首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Six heifers (1/4 Brahman X 1/4 Jersey X 1/2 Angus, 290 kg average weight) with ruminal, duodenal and ileal cannulae given ad libitum access to corn silage with or without 100 mg monensin X head-1 were used to determine interrelationships among behavior, ruminal motility and intake. Voluntary intake was positively related (P less than .001) to eating time, duration of the main morning meal and daily mastication time. Intake was negatively related to unitary times [min X g dry matter-1 X (kg body weight X 75)-1] of eating (P less than .05), rumination (P less than .001), mastication (P less than .001), unitary number of rumination boli (P less than .001), and latency time between termination of morning meal and onset of rumination (P less than .05). Both daily and unitary eating and ruminating time were positively related (P less than .001) to daily and unitary mastication time and unitary number of strong cranio-dorsal ruminal contractions. Positive relationships (P less than .01) were found between mean duration of daily meals, main evening meal and unitary eating time, and between mean duration of rumination periods and unitary ruminating time. Daily and unitary number of rumination boli and mean duration of one bolus were positively related (P less than .01) to unitary ruminating time. Interrelationships between intake, eating and ruminating activities and associated cranio-dorsal ruminal motility were all influenced (P less than .01) by individual heifer, which indicates potential in identifying individuals with better than average mastication behavior and ruminal motility.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
This work aimed to assess the impact of timing of herbage allocation and fasting on patterns of ingestive behavior, herbage intake, ruminal fermentation, nutrient flow to the duodenum, and site and extent of digestion. Treatments were daily herbage allocation in the afternoon (1500 h, AHA), morning (0800 h, MHA), AHA after 20 h of fasting (AHAF), and MHA after 20 h of fasting (MHAF). Four ruminally and duodenally fistulated heifers (279 +/- 99 kg of BW) individually strip-grazed wheat pastures in a Latin-square design. Eating, rumination, and idling behavior were recorded every 2 min, and bite and eating step rates were measured hourly while the heifers were grazing (11 h MHA and AHA; 4 h MHAF and AHAF). Ruminal DM pools were measured 4 times daily (0800, 1200, 1500, and 1900 h) to estimate daily herbage DMI and its pattern. Ruminal fluid was sampled at these same times and also at 2300 h. Duodenal digesta was sampled over 2 d to determine the site of herbage digestibility. Treatments did not affect daily herbage DMI (16.5 g/ kg of BW, SE = 0.0025; P > 0.05). However, they altered the eating pattern; the evening grazing bout of AHA and AHAF was greater (P < 0.05) and more intense (P < 0.05 for bite mass and rate, eating step, and intake rates). Ruminal nonglucogenic:glucogenic VFA ratio and pH were lower (P < 0.05) for AHA and AHAF during the evening. The flow of OM, N, microbial protein, and nonmicrobial OM to the duodenum did not vary (P > 0.05) among MHA, MHAF, and AHAF; however, it averaged 970, 40, 300, and 540 g/d, respectively, greater (P < 0.05) for AHA. Total tract digestibility did not differ (P > 0.05) for MHA, AHA, and AHAF, but was lower for MHAF (P < 0.05). Apparent ruminal digestion did not differ (P > 0.05) within fasted and nonfasted treatments; however, it was greater (P < 0.05) for fasted than nonfasted treatments. True OM ruminally digested did not differ (P > 0.05) among MHA, MHAF, and AHAF, but was greater (P < 0.05) for AHA. The results demonstrate the strong link between ingestion and digestion patterns, and its impact on nutrient supply. At the same amount of resource allocation, nutrient supply to grazing cattle can be modified through strategic grazing management.  相似文献   

3.

An investigation was made into the feeding behavior of goats to evaluate the effects of a detoxified castor bean meal in the diet of goats. Thirty-six ½ crossbred Boer goats were used, with an average weight of 20?±?3.2 kg. A completely randomized design was used with four treatments (diets with of 0, 100, 200, and 300 g detoxified castor bean meals/kg dry matter) and nine replicates. Castor bean meal was detoxified using calcium oxide. Diets were formulated to be isonitrogenous, and the forage:concentrate ratio was 50:50. The feeding behavior was observed on the 17th, 45th, and 70th days of the experiment. For the evaluation of feeding behavior (feeding, idle, and rumination times), the animals were observed in 5-min intervals for 24 h. The addition of detoxified castor bean meal did not change (P?>?0.05) the evaluated behavioral variables. Linear reduction was observed (P?<?0.05) in the efficiencies of feeding and rumination, expressed in g dry matter/h. The variables related to the time series discretization of the feeding behavior of goats did not change (P?>?0.05) with the inclusion of detoxified castor bean meal. The inclusion of detoxified castor bean meal in growing goats’ diets does not change the feeding, rumination, and idle times, however, decreases intake, feeding, and rumination efficiencies of dry matter.

  相似文献   

4.
In order to clarify the location of feeding centers in the ruminant brain, this study used a single-unit activity (SUA) recording electrode to investigate the existence of appetite-regulating neurons in the lateral hypothalamic area (LHA) in goats. Seven male Japanese Saanen goats were used in the experiment. The animals were fed twice daily, once in the morning (1000 to 1200) with 1.5 kg of roughly crushed alfalfa hay cubes, and once in the afternoon (1600 to 1800) with 200 g of commercial ground concentrate feed. The animals were allowed free access to drinking water. In this study, the animals were surgically operated on to position the recording electrode in the LHA. Recordings of SUA were carried out continuously over a 2.25-h period beginning 15 min prior to the commencement of morning feeding. The eating rates of crushed alfalfa hay cubes were highest 10 min after feeding commencement, but decreased sharply by the time 40 min had elapsed. The cumulative feed intake after the completion of the 2-h feeding period was 1164 +/- 38 g. The cumulative water intake upon the conclusion of the 2-h feeding period was 2422 +/- 107 mL. This study recorded 31 units, of which five showed a response to feeding and altered their firing rates. In response to a sharp increase in eating rates, all five units increased their firing rates to a level higher than that of prefeeding (P < 0.05). As the animals reached a level of satiety (eating rates declined to very low levels), firing of units I and II stopped completely, while the firing rates of units III, IV, and V decreased. Examination of a serial histological section confirmed that the five units in which changes in firing rates with feeding were observed were all located in the dorsolateral hypothalamic area close to the fornix. The LHA neurons recorded in this experiment characteristically showed neuronal activity increases at high levels of feeding, but decreases at low levels. The results suggest that there are cells located in the LHA of goats that are active in the physiological regulation of hay (dry forage) intake.  相似文献   

5.
Three experiments tested the hypotheses that daily cortisol rhythm, feeding time, and/or insulin infusion affect(s) leptin secretion in stallions. Ten mature stallions received ad libitum hay and water and were fed a grain concentrate once daily at 0700. In Exp. 1, stallions received either a single injection of dexamethasone (125 microg/kg BW i.m.; n = 5) or vehicle (controls; n = 5) at 0700 on d -1. Starting 24 h later, blood samples were collected every 2 h for 36 h via jugular venipuncture. Cortisol in control stallions varied (P < 0.01) with time, with a morning peak and evening nadir; dexamethasone suppressed (P < 0.01) cortisol concentrations. Leptin and insulin were greater (P < 0.01) in the treated stallions, as was the insulin response to feeding (P < 0.01). Leptin in control stallions varied (P < 0.01) in a diurnal pattern, peaking approximately 10 h after onset of eating. This pattern of leptin secretion was similar, although of greater magnitude (P < 0.01), in treated stallions. In Exp. 2, five stallions were fed the concentrate portion of their diet daily at 0700 and five were switched to feeding at 1900. After 14 d on these regimens, blood samples were collected every 4 h for 48 h and then twice daily for 5 d. Cortisol varied diurnally (P = 0.02) and was not altered (P = 0.21) by feeding time. Insulin and leptin increased (P < 0.01) after feeding, and the peaks in insulin and leptin were shifted 12 h by feeding at 1900. In Exp. 3, six stallions were used in two 3 x 3 Latin square experiments. Treatments were 1) normal daily meal at 0700; 2) no feed for 24 h; and 3) no feed and a bolus injection of insulin (0.4 mIU/kg BW i.v.) followed by infusion of insulin (1.2 mIU.kg BW(-1).min(-1)) for 180 min, which was gradually decreased to 0 by 240 min; sufficient glucose was infused to maintain euglycemia. Plasma insulin increased (P < 0.01) in stallions when they were meal-fed (to approximately 150 microIU/mL) or infused with insulin and glucose (to approximately 75 microIU/mL), but insulin remained low (10 microIU/mL or less) when they were not fed. The increases in insulin were paralleled by gradual increases (P < 0.01) in leptin concentrations 3 to 4 h later in stallions fed or infused with insulin and glucose. When stallions were not fed, leptin concentrations remained low. These results demonstrate that feeding time, and more specifically the insulin increase associated with a meal, not cortisol rhythm, drives the postprandial increase in plasma leptin concentrations in horses.  相似文献   

6.
Twelve Standardbred mares underwent blood sampling for 24 h to test the hypothesis that there is diurnal variation of humoral mediators of peripheral energy balance including active ghrelin, adiponectin, leptin, glucose, insulin, and cortisol. The experiment was conducted under acclimated conditions. Grass hay and pelleted grain were provided at 0730 and 1530. Plasma concentrations of active ghrelin and leptin concentrations both peaked (47.3 +/- 6.5 pg/ mL and 5.9 +/- 1.1 ng/mL, respectively; P < 0.05) at 1550, 20 min after feeding. Active ghrelin decreased (P < 0.05) to 28.9 +/- 4.5 pg/mL overnight. The nadir of leptin (4.6 +/- 0.9 ng/mL) occurred at 0650. Neither hormone showed variation (P > 0.05) after the morning feeding. Plasma glucose and insulin concentrations increased (P < 0.05) in response to feeding; however, the morning responses (glucose = 96.9 +/- 2.6 mg/dL; insulin = 40.6 +/- 7.3 uIU/mL) were greater (P < 0.05) than the afternoon responses (glucose = 89.9 +/- 1.8 mg/dL; insulin = 23.2 +/- 4.3 uIU/mL at 180 and 60 min after feeding, respectively). Cortisol concentrations increased (P < 0.05) during the morning hours, but did not respond to feeding, whereas adiponectin concentrations remained stable throughout the study. Hence, active ghrelin and leptin may be entrained to meal feeding in horses, whereas adiponectin seems unaffected. We concluded that there seems to be a diurnal variation in glucose and insulin response to a meal in horses. Furthermore, elevated glucose and insulin concentrations resulting from the morning feeding may be responsible for the increase in leptin concentration in the afternoon.  相似文献   

7.
To test the effect of insulin on renal perfusion and the participation of NO and PG as mediators of this response, renal blood flow (RBF) was measured in sheep (n = 8) implanted with ultrasonic flow probes around renal arteries and with a systemic arterial pressure (SAP, n = 4) telemetry device. Three protocols were performed: 1) RBF and SAP were recorded (0800 to 1800 h) in fed and fasted sheep, with the latter receiving intravenous (i.v.) infusions (0.5 mL/min) of insulin at 2 or 6 mU/(kg·min); 2) fasted sheep received i.v. infusions of either an inhibitor of NO synthesis (N(G)-nitro-L-arginine methyl ester, L-NAME) alone [0.22 mg/(kg·min), 1000 to 1200 h] or L-NAME (1000 to 1200 h) + insulin during the second hour (6 mU/(kg·min), 1100 to 1200 h); and 3) the same protocol was followed as in protocol 2, substituting L-NAME with ketoprofen [0.2 mg/(kg·min)], a cyclooxygenase inhibitor. In all protocols, plasma insulin and glucose were determined. During insulin administration, euglycemia was maintained and hypokalemia was prevented by infusing glucose and KCl solutions. After the onset of meals, a long-lasting 18% increase in RBF and a 48% insulin increase were observed (P < 0.05), without changes in SAP. Low- and high-dose insulin infusions increased RBF by 19 and 40%, respectively (P < 0.05). As after meals, the increases in RBF lasted longer than the insulin increase (P < 0.05). The L-NAME infusion decreased RBF by 15% (P < 0.05); when insulin was added, RBF increased to preinfusion values. Ketoprofen decreased RBF by 9% (P < 0.05); when insulin was added, RBF increased to 13% above preinfusion values (P < 0.05). In no case was a modification in SAP or glucose noted during the RBF changes. In conclusion, insulin infusion mimics the meal-dependent increase in RBF, independent of SAP, and lasts longer than the blood insulin plateau. The RBF increase induced by insulin was only partially prevented by L-NAME. Ketoprofen failed to prevent the insulin-dependent RBF increase. Both facts suggested that complementary vasodilatatory agents accounted for the insulin effect on sheep renal hemodynamics.  相似文献   

8.
Effect of preservation method on intake and chewing behavior was examined using a first, late vegetative harvest (mid-June) of Kanlow switchgrass (Panicum virgatum L.). For silage (S), forage was harvested with a commercial field chopper (1.5 to 4 cm average chop length) and ensiled directly in silos 1.2 m in diameter and 3.6 m in height. For hay (H), forage was harvested with a flail-chopper (7 to 15 cm average chop length) and cured as hay in a drier at 77 degrees C. Diets of H and S were fed to six Hereford steers (338+/-5 kg) in a single crossover experiment. Chewing behavior was monitored for 4 d with a computerized system. At feeding, H was higher in DM and contained greater concentrations (DM basis) of NDF, CP, and hemicellulose, but lower concentrations of ADF and cellulose, and had lower in vitro DM disappearance values. Steers fed S had higher intakes of DM (P < .02) and NDF (P < .04) and consumed less water from the water supply (P < .01) than animals fed H. However, total amount of water (from water supply and feed) consumed per kilogram of DMI did not differ between diets. Crude protein intake was similar between diets. Preservation method had no effect on eating time, number of boli ruminated, bolus duration, and number of rumination chews per bolus. Steers fed S made fewer eating chews (P < .10) and ruminated for a longer time (P < .05) while making a greater number of rumination chews (P < .04) than steers fed H. Rumination intercycle time was slightly shorter in steers fed H (P < .05) than in steers fed S. When expressed per kilogram of NDF intake, steers fed S spent less time eating (P < .03) and made fewer eating chews (P < .02) than steers fed H; however, rumination time, number of rumination chews, and number of boli ruminated were not affected by preservation method. Steers fed S ingested feed at a greater rate (P < .03), excreted smaller fecal particles (P < .03), had meals of shorter duration (P < .06), spent less time eating during main meals (meals following feed distribution: P < .05), had more rumination periods (P < .01), and a shorter morning (P < .06) latency time (interval between end of main meal and onset of rumination) than steers fed H. These results indicate that preservation method with its concomitant differences in chop length affected forage chemical composition and voluntary intake, and that differences in chewing behavior occurred mostly during eating.  相似文献   

9.
The nycterohemeral pattern of eating and ruminating behavior was examined in six heifers given ad libitum access to a corn silage-based diet with or without 100 mg monensin.hd-1.d-1 in a two-period crossover design. Rhythm components (no. of cycles/24 h) were characterized by the finite Fourier transform of 24-h mastication activities series measured over 7 d. Analysis of variance of the daily mean of hourly activities and rhythm components 1 to 12 showed significant effects of heifer (H), monensin treatment (T), period (P) and T x P x H interactions. A reparameterization of the finite Fourier transform yielded the amplitude and the phase for each rhythm component and allowed the plot of periodograms and phase diagrams, respectively. Rhythm components 1, 2 and 3 contributed primarily in explaining the total dispersion of 24-h eating and ruminating mastication series. The major effect of monensin was to increase the phase at rhythm component 1, delaying by 1 h in the onset of rumination after the morning feeding. Heifer effects were significant and appeared related to variations in daily voluntary intake (VI) of individual heifers. Heifer 5, with the largest VI, had two main eating periods and the highest rate of eating. Heifer 4, with the smallest VI, partitioned mastication activity throughout the day into four main eating and ruminating periods. Differences among animals in their nycterohemeral chewing behavior patterns may be related to differences in forestomach structure associated with a larger VI capacity by animals having mastication rhythm components 1 and 3.  相似文献   

10.
Eating and ruminating behavior and associated ruminal motility of six heifers (1/4 Brahman X 1/4 Jersey X 1/2 Angus, 290 kg average weight) given ad libitum access to corn silage with or without 100 mg monensin X head-1 X d-1 were examined according to a two-period crossover design. There was no effect (P greater than .05) of monensin on level of intake, daily and unitary eating, ruminating and masticating times [min X g dry matter-1 X (kg body weight X 75)-1], duration or number of these activity periods, duration of main meals or latency time for onset of rumination following cessation of main eating activities. With the monensin treatment, daily numbers of normal boli and total boli were decreased (P less than .05) and mean duration of one rumination bolus cycle was longer (P less than .05). Analysis of covariance indicated relationships between intake of corn silage and duration of the main morning meal, duration or number of rumination boli and total ruminal contractions were affected (P less than .01) by monensin. Frequency and unitary number of strong cranio-dorsal ruminal contractions were similar for both treatments. During eating, number of contractions per minute was about twice (2.55/min) that during idling and rumination activity (1.43/min and 1.22/min, respectively). The unitary daily number of contractions was negatively (P less than .05) related to level of intake. Total daily ruminal contractions were slightly reduced (-3.96%, P greater than .05) by monensin. Results are interpreted to suggest that monensin indirectly affects rumination through a lowered motility and thereby affects turnover, gut fill and intake.  相似文献   

11.
Four ruminally fistulated Holstein heifers (BW = 385 +/- 6.2 kg) were used in a 4 x 4 Latin square experiment to determine the effect of feeding frequency on intake, water consumption, ruminal fermentation, and feeding and animal behavior. The treatments consisted of different feeding frequencies: a) once daily (T1); b) twice daily (T2); c) 3 times daily (T3); and d) 4 times daily (T4). Heifers were offered ad libitum access to concentrate and barley straw. Feeding frequency did not affect DMI (P >0.10), but water consumption tended to increase linearly as feeding frequency increased (P = 0.08). Average ruminal pH was not affected (P >0.10) by feeding frequency, but at 12 h after feeding ruminal pH was greater for T2 than for the other treatments. Total VFA concentration and VFA proportions were not affected (P >0.10) by feeding frequency, except valerate proportion, which increased linearly (P = 0.05) as feeding frequency increased. The concentration of ammonia-N was affected (P <0.05) cubically as feeding frequency increased (greatest for T3 = 9.3 mg of N/100 mL; lowest for T2 = 7.2 mg of N/100 mL). Feeding frequency had no effect on daily percentages of behavioral activities (P >0.05), except for observational behavior, for which there was a linear decrease as feeding frequency increased (P = 0.02). Heifers spent the same time on chewing activities, independent of feeding frequency. However, meal criteria tended to be affected (P = 0.07) by feeding frequency, with T2 (39.4 min) showing the longest intermeal interval. Total daily meal time, meal frequency, and meal size were not affected by feeding frequency (P >0.10), whereas meal length and eating rate showed cubic tendencies (P = 0.10 and P = 0.06, respectively) as feeding frequency increased. These results suggest that in the present experimental conditions, with heifers fed high-concentrate diets and with noncompetitive feeding, a smaller range of ruminal pH values was observed when feed was offered twice daily. Although heifers spent the same time on chewing activities, more stable ruminal conditions were probably achieved by feeding twice daily due to the rumination pattern, which was more constant during daytime in T2 than in T1. Moreover, when daytime and nighttime ruminating activity were analyzed separately, this activity was different in T1 (17.3 vs. 30.8%, respectively; P <0.05) but not in T2 (21.5 vs. 28.0%, respectively; P >0.05).  相似文献   

12.
The effect of meal size and frequency on plasma volume, plasma aldosterone concentration and urinary Na and K clearances was determined in ponies. A daily maintenance ration of hay-grain pellets was provided either as a multiple feeding regimen, ie, 12 equal portions fed at 2-hour intervals, or as single large feedings, ie, half the ration fed every 12 hours at 0800 and 2000 hours. Only the effect of the single morning feeding was studied, using the latter regimen. Serial measurements of plasma volume were made by use of an indicator-dilution technique and indocyanine green (0.15 mg/kg of body weight, IV) that allowed repeated determinations at 2-hour intervals. Ingestion of the single large meal caused a 15% decrease in plasma volume by the end of a 1-hour feeding period. Feeding hypovolemia was confirmed by a coincident increase in plasma protein concentration (12%) and, in separate experiments, by analysis of postfeeding changes in the elimination of Evans blue dye. Plasma aldosterone concentration was significantly (P less than 0.05) increased from 2 to 5 hours after feeding. Urinary Na clearance decreased in response to feeding and remained lower than the prefeeding value until 9 hours after feeding. Urinary K clearance increased from prefeeding and reached a peak value between 5 and 7 hours after feeding. Creatinine clearance was unaffected. In contrast, the aforementioned variables were unchanged during the multiple regimen. Results indicate that ingestion of a large concentrate meal by ponies causes periprandial hypovolemia, activation of the renin-angiotensin-aldosterone system, and a subsequent antinatriuresis-kaliuresis that lasts for several hours.  相似文献   

13.

The effects of genetic merit, feeding system and stage of lactation on the time budget of dairy cows were studied. Sixteen loose-housed Holstein Friesian cows (parity=1) of either high or UK average genetic merit were fed one of two complete mixed silage-based diets (high and low concentrate inclusion). Five-minute time samples were carried out on 11 days across lactation between morning feeding and afternoon milking. Cows fed the low concentrate diet spent more time eating, more time ruminating whilst standing, and less time lying, especially inactive. Genetic line did not affect the time budget of the cows. Standing and rumination decreased with time from calving, whereas the duration of lying bouts increased during the first 3 months of lactation. In this study the time budget of dairy cows was influenced by food roughage inclusion, and not by the production level of the animal.  相似文献   

14.
This trial was conducted to determine the extent of prececal starch digestibility depending on the botanical origin of starch and on diet characteristics (i.e., composition and feeding pattern). The prececal disappearance of six substrates (oats, barley, corn, horse bean, potato, and wheat) was measured in four cannulated horses fed (as-fed basis) 11.8 g/kg BW of a high-fiber (HF) or high-starch (HS) pelleted feed and 10.0 g/kg BW of meadow hay using the mobile bag technique (MBT). The daily feeding pattern was either three meals (two meals of pellets and one meal of hay) or five meals (three meals of pellets and two meals of hay). The experimental procedure was a 2 x 2 factorial arrangement tested in a Latin square design. After 2 wk of adaptation to the diet, collections were made on 5 d. Thirty nylon bags, composed of five bags of each substrate, were intubated to each horse during the ingestion of the morning meal. Bags were collected in the cecum, using a magnet, at 9 h postintubation. In spite of strong interindividual differences, approximately 80% of the intubated bags were collected. On average, the mean retention time of the bags was 6.2 h (+/-0.17). Regardless of the feeding pattern, the transit of the bags was faster when the fiber content of the diet was higher (P = 0.003). Likewise, regardless of the meal composition, transit was also faster when the ration was split into five daily meals (P = 0.001). The DM disappearance, corrected with particulate losses (DMD(c)), differed depending on the substrate tested (33.5, 57.1, 63.8, 67.7, 78.6, and 86.2% for potato, horse bean, oats, barley, corn, and wheat, respectively; P = 0.001). The DMD(c) of corn, barley, and potato was higher when HS was fed (P = 0.020); regardless of the substrate, DMD(c) was higher with five daily meals (P = 0.001). The starch disappearance (StarchD(c)) was different depending on the substrate (P = 0.001; 36.1, 71.2, 86.6, 89.2, 99.0, and 99.7% for potato, horse bean, barley, corn, wheat, and oats, respectively). Whatever the substrate, StarchD(c) was higher when HS was fed (P = 0.007), but it was not affected by the feeding pattern of the diet. Although passage rate was modified and feed intake was different, the botanical origin of starch was the main factor that affected prececal starch disappearance in horses.  相似文献   

15.
本次试验对15头中国荷斯坦泌乳牛的行为表现逐头进行12 h观察,并按不同泌乳阶段分三组:A组(泌乳前期)、B组(泌乳中期)、C组(泌乳后期)进行分析,每组均为5头。结果表明:泌乳前期牛的咀嚼次数和每次低头连续采食饲料次(口)数最多,早晨饲喂以后反刍来临时间和咀嚼时间最长,反刍咀嚼速度及每次低头采食频率快。泌乳中期试验牛的昼间反刍时间、昼间反刍时间占昼的时间、每次低头采食时间及每口饲料咀嚼时间都较长。泌乳后期试验牛的昼间反刍周期数较多,食团的吞咽至下一食团的逆呕间隔时间和站立时间均较长。  相似文献   

16.
The timing of grazing bouts (GB) determines how cattle allot time to meet their nutritional needs. Net photosynthesis and evapotranspirational losses increase herbage nonstructural carbohydrate and DM concentrations, which may lead to longer and more intense GB at dusk. Hence, linking the grazing pattern, plant phenology, and herbage allocation time emerges as an option to manipulate the GB and nutrient intake. The objectives of this work were to analyze grazing behavior and performance of beef heifers when herbage allocation was at 0700 each morning (MHA) or at 1500 each afternoon (AHA). Two pairs of experiments were conducted during the winter and spring examining behavior and performance. Measurements were grazing, rumination, and idling times during daylight hours, and their patterns, as well as bite rate, ADG, change in BCS, and daily herbage DMI. In the behavioral experiments, 8 heifers strip-grazed annual ryegrass (Lolium multiflorum Lam.). The grazing, rumination, and idling times as well as bite rate were measured and also analyzed per time of day. In the performance experiments, 48 beef heifers strip-grazed annual ryegrass in 2 groups according to treatments. Daily DMI, ADG, and changes in BCS were analyzed. The AHA increased daily idling time (P < 0.01) and decreased grazing time (P < 0.01). The AHA concentrated grazing time in the evening, when bite rate was greater (P < 0.01). The daylight rumination time varied by time of day (P < 0.01), but total daylight rumination time did not differ (P = 0.11). With AHA, rumination time and idling time were concentrated in the morning and afternoon. In the performance experiment during the winter, there was a treatment x week effect (P < 0.01) for ADG and change in BCS. Beginning in wk 4, heifers in AHA gained 150 g of BW and 0.0145 points of BCS more than those in MHA (P < 0.05) per day. In the spring, AHA increased ADG by 549 g and 0.0145 points of BCS more than those in MHA (P < 0.05) per day during the entire 6 wk. The herbage DMI (kg/d) did not differ in winter (AHA, 5.0 vs. MHA, 4.5) or spring (AHA, 5.6 vs. MHA, 5.0). These results suggest that timing of herbage allocation alters grazing, rumination, and idling patterns; AHA leads to longer and more intense GB when herbage has greater quality, which improves cattle performance.  相似文献   

17.
The present study evaluated the effects of two diets with different starch sources and two feeding methods on the glycaemic control in dogs with diabetes mellitus. The diets had similar nutrient contents (40% starch and 16% dietary fibre), one formulated with 46% of broken rice and the other with 42% sorghum and 10% lentils (as-fed). Ten client-owned diabetic dogs were fed with each diet for 2 months, in a crossover design. Five dogs received NPH human insulin and food every 12 h (feeding method 1), and the other five received insulin every 12 h but were fed three times a day (feeding method 2). In feeding method 2, morning insulin was higher than the evening dose and dogs received the second meal after 4 to 5 h of the morning insulin and meal. Parameters evaluated included insulin dosage, 12- and 8-h glycaemic curves, complete blood count, biochemical profile and urinalysis. Glycaemic curves were analysed by ANOVA with repeated measures. Glycaemic control parameters (fasting, mean, minimum and maximum glycaemia and serum fructosamine) and glucose area under the curve (AUC) were calculated and analysed by paired t test (p < 0.05). In feeding method 1, dogs fed the sorghum-based diet presented lower mean (p = 0.04) and minimum blood glucose concentrations (p = 0.03), and a tendency to lower maximum blood glucose (p = 0.06) and glucose AUC (p = 0.08) than when fed the rice-based diet. When food was provided twice a day, the ingestion of the rice-based diet resulted in higher post-prandial glucose response than the diet with sorghum and lentil. In feeding method 2, there was no effect of diet on the assessed parameters (p > 0.05). No differences in insulin dosage were observed between groups or feeding methods (p > 0.05). Providing two meals a day followed by insulin administration associated with the sorghum- and lentil-based diet improved glycaemic control in diabetic dogs.  相似文献   

18.
This experiment was conducted to investigate the effects of partial replacement of steam-flaked corn (SFC) with shredded sugar beet pulp (SBP) in the starter diet on selective intake (sorting), feeding and chewing behavior, blood biochemical parameters, and growth in newborn female Holstein dairy calves. A total of 48 calves (3 d old; 40.1 ± 0.84 kg body weight; mean ± SE) were randomly assigned to 1 of 2 feeding treatments containing 0 or 25% SBP (percentage of dry matter [DM]) in the starter diet. Calves were weaned on d 61 and remained in the study until d 81. Intake of starter feed and total intake of DM (milk DM + starter feed DM), crude protein, and neutral detergent fiber were increased (P < 0.05) by feeding SBP; however, intake of starch (P < 0.01) and total intake of ether extract (P = 0.03) were decreased with no apparent effect on total intake of ME. Average daily gain, feed efficiency, final weight, and skeletal growth also showed no significant changes. Circulating concentrations of glucose, total protein, and albumin were not affected by partial replacement of SBP with SFC; however, higher concentrations of blood urea-N (P = 0.01) and a lower albumin-to-globulin ratio (P = 0.03) were observed in SBP- vs. SFC-fed calves. Calves fed SBP sorted more for particles retained on the 4.75-mm sieve (P = 0.02) and against particles retained on the 0.6-mm sieve and bottom pan (P < 0.01). Intake of neutral detergent fibers and starch from particles retained on all sieve fractions was increased and decreased (P < 0.01), respectively, by replacing SFC with SBP. Replacement of SBP with SFC was associated with increased meal length and meal size and increased rumination frequency and length, but decreased intervals between rumination (P ≤ 0.01). Calves fed SBP spent more time eating, rumination, and standing and less time lying and non-nutritive oral behaviors (P < 0.01). In general, 25% replacement of SFC with SBP did not affect calf performance but increased time spent rumination and eating and decreased non-nutritive oral behaviors.  相似文献   

19.
Voluntary intake, digestibility, N balance, and chewing behavior of six 6-mo-old (young) and six 30-mo-old (mature) Texel wethers (32.6 and 83.1 kg average BW) given ad libitum access to grass silage and 100 g of top-dressed soybean meal with or without 5 g of methionine hydroxy analog (MHA) in the acid form were examined according to a two-period crossover design. Supplementation level of MHA in the acid form corresponded to .32 and .16 g of MHA/kg BW.75, respectively, in young and mature wethers. There was no effect (P greater than .10) of MHA on mean voluntary DMI. Methionine hydroxy analog supplementation increased (P less than .02) digestibility of DM, OM, and CP by young wethers but not (P greater than .18) by mature wethers. The MHA decreased eating time (P less than .03) in both young and mature wethers and intake level (P = .01) in young wethers during the first 1.5 h of access to grass silage. With MHA, both age groups increased (P less than .05) the daily number of meals and decreased (P less than .02) the mean duration of each meal. There was no effect (P greater than .06) of MHA on daily and unitary eating, ruminating, and masticating times; however, mean duration of consecutive rumination bolus cycles was longer (7.2%; P = .01) in young wethers. Young vs mature sheep ate more (53.4 vs 39.3 g of DM/[d.kg BW.75]; P less than .001) and had shorter unitary mastication times (P = .001). Results suggest that, depending on its relative level of supplementation, MHA in the acid form could act through both palatability and effects on ruminal metabolism.  相似文献   

20.
Plasma glucose and insulin concentrations are increased for 12–24 h in healthy cats following moderate‐ to high‐carbohydrate meals. This study investigated associations between gastric emptying time and post‐prandial plasma glucose, insulin and lactate concentrations in cats fed an extruded dry, high‐carbohydrate, moderate‐fat, low‐protein diet (51, 28, 21% metabolizable energy, respectively) once daily by varying meal volume. Eleven healthy, non‐obese, neutered adult cats were enrolled in a prospective study and fed to maintain body weight. Ultrasound examinations were performed for up to 26 h, and blood collections over 24 h after eating meals containing approximately 100% and 50% of the cats’ daily caloric intake (209 and 105 kJ/kg BW, respectively). Gastric emptying time was increased after a meal of 209 kJ/kg BW compared with 105 kJ/kg BW (median gastric emptying times 24 and 14 h, respectively; p = 0.03). Time for glucose to return to fasting was longer after the 209 kJ/kg BW meal (median 20 h; 25th and 75th percentiles 15 and 23 h, respectively) than the 105 kJ/kg BW meal (13, 12 and 14 h; p < 0.01); however, peak glucose was not higher after the 209 kJ/kg BW meal compared with the 105 kJ/kg BW meal [(mean ± SD) 6.6 ± 0.6 and 7.8 ± 1.2 mmol/l, respectively, p = 0.07]. Times for insulin to return to fasting were not significantly longer after the 209 kJ/kg BW meal than the 105 kJ/kg BW meal (p = 0.29). d ‐ and l ‐lactate concentrations were not associated with gastric emptying time or post‐prandial blood glucose and insulin. Based on results obtained, prolonged gastric emptying contributes to prolonged post‐prandial hyperglycemia in cats meal fed a high‐carbohydrate, low‐protein, dry diet and fasting times for cats’ meal‐fed diets of similar composition should be 14–26 h, depending on meal size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号