首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A new compound, ganoderma aldehyde (1),was isolated from the fruiting body of Ganoderma applanatum. Its structure was elucidated on the basis of one-dimensional and two-dimensional NMR as well as MS spectroscopic analysis.  相似文献   

2.
The objective of this study was to characterize the decay of acetylated wood due to brown-rot and white-rot fungi by analysis of chemical composition, X-ray measurements, and13C-NMR spectroscopy. The decay by brown-rot fungus became inhibited at a weight percent gain (WPG) due to acetylation of more than 10%, and the mass loss (LOSS) due to decay became zero at a WPG of about 20%. The LOSS due to white-rot fungus decreased slowly with the increase in WPG, reaching zero at a WPG of about 12%. The losses of lignin by brown-rot decay increased initially with the decrease in LOSS owing to the progressing acetylation and then decreased at a LOSS of less than 60%. Polysaccharides were more easily decomposed than lignin during the decay of acetylated wood due to brown-rot fungus. The losses of both components due to white-rot decay decreased as the LOSS decreased with progressing acetylation. The white-rot fungus tended to preferentially decompose the lignin during the decay of acetylated wood. The brown-rot fungus decomposed the cellulose in the crystalline region to a large degree when the LOSS was more than 40%, whereas the white-rot fungus decomposed the crystalline region and the noncrystalline region in acetylated wood to the same degree. The brown-rot fungus preferentially decomposed unsubstituted xylose units in acetylated wood and partly decomposed the mono-substituted xylose units. It was suggested that the mono- and disubstituted cellulose were partly decomposed by brown-rot fungus.This paper was presented at the 46th and 47th annual meetings of the Japan Wood Research Society at Kumamoto and Kochi in April 1996 and April 1997, respectively  相似文献   

3.
Summary Enzyme assay showed that the commercial cellulase from Trichoderma reesei degraded several polysaccharide substrates; highest activity was on xylan. Transmission electron micrographs showed that the T. reesei cellulase degraded nondecayed wood extensively; the attack always progressed from the point of contact into the cell wall. Cytochemically prepared wood that had been decayed by Poria placenta showed uniform distribution of electron-dense particles throughout the walls; the same results were observed with added T. reesei cellulase. In wood decayed by Ganoderma applanatum without or with added T. reesei cellulase, the progress of degradation was similar to that in nondecayed wood. Negatively stained T. reesei cellulase had 3–7 nm diameter for the smallest particles; the smallest diamaters of electron-dense particles in wood ranged from 3–7 nm. This suggests that the electron-dense particles probably are cellulase molecules.  相似文献   

4.
Chemical, light and electron microscopic studies were carried out on wood of Oriental beech (Fagus orientalis Lipsky) decayed by the white‐rot fungi Pleurotus ostreatus and Trametes versicolor for 30, 60 and 120 days according to the modified European standard EN 113. Mass loss as well as lignin, cellulose and carbohydrate content were determined before and after fungal attack. There were no significant differences of wood mass loss and chemical composition between both fungi at the end of incubation. After each incubation period, small specimens were stained for microscopic studies. The micromorphology of fungal cell wall degradation was rather similar for both fungi. Both decreased the cell wall thickness to the same extent. The accumulation of hyphae as well as the rupture of cell walls was also similar. The occurrence of hyphae, cavities in the pits and vessel walls followed nearly the same patterns. The parenchyma cells were completely destroyed. Altogether, both fungi produced a simultaneous white rot in Oriental beech wood.  相似文献   

5.
To further our understanding of wood decay in living light red meranti (Shorea smithiana) trees, microscopic characteristics of the cell and cell wall degradations of S. smithiana wood in the presence of the decay fungi, the identity of the causal fungi, and the decay potential and pattern by an isolated fungus were investigated. Cell wall degradations, including cell wall thinning, bore holes formation, rounded pit erosion, and eroded channel opening were clearly observed under light and scanning electron microscopy. In transverse view, many large voids resulting from a coalition of degraded wood tissue appeared in the decayed canker zone. All these observations suggest the well-known simultaneous decay pattern caused by white-rot fungi. By phylogenetic analysis based on the sequences of internal transcribed spacer region of ribosomal DNA, a basidiomycete fungus isolated from the decayed wood was identified as Schizophyllum commune. The degradation caused by this fungus on sound S. smithiana wood in an in situ laboratory decay test was classified as the early stage of simultaneous decay, and showed a similar pattern to that observed in the wood samples naturally decayed.  相似文献   

6.
Summary The objectives of this research were to investigate the proportion of decayed wood in mature aspen stems, its chemical composition and its potential utility as a fuel or as a substrate for conversion to fine chemicals as part of an integrated utilization scheme. Three sound and ten decayed aspen stems were sampled from a boreal forest site. Stem analysis indicate that on average, 20% of the merchantable stem volume was in advanced decay and that considerable sound wood recovery was possible. Wood specific gravity and chemical composition were determined. The holocellulose content (volumetric basis) in advanced decayed wood was reduced by 67%. Thermal analysis of the wood using a differential scanning calorimeter provided graphical evidence of a different sequence of events occurring during the combustion of decayed wood and a resulting heat content per unit weight that was 40% higher than that of sound aspen wood. A higher degree of enzymatic hydrolysis was attainable with white-rotted aspen wood. Approximately 62% of the theoretical glucose yield was obtained from decayed aspen wood after alkali-peroxide pretreatment followed by a 12 hour hydrolysis using technical grade enzymes. The above information is used to elucidate future opportunities for wood recovery and energy production from decayed wood resources.The authors would like to thank the Ontario Ministry of Natural Resources, Kirkland Lake for their cooperation; and for the technical assistance by Sally Krigstin, John Leigh, Samir Konar, Ganesh Deka and Doug Charles. We would also like to thank Dr. Morris Wayman, University of Toronto, for his advice and inspiration. We are especially grateful to the following persons and companies for supplying us with enzymes and their associated technical literature: Mr. John Bayard of Van Waters & Rogers Ltee, Canada, representing NOVO Industri, Denmark; Mr. Ian Hodge representing the Miles Biotechnology Group, Canada; and Dr. Gunther Eckert, B.A.S.F., Germany for obtaining and forwarding the products and information of Rohm GmbH, Germany. This work has been partially funded by the Edward Johnson Fellowship, University of Toronto  相似文献   

7.
The crystal transformation of cellulose I to cellulose II during alkali swelling was investigated in decayed oak wood that was used for shiitake mushroom cultivation and the results were compared with those of sound wood using X-ray diffraction analysis and ultraviolet microscopy. During mercerization, the sapwood cellulose of decayed wood was easily transformed into Na-cellulose I and then Na-cellulose I was easily converted into cellulose II after washing and drying. The sapwood cellulose of sound wood was converted more slowly to Na-cellulose I and very little Na-cellulose was converted to cellulose II. Na-cellulose I of sound wood can be reconverted to cellulose I during washing and drying. Therefore, it could be concluded that lignin prevented the alkali swelling of wood cellulose and the transformation from cellulose I to cellulose II. The decay of crystalline cellulose might cause an increase in the susceptibility of alkali swelling, so that the degree of mercerization may be also affected.  相似文献   

8.
To determine the independent decomposition rates of lignin and cellulose of decayed woody debris, a technique for the rapid analysis of lignin and cellulose is required. We applied a near-infrared spectroscopy (NIRS) technique to measure the lignin and holocellulose content in decayed wood. We succeeded in creating partial least-squares (PLS) models to estimate the lignin and holocellulose content in the decayed wood of five species using NIR spectra. Although the accuracy was acceptable for the estimation of a five-species mixed model (R 2 = 0.970 for lignin and R 2 = 0.962 for holocellulose), it was further improved when the model was applied to each species independently. This combination of NIRS and a PLS model is a valuable tool for the determination of the lignin and holocellulose content in decayed wood. The technique is time efficient (3 min per sample) and non-hazardous (no acid treatment is required).  相似文献   

9.
Histopathological studies of wood of Swietenia mahagoni Linn. decayed by Fomes durissimus Lloyd reveal the presence of mycelia in all the wood clements and considerable thinning of cell walls and tissue disintegration due to utilization of both lignin and ccllulosc at advanccd stages of decay. Microchcmical tcsts and quantitative analysis of lignin nnd ccllulosc corroborated the results of histopathological studies indicating that the fungus mainly consumes thc lignin along with some amount of cellulose.  相似文献   

10.
The present study is focused on analysing the suitability of different Streptomyces strains for biomechanical pulping purposes using spruce wood (Picea abies) as substrate. After 2 weeks of incubation, no apparent variations in lignin Klason content of treated woods were detected compared with the control. However, the increase in acid-soluble lignin fraction pointed out chemical alterations in lignin moiety. Through Py-GC/MS analysis enrichment in cellulose and lignin molecule modifications were detected in treated woods. The increase in the relative abundance of the most G-type phenol units with a higher oxidation degree suggests that some oxidation occurred in the lignin C3-alkyl chain. In addition, the decrease in the phenylmethane + phenylethane/phenylpropane (phC1 + ph C2/ph C3) ratio would indicate the ability of Streptomyces strains to breakdown the C3-alkyl chain linkages once carbons had been oxidized. From this study it could be concluded that the assayed strains are able to produce a delignification of spruce wood which may improve mechanical pulping processes.  相似文献   

11.
12.
13.
Microscopic examination showed the cell wall decay pattern produced by the brown-rot fungus Coniophora puteana to be different from the degradation pattern known to be typical for brown-rot fungi. Erosion and thinning of cell walls in patterns considered to be characteristic of white-rot decay were observed. In particular, the fungal strain COP 20242 degraded secondary cell wall layers extensively, and also degraded lignin-rich middle lamellae. Some strains of C. puteana produced soft-rot type cavities in the S2 layer. All strains of C. puteana employed in the present work showed a positive reaction to tannic acid in the Bavendamm test, indicating the production of laccase. Microscopic and enzymatic studies provided evidence to suggest that the wood decay by C. puteana is unique both in terms of micromorphological and enzymatic patterns of cell wall degradation. This is because brown-rot fungi are not generally known to form cavities in the cell walls or to produce lignin-degrading enzymes. These observations suggest that lignin degradation capacity of brown-rot fungi may be greater than previously considered.  相似文献   

14.
In order to investigate shear failure surface of decayed wood, wood pieces of ezomatsu (Picea jezoensis) were exposed to brown-rot fungus (Fomitopsis palustris), and standard shear test in radial plane was conducted. The failure surfaces were examined by scanning electron microscopy and surface roughness measurements were also conducted. Transwall failure that the crack elongated parallel to the tracheid axis was observed in the earlywood region through all phases of decay. Intrawall failure principally occurred in the latewood region on the early phase of decay. When decay progressed considerably, transwall failure that the crack elongated perpendicularly to the tracheid axis occurred. And transwall failure was also dominant failure morphology in the latewood region. Fragments of tracheids which were partly peeled out from S2 layers were observed in some specimens. Size and appearance frequency of fragments of tracheid were smaller and lower when decay progressed. Arithmetic average roughness, which was the index of fragment size and appearance frequency, had positive correlation to shear strength ratio. Especially, line surface roughness of radial direction, which was measured across the radial files of tracheid, had the highest correlation to the shear strength ratio. The surface roughness would be a good indicator to evaluate the decay degree.  相似文献   

15.
Typical symptoms of rubberwood canker found in East Kalimantan, Indonesia, differ from those of conventional rubberwood peach canker. Rubberwood canker showed a conspicuous longitudinal canker with exposed xylem that was discolored and decayed. Bark wounds, resulting from regular tapping, were enclosed within the xylem, and the tissues had become integrated. The characteristics of abnormal and decayed xylem in this rubberwood canker were analyzed by light microscopy and scanning electron microscopy. Xylem in the vicinity of the enclosed bark contained fewer vessels of smaller diameter and shorter length, and significantly wider rays compared with normal xylem. Around the wide growth zones of the canker, axial cells were disoriented and warped toward the canker zones. In view of the separation among cells, and the concentric degradation of the cell walls starting from the lumen surfaces, decayed xylem appeared to be caused mainly by white-rot fungal attack.  相似文献   

16.
Summary The deformation processes involved in wedge indentation of wood are described. The behaviour of wood is compared to that of an elastic-plastic solid and that of a cellular body. It approximates towards the former when its density is high and towards the latter when its density is low. The hardness of wood is examined as a function of density and of wedge angle.We wish to thank the University Grants Committee and the New Zealand Forest Service for supporting this work  相似文献   

17.
Rot is known to affect the strength properties of wood. At the same time, the damping properties of the attacked material have also been shown to change. This article presents the results of an experimental study in which rot in wood was modeled by the replacement of wood with sand. The procedure entailed the drilling of holes in the body of a wooden beam, filling the holes with sand, and monitoring the changes induced by the sand-filled holes on the values of the modulus of elasticity (MOE) and of the loss factor. The MOE was calculated from the resonance frequency of the first longitudinal mode of vibration, and the loss factor was obtained indirectly from the impulse response by means of a room acoustical technique. The results show that the MOE value, and hence the strength characteristic of the wood specimen, decreases at the same time as the loss factor increases.  相似文献   

18.
Rapid wood liquefaction by supercritical phenol   总被引:21,自引:0,他引:21  
Wood was rapidly liquefied at the supercritical temperature of phenol. Under these conditions, wood was liquefied by over 90% for 0.5 min, and the combined phenol content of the obtained liquefied wood reached about 75%. The effects of various reaction conditions on liquefaction were investigated. With increases in reaction temperature, phenol/wood weight ratio, and the charged mass-to-reactor capacity (w/v) ratio, the amount of methanol-insoluble residue decreased and combined phenol content increased. The range of molecular weights and polydispersity of the products obtained after the time at which sufficient liquefaction was achieved were from 400 to 600 and from 1.5 to 2.5, respectively. Wood showed a marked decomposition to low molecular weight components early in the reaction, and then the molecular weight increased slightly with increasing reaction time. The properties of liquefied wood were investigated and compared with those obtained with conventional liquefaction methods. Combined phenol content was similar to that obtained by other liquefaction methods, except the sulfuric acid–catalyzed method, which resulted in flow properties comparable to those of other liquefaction methods. The flexural strength of moldings prepared using liquefied wood was also comparable to those prepared by other liquefaction methods.  相似文献   

19.
Stress conditions produced in wood were analyzed by means of the acoustoelastic birefringence method. Bending load was applied against a wood beam specimen. Under loading, ultrasonic shear waves were propagated through the breadth direction of the wood beam specimen. The velocities of shear waves polarized in the longitudinal or tangential direction of the wood beam specimen were measured with the sing-around method. Bending stresses were determined by dividing the difference between the acoustic anisotropy and the texture anisotropy by the acoustoelastic birefringence coefficient. Shear stresses were also determined. These stress distributions of the beam specimen were in good agreement with those obtained by the strain gauge method and mechanical calculation.  相似文献   

20.
Steam explosion is a process used to enhance enzyme penetration and digestibility of wood. Wood chips are processed with high-pressure steam for a limited time, and the bonding between polysaccharides and lignin is weakened. After this processing, the pressure is rapidly reduced to induce steam explosion where the vapor inside a fiber expands and exerts pressure on the fiber walls. This pressure causes fiber deformation and breakage. In this study, fiber deformation caused by vapor expansion was simulated by single wood fibers using finite element modeling. When pressure is applied inside a fiber, it is likely to break from the corner and midway between two adjacent corners. The fiber is modeled with four layers (P, S1, S2, and S3). Although the P, S1, and S3 layers are very thin, they significantly prevent fiber deformation. The fibers with a thin wall and a low micro-fibril angle (MFA) deform more than the fibers with a thick wall and a higher MFA. It was found that the shape of the fiber plays an important role in its deformation. The areas of localized strain are the most likely places for fiber splitting. Essentially, fiber wall damage is more likely to occur in (1) thin-walled fibers, i.e., earlywood, (2) fibers with damaged P and S1 layers, (3) fibers with low MFAs, and (4) fibers with irregular cross-sections. Different chemical pretreatments, fractionation procedures, and selections of raw materials can accordingly be considered to produce easily steam-exploded materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号