首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Real time ultrasound (RTU) measures of longissimus muscle area and fat depth were taken at 12 and 14 mo of age on composite bulls (n = 404) and heifers (n = 514). Carcass longissimus muscle area and fat depth, hot carcass weight, estimated percentage lean yield, marbling score, Warner-Bratzler shear force, and 7-rib dissectable seam fat and lean percentages were measured on steers (n = 235). Additive genetic variances for longissimus muscle area were 76 and 77% larger in bulls at 12 and 14 mo than the corresponding estimates for heifers. Heritability estimates for longissimus muscle area were 0.61 and 0.52 in bulls and 0.49 and 0.47 in heifers at 12 and 14 mo, respectively. The genetic correlations of longissimus muscle area of bulls vs heifers were 0.61 and 0.84 at 12 and 14 mo, respectively. Genetic correlations of longissimus muscle area measured in steer carcasses were 0.71 and 0.67 with the longissimus muscle areas in bulls and heifers at 12 mo and 0.73 and 0.79 at 14 mo. Heritability estimates for fat depth were 0.50 and 0.35 in bulls and 0.44 and 0.49 in heifers at 12 and 14 mo, respectively. The genetic correlation of fat depth in bulls vs heifers at 12 mo was 0.65 and was 0.49 at 14 mo. Genetic correlations of fat depth measured in bulls at 12 and 14 mo with fat depth measured in steers at slaughter were 0.23 and 0.21, and the corresponding correlations of between heifers and steers were 0.66 and 0.86, respectively. Live weights at 12 and 14 mo were genetically equivalent (r(g) = 0.98). Genetic correlations between live weights of bulls and heifers with hot carcass weight of the steers were also high (r(g) > 0.80). Longissimus muscle area measured using RTU was positively correlated with carcass measures of longissimus muscle area, estimated percentage lean yield, and percentage lean in a 7-rib section from steers. Measures of backfat obtained using RTU were positively correlated with fat depth and dissectable seam fat from the 7-rib section of steer carcasses. Genetic correlations between measures of backfat obtained using RTU and marbling were negative but low. These results indicate that longissimus muscle area and backfat may be under sufficiently different genetic control in bulls vs heifers to warrant being treated as separate traits in genetic evaluation models. Further, traits measured using RTU in potential replacement bulls and heifers at 12 and 14 mo of age may be considered different from the corresponding carcass traits of steers.  相似文献   

2.
Effects of ractopamine hydrochloride (RAC) supplementation on growth performance and carcass characteristics of feedlot steers differing in biological type were investigated using British, Continental crossbred, and Brahman crossbred calf-fed steers (n = 420). Steers of each type were weighed at reimplantation [British, mean BW = 375 kg (SD = 38 kg); Continental crossbred, mean BW = 379 kg (SD = 42 kg); Brahman crossbred, mean BW = 340 (SD = 32 kg)] and sorted into 7 BW blocks, each block consisting of 2 pens (10 steers per pen) per type. Pens within a block x type subclass were randomly assigned to RAC treatments (0 or 200 mg x steer(-1) x d(-1) fed during the final 28 d of the finishing period). The type x RAC interaction did not affect (P > 0.05) any of the traits evaluated in this study. Feeding RAC improved (P = 0.001) ADG (1.50 vs. 1.73 +/- 0.09 kg) and G:F (0.145 vs. 0.170 +/- 0.005), but did not affect (P = 0.48) DMI of steers. Dressing percentage, adjusted fat thickness, KPH percentage, and yield grade were not affected by RAC supplementation. Carcasses of steers fed RAC had heavier (P = 0.01) HCW (359 vs. 365 +/- 4.9 kg), larger (P = 0.046) LM areas (81.7 vs. 84.0 +/- 1.1 cm(2)), and tended (P = 0.07) to have lower mean marbling scores (487 vs. 477 +/- 5.2; Slight = 400, Small = 500) than did carcasses of control steers. Among the 3 biological types, Brahman crossbred steers had the lowest DMI and produced the lightest-weight carcasses that had the lowest mean marbling score (P < 0.05). Compared with Continental crossbred and Brahman crossbred steers, British steers produced carcasses with the greatest (P = 0.001) mean marbling scores. Continental crossbred steers had the heaviest BW and greatest dressing percentages and produced the heaviest carcasses with the largest LM areas (P < 0.05) compared with British and Brahman crossbred steers. In the present study, 28 d of supplementation with RAC at a dosage rate of 200 mg x steer(-1) x d(-1) elicited consistent responses in growth performance and carcass traits among 3 diverse biological cattle types.  相似文献   

3.
The objective of this study was to evaluate the effect of growth implants on the carcass characteristics and tenderness of steers and heifers with different genetic potentials for growth, lean meat yield production, and marbling. Two experiments were conducted. Experiment 1 evaluated Angus steers sired by bulls with high EPD for retail product yield or marbling. Implant treatment was imposed randomly within sire groups. Loins (Institutional Meat Purchasing Specifications 180) were collected from each carcass and cut into three 2.54-cm steaks aged for 7, 14 and 21 d to evaluate tenderness. The second experiment evaluated steers and heifers of British and Continental breed descent. Steers and heifers were slaughtered after 120 d on feed. Loin sections were collected, and one 2.54-cm steak aged 7 d was used for tenderness analysis. When implants were used in Angus steers, HCW and LM area increased, whereas internal fat and marbling decreased (P < 0.01). In Angus steers, sire type did not affect shear force values of steaks; however, implant use significantly increased shear force values (P < 0.01). Carcasses from cattle of Continental breed descent were significantly heavier than carcasses of British breed descent with larger LM area, slightly less fat, and a reduced yield grade (P < 0.01). Also, steer carcasses were heavier than heifer carcasses with larger LM (P < 0.05), but no effect of sex on fat depth, internal fat, yield grade or marbling was observed. No significant interactions were seen between growth implant and breed or between growth implant and sex for shear force values. Shear force values were significantly less for steaks from steers and heifers of British decent compared with steers and heifers of Continental descent (P < 0.01). Steaks from implanted steers and heifers had significantly (P < 0.01) greater shear force values than steaks from steers and heifers not implanted. Use of growth implants in growing cattle resulted in significantly heavier carcass weights, larger LM area, and reduced internal fat. However, implant use also reduced the amount of marbling along with contributing to reduced tenderness. Complicating the tenderness issue is the increased shear force values reported for heifers as well as steers of Continental breed descent. Use of implants may contribute to tenderness variability because of different animal responses to implants.  相似文献   

4.
Effects of finishing implants on heifer carcass characteristics and LM Warner-Bratzler shear force (WBSF) were investigated using commercially fed Continental x British heifers (n = 500). Heifers were blocked by initial BW (block 1, BW > or = 340 kg; block 2, BW < 340 kg) and assigned randomly to 12 treatments that utilized 0, 1, or 2 finishing implants to deliver cumulative dosages of trenbolone acetate (TBA) and estradiol 17-beta (E2) ranging from 0 to 400 mg of TBA and 0 to 40 mg of E2 during the finishing period. Heifers in blocks 1 and 2 were slaughtered after 135 and 149 d on feed, respectively. At these endpoints, the treatment groups did not differ (P > 0.05) in adjusted fat thickness or predicted percentage of empty body fat. Compared with a nonimplanted control, implanting heifers once during finishing increased (P = 0.025) HCW by an average of 7.9 kg without affecting the mean marbling score, the percentage of carcasses grading Choice and Prime, or LM WBSF values. Compared with the use of 1 implant, the use of 2 finishing implants resulted in an additional increase (P = 0.008) in HCW of 6.0 kg. Reimplanting also increased (P < 0.001) LM area, reduced (P = 0.024) the percentage of KPH, and improved (P = 0.004) mean yield grade. However, reimplanted heifers produced a lower (P = 0.044) percentage of carcasses grading Choice and Prime and LM steaks with greater (P < 0.05) WBSF values at all postmortem aging times compared with heifers that were implanted once. Among heifers receiving 2 implants, mean 14-d LM WBSF increased linearly (P < 0.05) as the cumulative, combined dosage of E2 plus TBA increased. Heifers implanted with a combination of E2 plus TBA had larger (P = 0.046) LM areas, lower (P = 0.004) mean marbling scores, and greater LM WBSF values after 3 d (P = 0.001), 7 d (P = 0.001), 14 d (P = 0.003), and 21 d (P = 0.045) of postmortem aging than did heifers implanted with TBA alone. Heifers that received combination implants containing both E2 and TBA also produced fewer (P = 0.005) carcasses with marbling scores of modest or greater compared with heifers that received single-ingredient implants containing TBA alone. Implant treatment effects on LM WBSF gradually diminished as the length of the postmortem aging period increased. Postmortem aging periods of 14 to 28 d were effective for mitigating the detrimental effects of mild or moderately aggressive heifer implant programs on the predicted consumer acceptability of LM steaks.  相似文献   

5.
British × Continental heifers (n = 3,382; initial BW = 307 kg) were serially slaughtered to determine if increasing days on the finishing diet (DOF) mitigates negative consequences of zilpaterol HCl (ZH) on quality grade and tenderness of beef. A 2 × 3 factorial arrangement of treatments in a completely randomized block design (36 pens; 6 pens/treatment) was used. Zilpaterol HCl (8.33 mg/kg DM) was fed 0 and 20 to 22 d before slaughter plus a 3 to 5 d withdrawal to heifers spending 127, 148, and 167 DOF. Feedlot and carcass performance data were analyzed with pen as the experimental unit. Three hundred sixty carcasses (60 carcasses/treatment) were randomly subsampled, and strip loin steaks were aged for 7, 14, and 21 d for assessment of Warner-Bratzler shear force (WBSF) and slice shear force (SSF) with carcass serving as the experimental unit for analysis. No relevant ZH × DOF interactions were detected (P > 0.05). Feeding ZH during the treatment period increased ADG by 9.5%, G:F by 12.5%, carcass ADG by 33.6%, carcass G:F by 35.9%, carcass ADG:live ADG by 15.6%, HCW by 3.2% (345 vs. 356 kg), dressing percent by 1.5%, and LM area by 6.5% and decreased 12th-rib fat by 5.2% and yield grade (YG) by 0.27 units (P < 0.01). Feeding ZH tended to decrease marbling score (437 vs. 442 units; P = 0.10) and increased WBSF at 7 (4.25 vs. 3.47 kg; P < 0.01), 14 (3.57 vs. 3.05 kg; P < 0.01), and 21 d (3.50 vs. 3.03 kg; P < 0.01). Feeding ZH decreased empty body fat percentage (EBF; 29.7% vs. 30.3%; P < 0.01) and increased 28% EBF adjusted final BW (473.4 vs. 449.8 kg; P < 0.01). Analysis of interactive means indicated that the ZH × 148 DOF group had a similar percentage of USDA Prime, Premium Choice, Low Choice, and YG 1, 2, 3, 4, and 5 carcasses (P > 0.10) and decreased percentage of Select (30.4 vs. 36.6%; P = 0.03) and Standard (0.2 vs. 0.9%; P = 0.05) carcasses compared with the control × 127 DOF group. As a result of ZH shifting body composition, extending the DOF of beef heifers is an effective feeding strategy to equalize carcass grade distributions. This can be accomplished along with sustaining the ZH mediated advantages in feedlot and carcass weight gain.  相似文献   

6.
Over 2 yr, 45 Angus-sired steer offspring of Angus and Angus crossbred females were used to determine the effects of early weaning on feedlot performance, carcass characteristics, and economic return to the cow-calf enterprise. Steers were assigned by birth date to one of two weaning treatments: 1) weaned at an average age of 100 d (early weaned) or 2) weaned at an average age of 200 d (normally weaned). Within 36 d of weaning, steers were given ad libitum access to a high-concentrate diet (90% dry, wholeshelled corn). Steers were harvested when 12th-rib fat thickness averaged 1.27 cm within treatment as estimated by ultrasound. Carcass measurements were taken 48 h postmortem and rib steak tenderness was determined at 14 d postmortem by Warner-Bratzler shear force. Early-weaned steers had greater ADG from time of early weaning to normal weaning than suckling normally weaned steers (1.27 vs. 0.86 kg/d, respectively; P < 0.001). However, early-weaned steers tended to have lower ADG for the entire finishing period than did normally weaned steers (1.33 vs. 1.39 kg/d, respectively; P = 0.08). Compared with normally weaned steers, early-weaned steers had lower daily DMI (7.40 vs. 5.95 kg/d, respectively; P < 0.001) and lower total DMI for the finishing period (1,618 vs 1,537 kg, respectively; P < 0.05). Early-weaned steers had greater gain:feed for the finishing period than normally weaned steers (0.223 vs 0.189, respectively; P < 0.001). Carcass weights were lighter for early-weaned steers than for normally weaned steers (277.9 vs. 311.2 kg, respectively; P < 0.001). There was no difference in yield grade (3.1 vs. 3.2; P < 0.10) between treatments. All carcasses graded Low-Choice or greater, and there was no difference in the percentage of carcasses grading Mid-Choice or greater (94.5 vs 83.9% for early- and normally-weaned, respectively; P > 0.10). Warner-Bratzler shear force values were similar between treatments. Early-weaned steers had a lower cost of gain than normally weaned steers ($ 0.82 vs. 0.91/kg, respectively; P < 0.001). However, due to lighter carcass weights, early-weaned steers generated less return to the cow-calf enterprise than normally weaned steers ($ 380.89 vs 480.08/steer; P < 0.001). The early weaning of steers at 100 d of age decreased total DMI, improved gain:feed, and lowered the cost of gain; however, return to the cow-calf enterprise was decreased due to lighter carcass weights.  相似文献   

7.
The impact of using 2 beta-adrenergic agonists in feedlot cattle fed finishing diets was evaluated using 54 steers (45 crossbred Charolais and 9 Brangus) initially weighing 424 +/- 26.6 kg in a randomized complete block design with 3 treatments and 6 blocks (i.e., 18 pens with 3 steers per pen). Response variables were feedlot performance, carcass characteristics, and meat quality. Treatments were 1) control (no supplement added); 2) zilpaterol hydrochloride (ZH; 60 mg.steer(-1).d(-1)); and 3) ractopamine hydrochloride (RH; 300 mg.steer(-1).d(-1)). The beta-agonists were added to the diets during the final 33 d of the experiment. The groups of steers fed ZH or RH improved (P < 0.01) ADG by 26 or 24%, respectively, compared with control steers. Steers supplemented with RH consumed less (P = 0.03) DM (8.37 kg) than control steers (8.51 kg), whereas intake was similar (P = 0.37) for ZH and control steers. Addition of either beta-agonist to the diet considerably improved (P < 0.01) the G:F (ZH, 0.253 and RH, 0.248 vs. control, 0.185). Hot carcass weight and carcass yield were enhanced (P < 0.05) with both beta-agonists. The LM area was increased (P = 0.026) by ZH (75.2 cm(2)), but that of RH (72.2 cm(2)) was similar (P = 0.132) to the control steers (66.8 cm(2)). Meat from the ZH- (P = 0.0007) and RH- (P = 0.0267) supplemented steers had greater shear force values than control steers (ZH = 5.11; RH = 4.83; control = 4.39 kg/cm(2)). Variables related to meat color indicated that both beta-agonists led to a similar redness of the LM area related to the control group. In general, feedlot performance was greatly enhanced by beta-adrenergic agonists, and meat tenderness from treated animals was classified as intermediate. Furthermore, meat color was not altered by beta-agonist supplementation.  相似文献   

8.
The objective of this study was to estimate parameters required for genetic evaluation of Simmental carcass merit using carcass and live animal data. Carcass weight, fat thickness, longissimus muscle area, and marbling score were available from 5,750 steers and 1,504 heifers sired by Simmental bulls. Additionally, yearling ultrasound measurements of fat thickness, longissimus muscle area, and estimated percentage of intramuscular fat were available on Simmental bulls (n = 3,409) and heifers (n = 1,503). An extended pedigree was used to construct the relationship matrix (n = 23,968) linking bulls and heifers with ultrasound data to steers and heifers with carcass data. All data were obtained from the American Simmental Association. No animal had both ultrasound and carcass data. Using an animal model and treating corresponding ultrasound and carcass traits separately, genetic parameters were estimated using restricted maximum likelihood. Heritability estimates for carcass traits were 0.48 +/- 0.06, 0.35 +/- 0.05, 0.46 +/- 0.05, and 0.54 +/- 0.05 for carcass weight, fat thickness, longissimus muscle area, and marbling score, respectively. Heritability estimates for bull (heifer) ultrasound traits were 0.53 +/- 0.07 (0.69 +/- 0.09), 0.37 +/- 0.06 (0.51 +/- 0.09), and 0.47 +/- 0.06 (0.52 +/- 0.09) for fat thickness, longissimus muscle area, and intramuscular fat percentage, respectively. Heritability of weight at scan was 0.47 +/- 0.05. Using a bivariate weight model including scan weight of bulls and heifers with carcass weight of slaughter animals, a genetic correlation of 0.77 +/- 0.10 was obtained. Models for fat thickness, longissimus muscle area, and marbling score were each trivariate, including ultrasound measurements on yearling bulls and heifers, and corresponding carcass traits of slaughter animals. Genetic correlations of carcass fat thickness with bull and heifer ultrasound fat were 0.79 +/- 0.13 and 0.83 +/- 0.12, respectively. Genetic correlations of carcass longissimus muscle area with bull and heifer ultrasound longissimus muscle area were 0.80 +/- 0.11 and 0.54 +/- 0.12, respectively. Genetic correlations of carcass marbling score with bull and heifer ultrasound intramuscular fat percentage were 0.74 +/- 0.11 and 0.69 +/- 0.13, respectively. These results provide the parameter estimates necessary for genetic evaluation of Simmental carcass merit using both data from steer and heifer carcasses, and their ultrasound indicators on yearling bulls and heifers.  相似文献   

9.
Heifer and steer progeny of 2-yr-old first-cross (F1) heifers and 3- to 6-yr-old F1 cows, from Hereford dams and five sire breeds, were evaluated for postweaning feedlot growth and carcass composition. Breeds of sire of dam were Angus (A), Red Poll (RP), Tarentaise (T), Simmental (Sm), and Pinzgauer (P). Calves from 2-yr-old heifers were sired by Shorthorn, and calves from 3- to 6-yr-old dams were sired by Charolais. Breed of sire of dam was significant (P less than .05 to P less than .01) for total gain and final weight for female progeny from 2-yr-old dams. At all weights, Sm, P, and T ranked above A and RP. Progeny of A, P, Sm, and T F1 2-yr-old dams were not significantly different but were higher (P less than .05) than RP heifers in total feedlot gain. Breed of sire of dam was significant (P less than .05) for carcass weight and longissimus muscle area; T ranked highest and RP lowest. Breed was not significant for any growth traits of steer progeny of 2-yr-old dams. Breed was significant for marbling score; A ranked highest and exceeded (P less than .01) both RP and Sm steers. Breed was significant (P less than .05) for most growth traits in the heifer progeny of the 3- to 6-yr-old dams bred to Charolais sires. Heifer calves of the Sm group were heavier (P less than .05) than all other groups for most weights and total gain. For total gain, P and T were intermediate and A and RP lowest. For heifer carcass traits from 3- to 6-yr-old dams, breed was significant (P less than .05 to P less than .01) for carcass weight, longissimus muscle area, percentage of cutability, and estimated kidney, heart, and pelvic fat. Heifers from Sm-sired dams were heavier (P less than .05) than those from all other groups but ranked second to heifers from P for percentage of cutability. Marbling scores of RP heifer carcasses ranked highest of all groups. Breed was not significant (P greater than .05) for any of the weights or gains in steer progeny of 3- to 6-yr-old dams; however, the Sm and P groups ranked above A and RP for all feedlot test weights.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Our objective was to compare the effects of feeding steam-flaked, high-oil corn with normal steam-flaked corn to which yellow grease was added to equalize dietary fat on performance and carcass characteristics of finishing beef steers, and palatability, retail case life, and fatty acid composition of strip loins. Angus steers (n = 120; initial BW = 288 kg) were allotted to dietary treatments consisting of 1) normal mill-run, steam-flaked corn plus added fat (NMR) or 2) high-oil, steam-flaked corn (HOC) and assigned randomly to pens (12 pens/treatment with 5 steers/pen). Performance (ADG, DMI, and G:F) was measured over time, and cattle were shipped to a commercial abattoir for collection of carcass data after 165 d on feed. Carcass data were collected at 48 h postmortem on all carcasses, and 2 carcasses from each pen were selected randomly for collection of strip loins (IMPS #180A). At 14 d postmortem, 4 steaks (2.54 cm thick) were removed for retail display, trained sensory panel analysis, Warner-Bratzler shear force determination, and fatty acid analysis. Daily BW gain was greater (P = 0.03) and G:F was increased 8.4% (P = 0.01) for steers fed NMR compared with HOC, but DMI was not affected (P > 0.10) by treatment. No treatment differences were observed (P > 0.10) for HCW, 12th-rib fat, KPH, and yield grade. Marbling scores were greater (P = 0.01) for NMR than for HOC, and LM area tended (P = 0.07) to be greater in NMR than in HOC carcasses. The proportion of carcasses grading USDA Choice did not differ (P = 0.77) between treatments, but a greater (P = 0.04) proportion of carcasses graded in the upper two-thirds of Choice for NMR vs. HOC. Trained sensory panel traits and Warner-Bratzler shear force values did not differ between treatments (P > 0.10), and no differences (P > 0.10) were detected for purge loss or fatty acid composition. Overall, ADG and G:F were less and marbling score was decreased, but there were no differences between treatments in beef palatability, retail case life, or concentrations of fatty acids in strip loins.  相似文献   

11.
Total insulin specific binding (IB) and the number and affinity of insulin receptors on mononuclear leukocytes (MNL) were used to predict carcass composition of heifers and steers. Dependent variables were kidney fat, body cavity fat, s.c. fat, intermuscular fat, lean and bone. Independent variables were parameters that could be measured on the live animal, including insulin receptor characteristics, age, shrunk weight, breed and carcass s.c. rib fat thickness (SUB). All carcass fat characteristics and IB were greater for heifers than for steers, but the ability to predict either heifer or steer carcass fat characteristics was not improved by inclusion of IB in prediction equations. However, the number of low-affinity insulin receptors on MNL contributed significantly to the prediction of all heifer carcass characteristics except bone. Carcass s.c. rib fat thickness also entered the prediction equations for all heifer carcass characteristics except kidney fat. In the prediction of heifer kidney fat, the only significant independent variable was the number of low-affinity insulin receptors on MNL (R2 = .38). Carcass characteristics of steers were better predicted by SUB than were heifer carcass characteristics, and insulin receptor characteristics, when added to steer equations that contained SUB, improved R2 by .10 or less. Our results suggest that insulin receptor characteristics will be most useful in the prediction of carcass characteristics of heifers where there is a poor relationship between quantity of s.c. fat and other carcass fat depots.  相似文献   

12.
A feedlot experiment was conducted under commercial conditions in the Texas Panhandle using 3,757 feedlot steers (average of 94 steers/pen) to evaluate the effects of feeding zilpaterol hydrochloride with or without monensin and tylosin on feedlot performance and carcass characteristics. The experiment was conducted using a randomized complete block design. Treatments were arranged as a 2 (no zilpaterol vs. zilpaterol) x 2 (monensin and tylosin withdrawn vs. monensin and tylosin fed during the final 35 d on feed) factorial. Steers were fed for a total of 161 to 167 d, and treatments were administered during the final 35 d that cattle were on feed. When included in the diet, zilpaterol, monensin, and tylosin were supplemented at 8.3, 33.1, and 12.2 mg/kg (DM basis), respectively. Zilpaterol was included in the diet for 30 d at the end of the finishing period and withdrawn from the diet for the last 5 or 6 d cattle were on feed. Cattle were harvested and carcass data collected. There were no zilpaterol x monensin/tylosin interactions (P >or= 0.12) for ADG or G:F. Feeding zilpaterol increased ADG (P < 0.001) by 0.20 kg and G:F (P < 0.001) by 0.029 kg/kg during the last 35 d on feed. Likewise, when feedlot variables were measured throughout the entire 161- to 167-d feeding trial, ADG (3.4%; P < 0.001) and G:F (3.9%; P < 0.001) were increased. Feeding zilpaterol increased (P < 0.001) dressing percent and HCW and decreased (P < 0.001) total liver abscess rate compared with controls. In addition, zilpaterol increased (P < 0.001) LM area by an average of 8.0 cm(2). There was a zilpaterol x monensin/tylosin interaction (P = 0.03) for marbling score. Zilpaterol decreased (P < 0.001) marbling score regardless of monensin and tylosin treatment, although withdrawal of monensin and tylosin for 35 d decreased marbling to a greater extent (31 vs. 17 degrees). Zilpaterol decreased (i.e., improved; P < 0.001) calculated yield grade regardless of monensin and tylosin treatment, but feeding zilpaterol in combination with the withdrawal of monensin and tylosin for 35 d decreased calculated yield grade to a greater extent (0.49 vs. 0.29) compared with the zilpaterol, monensin, and tylosin combination treatment (zilpaterol x monensin/tylosin interaction, P = 0.03). Results suggest that monensin and tylosin can be withdrawn from the diet during the zilpaterol feeding period (final 35 d on feed) with minimal effect on animal performance, although feeding zilpaterol in combination with monensin and tylosin seemed to moderate effects on carcass quality.  相似文献   

13.
Commercial slaughter steers (n = 329) and heifers (n = 335) were selected to vary in slaughter frame size and muscle thickness score, as well as carcass adjusted 12th-rib fat thickness. After collection of USDA carcass grade data, one side of each carcass was fabricated into boneless primals, subprimals, and minor tissue components. Cuts were trimmed to 2.54, 1.27, and .64 cm of external fat, except for the knuckle, tri-tip, and tenderloin, which were trimmed of all fat. Forced four-variable regression equations were used to predict the percentage (chilled carcass weight basis) yield of boneless subprimals at the three fat trim levels as influenced by sex class, frame size, muscle score, and adjusted 12th-rib fat thickness. Independent variables that had the most influence on percentage yield of primals and boneless subprimals were adjusted 12th-rib fat thickness and sex class. Within the same phenotypic group, percentage of trimmable fat increased by 2.32% as 12th-rib fat thickness increased by .75 cm. Estimated percentage yield of the major subprimals from the loin and round tended to be higher or relatively equal for heifer carcasses at all trim levels compared with those subprimals from steer carcasses. Holding frame size, sex class, and fat thickness constant, there was a higher percentage yield of chuck roll, rib eye roll, and strip loin for carcasses from thick-muscled cattle than for those from average- and thin-muscled cattle. Frame size had little effect on percentage yield of boneless subprimals.  相似文献   

14.
Retail cutting tests were conducted on subprimals from cattle fed zilpaterol hydrochloride (ZH) to determine if the improved carcass composition and red meat yield resulting from ZH feeding would translate into increased retail yields of ready-to-cook products. As part of a 3-phase study, selection of carcasses from Holstein steers was done once (fall 2008), followed by the collection of carcasses from beef-type steers on 2 separate occasions (beef study I: summer 2009; beef study II: spring 2010). Each of the 3 groups of steers was assigned previously to 1 of 2 treatments, treated (fed 8.3 mg/kg of ZH for 20 d) or control (not fed ZH). All steers were slaughtered and carcasses were fabricated in commercial beef-processing establishments. Only those carcasses grading USDA Choice or higher were used. Five subprimals were used for both the calf-fed Holstein study (n = 546 subprimals) and beef study I (n = 576 subprimals): beef chuck, chuck roll; beef chuck, shoulder clod; beef round, sirloin tip (knuckle), peeled; beef round, top round; and beef round, outside round (flat). Seven subprimals were used in beef study II (n = 138 subprimals): beef chuck, chuck roll; beef round, sirloin tip (knuckle), peeled; beef round, top round; beef round, eye of round; beef loin, strip loin, boneless; beef loin, top sirloin butt, boneless; and beef loin, tenderloin. A simulated retail market environment was created, and 3 retail meat merchandisers prepared retail cuts from each subprimal so salable yields and processing times could be obtained. Differences in salable yields were found for the calf-fed Holstein steer chuck rolls (96.54% for ZH vs. 95.71% for control; P = 0.0045) and calf-fed Holstein steer top rounds (91.30% for ZH vs. 90.18% for control; P = 0.0469). However, other than heavier subprimals and an increased number of retail cuts obtained, total salable yields measured on a percentage basis and processing times were mostly unaffected by ZH. Cutability advantages of feeding ZH are achieved primarily in the carcass-to-subprimal conversion rather than in the subprimal-to-retail conversion.  相似文献   

15.
The purpose of this study was to determine and describe the effects of slaughter age (at constant weights) on pre- and post-weaning growth rate and carcass traits of unselected steer and heifer progeny from a crossbred beef herd. The data were obtained from 340 heifers and 377 steers weaned at 305 days of age and fed a high-energy post-weaning diet. Heifers and steers were slaughtered at individual unshrunk weights of 420 and 470 kg, respectively, and divided into slaughter age classes based on 25-day intervals. There were differences (P < 0.01) between slaughter age classes for all growth traits including 305-day (weaning) weight, post-weaning daily gain, days on feed, and weight/day. Mean 305-day weight of steers in the youngest slaughter age class (347.8 kg; 376–400 days of age) was 28% greater than the mean of steers in the oldest age class (272.2 kg;>501 days of age). The youngest steer class averaged 63% more for daily gain than the oldest steer class (1.462 vs. 0.894 kg); the corresponding value for heifers was 64%. Post-weaning time in the feedlot ranged from 84.7 days for the youngest steer to 215.6 for the oldest steer class. Calculations based on mean differences between age classes in 305-day weight, daily gain and days on feed indicated that variability in weaning weight and in daily gain were of similar importance in determining slaughter age. Marbling score was greater (P < 0.01) for older steer classes, but was not different in the heifer data. Fat thickness of the oldest steer class was 25% more than the youngest steer class (1.89 vs. 1.51 cm); the corresponding percent in heifers was 30%. With the exception of differences in untrimmed rib and chuck percents in steers (P < 0.05), and rib specific gravity in heifers (P < 0.05), carcass quantity traits were essentially unaffected by slaughter age class when marbling score and fat thickness were included as continuous independent variables. None of the organoleptic traits (tenderness, juiciness and flavour) were affected by slaughter age class.  相似文献   

16.
Two experiments were conducted at the Kansas State University Beef Cattle Research Center to determine the effects of ractopamine-HCl (Optaflexx) on growth performance, carcass characteristics, and meat quality of finishing feedlot heifers. In Exp. 1, heifers implanted with Revalor-H (n = 302, initial BW = 479 kg) were fed steam-flaked corn diets with 0 (control) or 200 mg of ractopamine-HCl (OPT) per heifer daily for 28 d before slaughter. Average daily gain and DMI were not different between treatments (P > 0.17); however, OPT cattle tended to have a greater G:F (P = 0.06). Treatments did not differ with respect to final BW, HCW, dressing percentage, USDA yield grade, USDA quality grade, marbling score, LM area, KPH, Warner-Bratzler shear force, weight loss during cooking, or L*, a*, or b* colorimetric values during a 7-d retail display or purge loss from loin steaks during retail display (P > 0.19). In Exp. 2, nonimplanted crossbred heifers (n = 281, BW = 451 +/- 2 kg) were fed finishing diets based on steam-flaked corn. A control diet (no ractopamine) was compared with diets providing 200 mg of OPT per heifer daily for periods of 28 or 42 d (200 x 28 and 200 x 42, respectively), 300 mg/d for 28 d (300 x 28), and a step-up regimen consisting of 14 d at 100 mg, followed by 14 d at 200 mg, and the final 14 d at 300 mg of OPT (step-up). Feeding OPT had no effect on carcass weight gain among treatments (P = 0.18). The efficiency of carcass gain was 34 and 35% greater (P = 0.06) for the 200 x 42 and step-up groups compared with control, respectively. Feeding OPT at 300 mg for 28 d reduced DMI compared with the control, 200 x 28, and 200 x 42 (P < 0.05) groups. Administration of OPT had no effect on marbling score, yield grade, LM area, KPH, or percentages of carcasses grading USDA Choice (P > 0.10). Feeding ractopamine-HCl (Optaflexx) to finishing heifers generally improved the efficiency of carcass gain with minimal effect on carcass characteristics. These effects were most pronounced in heifers fed ractopamine for 42 d.  相似文献   

17.
Beef steer carcasses from three 2 x 2 factorial feeding experiments (Exp. 1, 20 carcasses; Exp. 2 and 3, 19 carcasses each) were evaluated to study the influence of supplementing with roasted soybeans (RSB; 127 degrees C for 10 min) vs soybean meal (SBM) and implanting with the estrogenic growth promoter Synovex-S (SYN, 20 mg estradiol benzoate and 200 mg progesterone) on carcass merit, composition of dissected 9-10-11th rib section, estimated edible carcass composition, and cooking characteristics of strip loin steaks. In all experiments, steers were fed diets consisting of 15% corn silage, 15% orchardgrass silage, and 70% corn-based concentrate. There were no treatment interactions found in this study. Final BW averaged 480.4, 498.5, and 500.7 kg for Exp. 1, 2, and 3, respectively, and hot carcass weights averaged 288.4, 296.4, and 309.1 kg. Across experiments, hot carcass weight was 8.3 kg less (P < .03) for RSB steers than for SBM steers. Fat weight (P < .01) and percentage of fat (P < .01) were less and percentage of bone (P < .04) was greater in the 9-10-11th rib section of RSB steers than of SBM steers. Estimated percentage of fat (P < .02) was less and percentage of bone (P < .04) was greater in edible carcass of RSB steers than in that of SBM steers. Total 9-10-11th rib section weight tended to be less for RSB steers (P < .08) than for SBM steers. Carcass merit measurements were not affected (P > .10) by supplement, but numerically the percentage of kidney, pelvic, and heart fat was 11% greater for RSB steers than for SBM steers in Exp. 2 and 3. Final BW and carcass weight were 38.7 and 22.6 kg greater (P < .01), respectively, for SYN-implanted steers than for steers not implanted. Longissimus muscle area was greater (P < .01), percentage of kidney, pelvic, and heart fat (P < .02) was less, USDA quality grade tended to be less (P < .09), and shear force of strip loin was greater (P < .01) for SYN-implanted steers than for steers not implanted. The 9-10-11th rib section and estimated carcass compositions were not different (P > .10) between SYN-implanted steers and steers not implanted but reflected a somewhat leaner carcass. The authors conclude from this study that in feedlot steers, either implanted or not implanted, there is no benefit from supplementing with RSB in place of SBM, and that the use of RSB in place of SBM in feedlot diets may reduce the amount of edible carcass.  相似文献   

18.
Two hundred beef carcasses were randomly selected by dental classification (zero, two, four, six, or eight permanent incisors) from a population of 11,136 carcasses harvested by a large commercial beef processor. Warner-Bratzler shear force and trained sensory panel evaluations of longissimus thoracis steaks as well as cooking and carcass traits were evaluated for differences among dental classes. No differences in Warner-Bratzler shear force (P = 0.60), sensory panel evaluations (P = 0.64) for tenderness, or percentage of total cooking loss (P = 0.73) were found among the five dental classes. Longissimus muscle color, USDA marbling score, hot carcass weight, adjusted fat thickness, longissimus muscle area, and USDA yield grade did not differ among the five dental classes. A significant dental classification x sex interaction indicated that heifers advanced in skeletal and overall maturity at a much faster rate than steers. An increase of intramuscular fat was associated (P < 0.05) with decreased shear force (r = -0.31), whereas darkening of the lean (r = 0.16), advancing lean maturity (r = 0.21), and increased evaporative cooking loss (r = 0.39) were associated (P < 0.05) with increased shear force values. Warner-Bratzler shear force measurements were not related to sensory panel overall tenderness scores. Carcass traits accounted for a relatively small proportion of the variation in tenderness of longissimus steaks, and dental classification was not related to tenderness.  相似文献   

19.
Two experiments were conducted to determine the effects of sex on carcass traits and cooked beef steak palatability. In Exp. 1, steers (n = 99), heifers (n = 51), and intravaginally spayed heifers (n = 46) were fed a high-energy diet for 161 d. No implants were administered, and heifers were not fed melengestrol acetate to suppress estrus. In Exp. 2, 60 steers and 60 intact heifers from the same ranch source used in Exp. 1 were fed in 2 locations (sites 1 and 2). All management factors were equal across experiments except that intact heifers were fed melengestrol acetate to suppress estrus in Exp. 2. Steers in Exp. 1 were 25 kg heavier (P < 0.01) in HCW than heifers at comparable (P = 0.39) carcass fat thickness. Spayed heifers (Exp. 1) had a 5.7% smaller (P < 0.05) LM area compared with steers and intact heifers, which were similar. In Exp. 2, there was no difference (P = 0.2) in carcass weight, and heifers had greater (P < 0.01) 12th rib fat thickness compared with steers. Calculated yield grades were similar (P = 0.21) among treatments in Exp. 1 and tended (P = 0.08) to be greater for heifers compared with steers in Exp. 2. In Exp. 1, USDA quality grades and marbling scores were lower (P < 0.01) for steers compared with intact and spayed heifers, which were similar. The effects of sex on tenderness were examined at a common level of fat-thickness and marbling by covariate analysis. Steaks from steers, compared with those from nonimplanted, intact heifers, in the 2 experiments combined were: (a) superior (P < 0.05) in 2 of 9 palatability assessments when subcutaneous fat thickness (at the 12th rib) was adjusted to a common level, and (b) superior (P < 0.05) in 6 of 9 palatability assessments when marbling score was adjusted to a common level. In Exp. 1, steaks from nonimplanted steers compared with those from nonimplanted spayed heifers were: (a) superior (P < 0.05) in 0 of 8 palatability assessments when subcutaneous fat thickness (at the 12th rib) was adjusted to a common level, and (b) superior (P < 0.05) in 3 of 8 palatability assessments when marbling score was adjusted to a common level. These findings suggest that sex should be added to the list of antemortem factors contributing to variation in cooked beef steak tenderness. However, more research is needed to precisely identify those factors contributing to the lower tenderness observed for steaks from heifer carcasses.  相似文献   

20.
Carcasses of 342 steers of known genetic backgrounds from four fundamentally different growth types were developed either on pasture or feedlot regimens to study differences in carcass traits. Growth types were large framed-late maturing (LL), intermediate framed-intermediate maturing (II), intermediate framed-early maturing (IE), and small framed-early maturing (SE). Five calves from each growth type were assigned to each regimen in each year of a 9-yr study. Eighteen steers were removed from the study because of accident or illness. Data collected were preslaughter shrunk BW (SBW); hot carcass weight (HCW); chilled carcass weight (CCW); dressing percentage (DRESS); fat thickness at the 12th and 13th-rib interface (FAT); percentage kidney, pelvic, and heart fat (KPH); longissimus muscle area (LMA); marbling score (MARB); quality grade (QG); and yield grade (YG). Differences in carcass traits reflected genetic differences among growth types. The LL steers had heavier BW, HCW, and CCW and larger LMA (P < .05) than steers of other growth types, regardless of development regimen. Among pasture-developed steer carcasses, IE and SE steers had higher (P < .05) MARB and QG than either LL or II steers. Carcasses of large framed-late maturing steers had the lowest (P < .05) MARB and QG of the growth types. Carcasses of the II, IE, and SE steers had a higher (P < .05) numerical value for YG than carcasses of the LL steers. Among the carcasses of the feedlot-developed steers, IE and SE steers had the highest (P < .05) MARB and QG. Carcasses from the IE and SE steers were fatter (P < .05) than those from LL or II steers. Carcasses of the LL steers had the lowest percentage of KPH of growth types developed in the feedlot. No difference was observed in KPH for carcasses of II, IE, and SE steers. The LL steer carcasses had the lowest numerical value for YG of all growth types. These data indicate that variation existed among carcass traits for the four growth types and that carcass traits influenced by fatness were greater and more attainable in the feedlot-developed steers using current methods of evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号