction of EFA from maize bran was carried out using 2 M NaOH. Response surface methodology (RSM) was used for optimization of EFA extraction, which resulted in a 1.3-fold increase as compared to the unoptimized conventional extraction technique. FA was analyzed by means of high-performance liquid chromatography (HPLC). Purification was carried out by adsorption chromatography using Amberlite XAD-16 followed by preparative high-performance thin-layer chromatography (HPTLC). The recovery of Amberlite XAD-16 purified FA was up to 57.97% with HPLC purity 50.89%. The fold purity achieved was 1.35. After preparative HPTLC, the maximum HPLC purity obtained was 95.35% along with an increase in fold purity up to 2.53.  相似文献   

3.
In cowpea (Vigna unguiculata), the development of manganese (Mn) toxicity is considered to be accompanied by the formation of reactive oxygen species, oxidized Mn, and phenoxy radicals in the leaf apoplast. Ascorbic acid (AA) is a common antioxidant in plants, and the oxidation of AA, particularly in the leaf apoplast, contributes to the first line of defence against several biotic and abiotic stress factors. The objective of the present study was to contribute to a better understanding of the role of AA in Mn leaf‐tissue tolerance of cowpea and common bean (Phaseolus vulgaris). Five cowpea cultivars (cvs.) differed greatly in Mn tolerance, which was expressed in differences in numbers of brown spots on leaves and in peroxidase (POD) activity in the apoplastic washing fluid (AWF). In a Mn‐sensitive cv., after 3 d of Mn treatment, brown spots were formed, and POD activities were increased, accompanied by a release of proteins into the apoplast. In the AWF, the concentration of AA and the ratio of AA : (AA+DHA) decreased already after 1 d, and to only 2% after 3 d. In the leaf tissue, the ratio was nearly unaffected, and the total AA+DHA content in the leaf tissue was even increased with advanced expression of Mn toxicity. The application of AA solutions in the range of 5–10 μM via the petiole slightly enhanced Mn tolerance as indicated by the reduction of brown spots (however inconsistently) and POD activity (consistently) in the AWF. Common bean cultivars differing in ozone tolerance, which has been reported to be due to a high AA availability in the leaf apoplast, were studied for their Mn tolerance. Clear differences in Mn tolerance between the cultivars existed, however, these differences were not related to their ozone tolerance. From these results, we conclude that the maintenance of sufficient AA levels in the leaf apoplast contribute to Mn tolerance, but does not fully explain genotypic differences in Mn tolerance in cowpea and common bean.  相似文献   

4.
A commercial glucose oxidase (GOX) from Aspergillus niger was partially characterized. The enzyme exhibited a two-step transfer mechanism, and the kinetic constants toward glucose and oxygen were determined. Under conditions similar to dough making (glucose concentration and pH), GOX does not exhibit maximum activity. A hexose oxidase (HOX) from Chondrus crispus was partially characterized as well. The HOX activity is not far from the optimum in the kneading conditions (pH and glucose concentration). A peroxidase (POD) purified from wheat germ was used to oxidize ferulic acid in the presence of GOX or HOX. Hydrogen peroxide produced during the glucose oxidation activates the wheat germ POD. Ferulic acid oxidation in solutions containing different ratios of POD + GOX or HOX + POD was followed by UV spectrophotometry. For the same dosage, the HOX-POD system is the most efficient for peroxidase activation. Using absorbance data and kinetic constants of GOX and POD, a mathematical model describing the release or consumption of the different reactants (hydrogen peroxide, oxygen, and ferulic acid) in the medium was developed, and experimental data correlated well with calculated values. The results obtained will be applied to investigate the effect of GOX and HOX activities on the rheological properties of dough.  相似文献   

5.
Enzymatic treatments known to induce the gelation of feruloylated arabinoxylans solutions were applied to tissue strips isolated from peripheral layers of wheat grain to tentatively produce in situ arabinoxylan reticulation. The treatments by horseradish peroxidase (HRP) and manganese dependent peroxidase (MnP) induced a dimerization of ferulic acid (FA) in wheat bran with concomitant decrease of arabinoxylan solubility. Similar results were obtained, but to a lesser extent, by simple incubation of bran strips in water, suggesting the action of endogenous peroxidases. The fact that these treatments proved to be ineffective on the isolated aleurone layer and pericarp suggested that dimerization occurred mostly at the aleurone-pericarp interface. In addition, the MnP system generated a consumption of monomer and dimer of ferulic acid in the pericarp, perhaps due to their incorporation into lignin. Micro-mechanical tests using DMTA were performed on isolated tissue strips and showed that oxidation of wheat bran increased their mechanical strength (increase of stress and strain to rupture).  相似文献   

6.
The tyrosine-containing peptide Gly-Tyr-Gly (GYG) was oxidatively cross-linked by horseradish peroxidase in the presence of hydrogen peroxide. As products, covalently coupled di- to pentamers of the peptide were identified by LC-MS. Oxidative cross-linking of ferulic acid with horseradish peroxidase and hydrogen peroxide resulted in the formation of dehydrodimers. Kinetic studies of conversion rates of either the peptide or ferulic acid revealed conditions that allow formation of heteroadducts of GYG and ferulic acid. To a GYG-containing incubation mixture was added ferulic acid in small aliquots, therewith keeping the molar ratio of the substrates favorable for hetero-cross-linking. This resulted in a predominant product consisting of two ferulic acid molecules dehydrogenatively linked to a single peptide and, furthermore, two ferulic acids linked to peptide oligomers, ranging from dimers to pentamers. Also, mono- and dimers of the peptide were linked to one molecule of ferulic acid. A mechanism explaining the formation of all these products is proposed.  相似文献   

7.
The potential of a laccase from the fungus Pycnoporus cinnabarinus to cross-link feruloylated soluble wheat arabinoxylans was investigated using capillary viscometry, size-exclusion HPLC, and reverse-phase HPLC of phenolic compounds. The laccase results were compared with those for a hydrogen peroxide/horseradish peroxidase system. The oxidants provoked an increase in viscosity of a 0.2% (w/v) arabinoxylan solution. A gel was formed after 30 min with laccase. Hydrogen peroxide was consumed rapidly before a gel could be formed. Free ferulic acid, methyl ferulate, and vanillic acid inhibited the gelation, whereas fumaric acid had no effect. This suggests that the aromatic ring, and not the propenoic chain of ferulic acid, was the initiating site for arabinoxylan cross-linking. Ferulic acid and its 8-O-4′, 8-5′, and 5-5′ dehydrodimers were present in nonoxidized arabinoxylans. Upon oxidation, the 8-8′ and 8-5′ benzofuran dehydrodimers appeared and the 8-O-4′ and 8-5′ dimers increased. The production of dimers was proportional to the consumption of ester-bound ferulic acid. In cross-linked arabinoxylans, the major dimers were 8-5′ benzofuran, 8-8′, and 8-O-4′, whereas the 5-5′ dehydrodimer remained at the same level as in the nonoxidized solution.  相似文献   

8.
To study a way to covalently link arabinoxylans and proteins using a fungal laccase from the fungus Pycnoporus cinnabarinus, the effect of cysteinyl caffeic acid on the cross-linking of wheat arabinoxylans was investigated by means of capillary viscometry and RP-HPLC of alkali labile phenolic compounds. Cysteinyl caffeic acid provoked a delay in gelation and in the consumption of the esterified ferulic acid on arabinoxylans. When reacting free ferulic acid and cysteinyl caffeic acid with laccase, the ferulic acid consumption and the dehydrodimers production were also diminished. These results suggest that cysteinyl caffeic acid is oxidized while reducing the semiquinones of ferulic acid produced by laccase. Thus, ferulic acid could not be oxidized into dimers until all cysteinyl caffeic acid was consumed, preventing the cross-linking of feruloylated arabinoxylan chains. A similar mechanism is proposed in the case of caffeic acid and of L-Dopa.  相似文献   

9.
The concentration of ferulic acid (FA), the major phenolic acid in the wheat kernel, was found to differ significantly in the mature grain of six wheat cultivars known to have a range of tolerance to the orange wheat blossom midge (Sitodiplosis mosellana). Differences in FA content were correlated with floret infestation level of the cultivars. The wheat cultivars ranked similarly in FA content at the four locations where they were tested, despite a significant effect of environment. Ferulic acid was synthesized mainly during the early stages of grain filling but at different rates among cultivars. Ferulic acid was concentrated primarily in the shorts and bran fractions in an insoluble-bound form. A high correlation was obtained between FA contents as determined by GLC, fluorometry, UV, and colorimetry. The colorimetric procedure was modified as a qualitative, simple, and rapid test for identifying midge-resistant wheat and evaluated in several field trials. The method should provide a rapid tool in the preliminary screening of experimental lines in the development of midge-resistant wheat cultivars.  相似文献   

10.
In our studies of the chain-breaking antioxidant mechanism of natural phenols in food components, ferulic acid, a phenolic acid widely distributed in edible plants, especially grain, was investigated. The radical oxidation reaction of a large amount of ethyl linoleate in the presence of the methyl ester of ferulic acid produced four types of peroxides as radical termination products. The isolation and structure determination of the peroxides revealed that they had tricyclic structures which consisted of ethyl linoleate, methyl ferulate, and molecular oxygen. Based on the formation pathway of the products, a radical scavenging reaction occurred at the 3'-position of the ferulate radical with the four types of peroxyl radicals of ethyl linoleate. The produced peroxides subsequently underwent intramolecular Diels-Alder reaction to afford stable tricyclic peroxides.  相似文献   

11.
The pro-oxidant activities of baicalein, morin, myricetin, quercetin, and rutin were examined in various cell-containing systems including human platelets, rat vascular smooth muscle cells, human umbilical vein endothelial cells (HUVECs), human THP-1 cells, and fibroblast cells. Electron spin resonance (ESR) results showed that only baicalein generated hydroxyl radicals in a resting human platelet suspension, whereas the other flavonoids showed no effects on any of the resting cell systems. A low concentration of arachidonic acid (AA) increased the intensity of hydroxyl radicals, but a high concentration inhibited it. Collagen and thrombin, platelet aggregatory agents that can cause the release of AA by platelets, enhanced baicalein-induced hydroxyl radical formation, whereas ADP and U44619 showed no significant effects. Quinacrine and 5,8,11,14-eicosatetraenoic trifluoromethyl ketone, both PLA2 inhibitors, significantly attenuated baicalein-induced hydroxyl radical formation. These results suggest that baicalein-induced hydroxyl radical formation is associated with AA metabolite enzymes in human platelets. The formation of hydroxyl radicals was significantly inhibited by lipoxygenase inhibitors including nordihydroguaiaretic acid, (-)-epicatechin, (-)-epicatechin gallate, and hinokitiol, but was not affected by desferroxamine or the heme protein inhibitors KCN and NaN3. On the other hand, semiquinone free radicals were generated when baicalein was incubated with horseradish peroxidase/H2O2 or platelets/AA. The semiquinone radicals formed in the platelets/AA system could be extensively inhibited by desferroxamine, diethylenetriaminepentaacetic acid, KCN, and NaN3, indicating that prostaglandin H synthase (PGHS)-peroxidase may be involved. The results of this study led to the proposal that baicalein induces hydroxyl radical formation via 12-lipoxygenase and induces semiquinone radical formation via PGHS-peroxidase in human platelets.  相似文献   

12.
Oat hulls, an agricultural byproduct, contain a relatively high amount of ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid), which is believed to be inhibitory to oat hull biodegradability by rumen microorganisms. In this paper, Aspergillus ferulic acid esterase (FAE) was investigated for its ability to release FA from oat hulls. The objectives were to determine the effects of particle size of oat hulls (ground to pass through 1 mm and 250 microm screens and a 100 microm sieve) on release of FA by FAE both in the presence and in the absence of Trichoderma xylanase. The results show that the release of FA by FAE was dependent upon the particle size of oat hulls (< or = 250 microm). In the absence of Trichoderma xylanase, little FA was released by FAE. In the presence of Trichoderma xylanase, there was a significant release of FA by FAE, indicating a synergistic interaction between FAE and Trichoderma xylanase on release of FA from oat hulls. These results indicate that FAE is able to break the ester linkage between FA and the attached sugar, releasing FA from oat hulls. This may leave the remainder of the polysaccharides open for further hydrolytic attack by rumen microorganisms. It is likely that removing FA from oat hulls could improve rumen biodegradability, thus improving the nutritional value of oat hulls.  相似文献   

13.
Local pH in the oral cavity can decrease to below 7 at the site where acid-producing bacteria are proliferating. Effects of pH on nitration of 4-hydroxyphenylacetic acid were studied using dialyzed human saliva. Dialyzed saliva nitrated 4-hydroxyphenylacetic acid to 4-hydroxy-3-nitrophenylacetic acid in the presence of nitrite and H(2)O(2). The rate of the nitration was dependent on pH, and the maximal rate was observed between pH 5.5 and 7.2. The optimum pH seemed to reflect rates of formation of nitrogen dioxide and 4-hydroxyphenylacetic acid radicals. Quercetin inhibited the nitration. The quercetin-dependent inhibition might be due to scavenging of nitrogen dioxide and 4-hydroxyphenylacetic acid radicals, which were formed by salivary peroxidase-dependent oxidation of nitrite and 4-hydroxyphenylacetic acid, respectively, and competition with nitrite and 4-hydroxyphenylacetic acid for peroxidase in saliva. An oxidation product of quercetin was formed during inhibition of the nitration by quercetin. The oxidation product was identified as 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone. This component could also be oxidized by salivary peroxidase and nitrogen dioxide radicals. The oxidation products were 2,4,6-trihydroxyphenylglyoxylic and 3,4-dihydroxybenzoic acids. On the basis of the results, the significance of quercetin for inhibition of nitrogen dioxide formation and for scavenging of nitrogen dioxide radicals in the oral cavity is discussed.  相似文献   

14.
The bioavailability of ferulic acid (FA; 3-methoxy-4-hydroxycinnamic acid) and its metabolites was investigated in rat plasma and urine after an oral short-term ingestion of 5.15 mg/kg of FA. Free FA, glucuronoconjugates, and sulfoconjugates were quickly detected in plasma with a peak of concentration found 30 min after ingestion. Sulfoconjugates were the main derivates ( approximately 50%). In urine, the cumulative excretion of total metabolites reached a plateau 1.5 h after ingestion, and approximately 40% were excreted by this way. Free FA recovered in urine represented only 4.9 +/-1.5% of the native FA consumed by rats. Glucuronoconjugates and sulfoconjugates represented 0.5 +/- 0.3 and 32.7 +/- 7.3%, respectively. These results suggested that a part of FA incorporated in the diet was quickly absorbed and largely metabolized in sulfoconjugates before excretion in urine.  相似文献   

15.
Analysis of wheat bran and spent grain shows that concentrations of ferulate and diferulates offer considerable scope to modify the cross-linking of feruloylated polysaccharides and hence the mechanical properties of these residues. In solution ferulic acid (FA) can be readily polymerized by horseradish peroxidase, but when esterified to a polysaccharide, the profile of diferulates becomes restricted. This situation also exists in muro and suggests structural constraints may limit the availability of FA for cross-linking. At relatively low polysaccharide concentration, (approximately 3%), steric restrictions were apparent in gels prepared using isolated polysaccharides. Mechanical properties such as swelling also appear to be fixed at these relatively low polysaccharide concentrations. This limits the potential to modify mechanical properties in muro through oxidoreductase activity. To modify mechanical properties such treatments will need to focus on increasing the "flexibility" of the cell wall matrix and the accessibility of enzymes to the cell wall matrix.  相似文献   

16.
A study was conducted to investigate irradiation-induced formation of malondialdehyde (MDA), formaldehyde (FA), and acetaldehyde (ACT) from fructose, sucrose, glucose, and malic acid solutions. MDA and FA were generated from the carbohydrate solutions upon irradiation while little was formed from malic acid solution. On the other hand, a much higher amount of ACT was formed from malic acid than from the carbohydrate solutions. The G values (number of molecules formed per 100 eV radiation) for MDA were 0.042, 0.0066, and 0.0026 from 0.9 mg mL(-1) fructose, sucrose, and glucose solutions at pH 3.5, respectively. The G values for FA formation were 0.134, 0.233, and 0.0081 from the fructose, sucrose, and glucose solutions, respectively. As concentration of sugars in solutions increased from 0 to 90 mg mL(-1), the formation of these compounds increased rapidly. A further increase in sugar concentration from 90 to 900 mg mL(-1) resulted in a lower rate of increase in MDA and FA formation. pH had a profound effect on the irradiation-induced formation of these compounds from carbohydrates, especially on MDA formation. The minimum amount of MDA from fructose and glucose solutions was observed at pH 5 while formation of MDA from sucrose solution decreased as pH decreased from 7 to 2. The results can be used by the food industry to optimize food formulation in order to minimize formation of these compounds.  相似文献   

17.
A salivary component, nitrate, is reduced to nitrite in the oral cavity. Polyphenols in foods are mixed with nitrite in the saliva to be swallowed into the stomach. An objective of the present study is to elucidate reactions between a polyphenol quercetin and a nitrite under acidic conditions. Nitric oxide, which is formed by the reactions between nitrous acid and quercetin or ascorbic acid (AA), can be measured using an oxygen electrode in the saliva as well as a buffer solution. The initial oxidation of quercetin was inhibited by AA, and quercetin enhanced the oxidation of AA, suggesting AA-dependent reduction of quercetin radicals, which might be formed during the oxidation of quercetin by nitrous acid. On the basis of the above results, the usefulness of an oxygen electrode for the measurement of nitrite-dependent nitric oxide formation under acidic conditions is proposed and the possible mechanism of reduction of nitrous acid by quercetin and the interaction between quercetin and AA, which is a normal component in the gastric juice, for the reduction of nitrous acid is discussed.  相似文献   

18.
The steryl ferulate contents of rye and wheat grains and their milling fractions were analyzed using a reversed-phase high-performance liquid chromatographic (HPLC) method. HPLC-mass spectrometry was used for identification. In addition, steryl ferulates of some selected milling byproducts were determined. The total steryl ferulate contents of rye and wheat grains were 6.0 and 6.3 mg/100 g, respectively. Uneven distribution of steryl ferulates in the grains led to considerable differences in the milling products; their steryl ferulate contents ranged from trace amounts in flours with low ash content to 20 and 34 mg/100 g in rye and wheat brans, respectively. Campestanyl ferulate and sitostanyl ferulate were the main components, followed by campesteryl ferulate and sitosteryl ferulate, whereas sitosterol was the main component in total sterols. Among the other samples, a byproduct of rice milling (pearling dust) was the best source of steryl ferulates, its total steryl ferulate content being 119 mg/100 g, whereas no measurable amounts of steryl ferulates were measured in oat bran or pearling dust of barley. The results indicated that rye and wheat and especially their bran fractions are comparable to corn as steryl ferulate sources.  相似文献   

19.
Antioxidant activity of steryl ferulates from other sources than rice have not yet been studied much, despite the fact that rice steryl ferulates (gamma-oryzanol) have been shown to possess good antioxidant activity. In this study, steryl ferulate extracts from wheat or rye bran were studied for their capability to inhibit hydroperoxide formation in bulk methyl linoleate and methyl linoleate emulsion. Further, their activity to scavenge DPPH radicals was analyzed. The activities were compared to synthetic steryl ferulates, rice steryl ferulates, ferulic acid, and alpha-tocopherol. Nonrice cereal extracts of steryl ferulates exhibited good antioxidant activity, especially in the bulk lipid system. The radical scavenging activity was similar to that of nonesterified ferulic acid, indicating that the ferulic acid moiety is responsible for the antioxidant properties. This study illustrates a new aspect to the health-promoting properties of rye and wheat.  相似文献   

20.
硅对小麦生长及其抗氧化酶系统的影响   总被引:16,自引:0,他引:16  
本文研究了基施硅营养对小麦分蘖期的生长状况、叶片类脂脂肪酸组成及抗氧化酶系统的影响。结果显示 ,施硅促进了小麦的生长 ;降低了膜脂过氧化程度 ,提高了叶片类脂脂肪酸的不饱和度。但施硅处理对超氧化物歧化酶(SOD)和抗坏血酸过氧化物酶 (APX)活性没有影响 ,却使过氧化物酶 (POD)与过氧化氢酶 (CAT )活性下降 ,暗示POD和CAT具备在较低活力水平上高效清除H2 O2 等强氧化剂的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号