首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
为探讨施硅对猪屎豆和高丹草生长与自然还田条件下的降解规律及养分释放特征,开展了施用硅肥(SiO2)42.4 kg/hm2对猪屎豆和高丹草绿肥生长、养分含量影响的试验,在自然条件下采用尼龙网袋法研究了施用硅后猪屎豆和高丹草还田3~168 d有机碳降解率以及氮、磷、钾释放规律。结果表明:施用硅肥显著提高了猪屎豆和高丹草的产量、硅含量,提高了猪屎豆中氮和高丹草中钾的含量,与未施用硅相比,施用硅分别提高猪屎豆和高丹草的产量27.87%和24.90%;分别提高硅含量82.75%和29.15%;分别提高养分(N+P+K)累积量30.60%和28.80%;猪屎豆中氮和高丹草中钾分别提高15.79%和7.51%;施用硅后显著降低猪屎豆和高丹草还田3~56 d有机碳降解率、氮释放率以及猪屎豆干物质降解率;与未施用硅相比,还田后56 d分别降低有机碳降解率8.90%和7.46%、氮释放率7.85%和12.11%、猪屎豆干物质降解率12.53%;绿肥施用硅后还田在自然条件下2种绿肥的降解规律差异不显著,高丹草干物质、有机碳表现出比较高的的降解加速度,猪屎豆还田后28 d氮、磷、钾的释放率比高丹草的高出5.80~18.13个百分点。研究结果为进一步提高绿肥土壤培肥效果奠定基础。  相似文献   

2.
通过盆栽试验,研究等养分投入条件下,施用化肥与不同有机肥(猪粪、牛粪、鸡粪、麸酸有机无机复混肥)对花生营养吸收、土壤酶活性及速效养分的影响。结果表明,与化肥相比,施用有机肥脲酶活性提高6.2%~22.1%,磷酸酶活性提高7.9%~27.9%,过氧化氢酶活性提高45.1%~65.2%,分别以猪粪、鸡粪、麸酸有机无机复混肥最高,而转化酶活性各处理表现不一。施用有机肥较化肥促进了N、P、K养分向花生果仁转移累积,果仁吸N量、吸P量、吸K量、吸S量分别较化肥提高22.7%~78.0%、47.1%~74.5%、65.2%~91.6%、5.6%~61.2%,其NPK养分总吸收量以麸酸有机无机复混肥最高。施肥均提高了种植花生后的土壤N、P、K速效养分含量,施用麸酸有机无机复混肥还明显改善了土壤S素营养。  相似文献   

3.
生物有机无机复混肥的养分释放特征研究   总被引:2,自引:0,他引:2  
通过好气培养间歇淋洗法和室内培养法,研究了生物有机无机复混肥的养分释放和氮素在土壤中的矿化规律。结果表明,生物有机无机复混肥的氮磷钾淋洗累积量呈现"S"型曲线,氮素淋洗释放量在第21 d达到最高峰,磷素在第28 d养分释放量达到高峰,钾素在28~35 d出现养分释放高峰,养分释放更加平缓;氮素在土壤中矿化率2.8%~3.2%,0~18 d表现为净固定过程,18 d以后开始矿化释放无机氮,第35 d达到高峰,硝化作用进行比较缓慢,硝化率表现为前期弱,后期强。  相似文献   

4.
不同盐分土壤环境下绿肥腐解及养分释放动态研究   总被引:2,自引:1,他引:1  
通过尼龙网袋埋田法研究了绿肥苕子、黑麦草在不同盐分滨海盐渍土壤中的腐解及养分释放规律。结果表明,不同盐分地块黑麦草干物质残留率、总有机碳含量和C/N总体高于苕子。苕子氮、钾在最初15天内快速释放,不同盐分地块的残留率分别为20.4%~34.0%和13.2%~18.1%,黑麦草钾在前45天释放了近90%,氮、磷释放持续整个腐解过程。低盐分地块绿肥钠的最终残留率为5.2%~7.6%,高盐分地块为36.2%~49.2%。不同盐分地块绿肥镁、钙、锌残留率以黑麦草高于苕子。铜的释放主要集中于前45天,之后趋于停滞。镁、铁、锰分别在腐解45~60天或45~75天出现养分富集现象。整体来看,禾本科绿肥干物质及养分残留率均高于豆科绿肥,高盐分明显阻滞了绿肥氮、钙、镁、铁、锰、铜和锌养分的释放。  相似文献   

5.
桐油包膜尿素养分释放机理的研究   总被引:2,自引:0,他引:2  
以桐油为包膜材料,采用土壤盆栽试验和水中静置试验,对控释肥料养分释放动态进行了研究。结果表明,以桐油为包膜材料的包膜尿素,在土壤中养分初期溶出率为12.6%,在水中养分初期溶出率为20.1%,是比较理想的包膜材料。在水中与土壤中养分释放期为1∶1.2;N素的释放可用LOGISTIC动力学方程描述,释放常数k值可用来判断控释尿素的N素释放速率大小。  相似文献   

6.
污泥堆肥对盐碱土土壤环境和作物生长的影响   总被引:1,自引:0,他引:1  
以城市污水处理厂污泥堆肥为研究对象,采用盆栽试验方法研究不同用量(0%,5%,10%,20%)污泥堆肥施入盐碱土后,对玉米、大豆生长情况及土壤环境的影响。结果表明,施用污泥堆肥可降低盐碱土pH值和总盐含量,提高土壤养分及酶活,增加土壤微生物量碳、微生物量氮,同时施用污泥堆肥土壤重金属Zn、Cu含量增加,当施用量为20%时,土壤Zn含量超标。另外,玉米和大豆在污泥堆肥施用比例分别为10%和5%时长势最佳,且作物籽粒中重金属含量在国家食品卫生标准范围内。  相似文献   

7.
《土壤通报》2015,(5):1174-1180
为改善采煤沉陷复垦区表层土壤养分贫瘠、控制水土流失,2013年5月在新庄孜煤矿沉陷区复垦地施用四种堆肥(堆肥1、堆肥2、堆肥3、堆肥4)后,进行紫花苜蓿(Medicago sativa)单播,墨西哥玉米(Purus frumentum)单播和两种牧草混播种植试验,并在当年牧草生长季结束后(2013年11月)对改良地表土进行理化性质分析,并用主成分分析的方法进行土壤质量评价。结果表明:施加堆肥各处理均能有效增加土壤有机质、全氮、速效磷含量,分别比对照增加了26%~45%、6%~14%、138%~359%,施加堆肥再单播紫花苜蓿使土壤含水量和硝态氮含量分别增加了24%~37%和210%~338%;堆肥改良后种植墨西哥玉米,复垦区表层土壤全磷含量增加了18%~20%;堆肥改良后混播紫花苜蓿和墨西哥玉米使复垦区表层土壤的含水量和铵态氮含量分别增加了36%~54%、50%~105%。在各处理中,施用堆肥4加紫花苜蓿和墨西哥玉米混播处理对复垦地表层土壤改良效果最好。  相似文献   

8.
南京郊区大白菜生长期氮素的供应及利用   总被引:2,自引:0,他引:2  
贺发云  尹斌  曹兵  蔡贵信 《土壤》2006,38(6):692-697
在南京郊区露地生产条件下,研究了不同施肥处理秋季大白菜生长期的土壤N素供应、作物养分吸收利用和肥料N素损失。结果表明,在大白菜整个生育期,耕层土壤供N量为50.7kg/hm2,占土壤全N量的1.07%。作物收获期地上部分生物量和N素含量随施N量的提高而升高,施用N肥显著增加了大白菜的生物量,提高幅度高达3~4倍。植株吸收N量70%以上来源于肥料N。在本试验条件下,尿素N肥表观利用率为26%~35%,土壤NO3--N含量随N肥施用量的增加而升高,主要累积在0~40cm土层中。  相似文献   

9.
在红壤自然状况下,模拟了施肥沟,对红壤不同污泥施肥处理的N素释放特性进行了研究。试验结果表明,干污泥配比在10%~20%时,碱解氮、铵态氮和硝态氮累计释放量分别为:25.71%~33.48%,9.57%~14.85%和4.08%~7.65%。堆肥污泥配比在20%~33%时,其累计释放量分别为13.55%~15.65%,2.03%~4.23%和3.11%~5.37%。干污泥处理的释放量大于堆肥污泥处理的释放量,释放过程变化较堆肥污泥剧烈,铵态氮和硝态氮均有明显峰值,铵态氮最大含量532.98±10 mg/kg,释放量最大达10.95%;硝态氮含量最大为149.2±14 mg/kg,释放量最大时为3.32%。无论是从氮的肥效角度,还是氮释放的环境风险角度考虑,污泥堆肥处理后施肥方式均优于干污泥处理施肥方式。  相似文献   

10.
不同作物还田秸秆的养分释放特征试验   总被引:73,自引:17,他引:56  
为了探索秸秆还田与化肥的合理搭配施用,采用尼龙网袋法,研究了水稻秸秆、小麦秸秆、油菜秸秆在淹水培养下养分释放特征。结果表明,供试秸秆腐解速率均表现在培养前期腐解较快,不同秸秆之间表现为油菜秸秆大于水稻秸秆和小麦秸秆;后期腐解速率逐渐变慢,3种秸秆之间差异不明显。经过124 d的培养,水稻秸秆、小麦秸秆、油菜秸秆的累积腐解率分别为49.17%、52.17%和49.81%。秸秆中养分释放速率均表现为K>P>C>N,释放量表现为C>K>N>P。经过124 d的腐解,水稻秸秆、小麦秸秆、油菜秸秆的碳释放率分别为7.53%、66.58%、52.54%;氮分别为42.05%、49.26%、57.83%;磷分别为68.28%、59.93%、67.32%;钾在培养12 d后释放率均达到98%。根据秸秆腐解特征及养分含量,作物推荐施肥量中可以减少钾肥用量,并适当延后施用;在还田初期可以不调整氮磷肥的施用量。  相似文献   

11.
? The results of a two year field experiment verified hypotheses concerning use of compost to improve saline and alkaline soils. The addition of compost to such soils was expected to release acids which would ultimately lead to the replacement of exchangeable sodium by calcium. The addition of compost would also stabilize soil structure and enhance plant growth. It was shown that the addition of municipal solid waste compost is equivalent, or even superior to the addition of gypsum, the common amendment used to reclaim alkaline soils. The overall effect of treatments on soil fertility was evident from yields of crops. The combined application of compost and gypsum raised yields to levels expected in good commercial fields.  相似文献   

12.
Improved predictive relationships between compost maturity and nitrogen (N) availability are needed. A total of 13 compost samples were collected from a single windrow over a 91 d period. Compost stability and maturity were assessed using both standard chemical analyses (total C and N, mineral N, total volatile solids) and other methods (CO2 evolution, commercial maturity kits, and neutral detergent fiber, and lignin). Compost N and carbon (C) were evaluated during a 130 d aerobic incubation in a sandy loam soil after each compost was applied at 200 mg total kg?1 soil. The effect of compost maturity on plant growth was evaluated by growing two ryegrass (Lolium perenne L.) crops and one barley (Hordeum vulgare L.) crop in succession in compost-amended soil under greenhouse conditions. Potential phytotoxicity from compost was assessed by growing tomato (Lypersicum esculentum L.) seedlings in compost-amended soil. Regression and correlation analyses were used to evaluate the relationship between compost maturity parameters, the rate and extent of net N and C mineralization, plant yield and N uptake, and phytotoxicity. Commonly used maturity parameters like total C, total N, and C:N ratio were poorly correlated with the rate and extent of mineralization, and with plant growth parameters. The N mineralization rate during the first 48 d of aerobic incubation was strongly correlated (r= ?0.82 to ?0.86) to compost fiber and lignin concentration, and to the Maturity Index (r=0.85). Trends in C mineralization were similar. There were few differences in C mineralization between composts after 48 d of aerobic incubation in soil. Ryegrass harvested 35 and 70 d after compost application was not strongly affected by compost maturity, and relatively immature composts were phytotoxic to tomato seedlings. Methods of characterizing compost maturity and stability that more realistically reflect the composting process are better predictors of N release and potential plant inhibition after incorporation into soil.  相似文献   

13.
Long-term effects of compost application are expected, but rarely measured. A 7-yr growth trial was conducted to determine nitrogen availability following a one-time compost application. Six food waste composts were produced in a pilot-scale project using two composting methods (aerated static pile and aerated, turned windrow), and three bulking agents (yard trimmings, yard trimmings + mixed paper waste, and wood waste + sawdust). For the growth trial, composts were incorporated into the top 8 to 10 cm of a sandy loam soil at application rates of approximately 155 Mg ha?1 (about 7 yd3 1000 ft2). Tall fescue (Festuca arundinacea Schreb. ‘A.U. Triumph’) was seeded after compost incorporation, and was harvested 40 times over a 7-yr period. Grass yield and grass N uptake for the compost treatments was greater than that produced without compost at the same fertilizer N rate. The one-time compost application increased grass N uptake by a total of 294 to 527 kg ha?1 during the 7-yr. field experiment. The greatest grass yield response to compost application occurred during the second and third years after compost application, when annual grass N uptake was increased by 93 to 114 kg ha?1 yr?1. Grass yield response to the one-time compost application continued at about the same level for Years 4 through 7, increasing grass N uptake by 42 to 62 kg ha?1 yr?1. Soil mineralizable N tests done at 3 and 6 yr. after application also demonstrated higher N availability with compost. The increase in grass N uptake accounted for 15 to 20% of compost N applied after 7-yr. for food waste composts produced with any of the bulking agents. After 7-yr, increased soil organic matter (total soil C and N) in the compost-amended soil accounted for approximately 18% of compost-C and 33% of compost-N applied. This study confirmed the long-term value of compost amendment for supplying slow-release N for crop growth.  相似文献   

14.
Composting municipal solid waste and biosolids and applying it on arable land have become an alternative way to treat waste in large municipalities in North America. However, cost of compost transportation and application constrains the compost use on the land further away from where it is produced. A four-year experiment was conducted (1998-2001) in less productive soils in Alberta to determine the effect of once in four year application of cocompost on soil nutrient dynamics and crop N uptakes. There were three crop blocks: barley (Hordeum vulgare L.), wheat (Triticum aestivum L), and canola (Brassica rapa), and they were rotated annually. The compost was only applied in 1998 at a rate of 50, 100 and 200 t/ha. Soil samples were taken in spring of every year after initial compost application to determine extractable N, P, K, S, Cu, Zn, Soil pH and EC. Each year, crops were harvested and N uptake was determined. Total concentrations of an array of heavy metals in the first year and fourth year after compost application were determined as well. The results showed that the release of N from the compost was high in the first year after compost application and then declined in each subsequent year. Similar to that release pattern was sulphur. The release of phosphorus from compost was steady throughout the four-year experimental time. Crop N uptake from compost application varied with crops and sites. The over all N use efficiency for three crops and two sites was 11%, 3%, 1% and 2% for the first and subsequent three years. The total heavy metal concentrations in the compost amended soils in the first and fourth year after compost application were similar, and they were below the standard of Canadian Fertilizer Act. Our results showed that N released from compost occurred mostly in the first two years after application, suggesting that an application frequency of once in every second year may be better than the once in every four year application strategy, especially with 100 t/ha application rate.  相似文献   

15.
The steadily increasing utilization of bio‐waste compost in German viticulture requires a more detailed investigation of nitrogen (N) mineralization parameters for mature bio‐waste compost applied to vineyard soils. N mineralization kinetics were described with two superposing exponential equations. Long‐term aerobic laboratory incubation experiments of 12 soil‐compost substrates revealed that 5±2.8% of its total N content could be released from a rapidly decomposable fraction (half‐life period t50 = 41 d at 15°C) and another 60±2.9% from a slower decomposable fraction (t50 = 490 d). The remaining proportion (35%) is considered not to be released in the medium term. The obtained potentially mineralizable nitrogen of 65% of total compost N significantly differs from current fertilizer recommendations, which were adopted from calculations for agricultural conditions. For fertilizer recommendations in viticulture, we recommend the consideration of a higher N‐mineralization potential for organic fertilizers.  相似文献   

16.
Soil disturbance often results in loss of soil organic matter and nitrogen (N) fertility, making revegetation of barren areas difficult. Yard waste composts are a potential source material to regenerate soil fertility so that revegetation success is improved. The N release behaviors of several compost materials produced within California were evaluated during a long-term, 586-day aerobic incubation. Two general types of compost were tested, including yard waste compost materials (lawn clippings and chipped brush) and cocomposted materials (biosolids bulked and composted with yard waste materials). Nitrogen release from composted material was measured using periodic soil solution extraction and soluble N analysis. Nitrogen release rates varied widely between source materials during the initial portions of the incubation period, with cocomposts having much greater release rates than the yard waste composts. Yard waste composts that were poorly cured or had high woody fiber content showed net immobilization of N during the initial incubation periods, which could potentially lead to N-limitations for plant growth in field conditions. Following additional curing in the soil, however, all yard waste compost materials had positive net N mineralization release rates. Release rates were similar to some of the native soils used as reference materials. The relationship of long-term aerobic N release and several other indicators of mineralizable or “bioavailable” N were evaluated, but the relationship of these other indicators with the aerobic incubation data was low. Because the cumulative N release from yard waste compost materials was a small fraction of the material's total N content, N leaching losses in field conditions are expected to be small and of short duration. Steady, long-term N release patterns were observed from composts throughout the second half of the study and would be expected to continue for an extended period in the field. Composts are shown to provide a suitable replacement source of slowly available N for plant establishment on drastically disturbed, low nutrient soils.  相似文献   

17.
Olive production is increasing very fast in the last 20 years in Al-Jouf region, northern region of the Kingdom of Saudi Arabia. There are now more than 5 million olive trees in the productive stage. A huge amount of waste is produced annually from this sector, including pruning waste of olive trees and solid waste from olive oil mills of three-phase system. The waste of olive used to produce compost could be of safe disposal technique. Disposal of such waste is expensive and it causes some environmental hazards. Rock phosphate (RP), which is available in the same region, can be used to improve the nutrient value of the produced compost. In this experiment olive pruning waste was composted alone and in a mixture with different RP in two different ratios, namely 5% and 10%, on the dry weight basis of olive waste. Compost processing took place on plies for 8 months. Temperature and moisture were monitored daily while periodical samples were taken from all piles for testing pH, EC, C/N, and germination index. Composts in all treatments reached the theomorphic phase, which killed weed seeds and pathogens. The produced compost from all treatments fulfilled the requirements of maturity according to the California Compost Quality Council after 8 months of composting. In addition, the RP enhanced composting efficiency and improved the quality of the produced compost. Compost parameters met the standard requirements for the compost that was suitable for agriculture purposes with average values of pH ranging from (7.02–7.65) and EC (2.20–3.94 dS m?1). Nutrient concentrations in the produced compost were N (1.28–1.79%), P (0.23–2.15%), and K (2.59–4.22%).  相似文献   

18.
ABSTRACT

This work investigates the impact of municipal solid waste compost (MSW-compost) application (0, 50, and 100 t/ha) on the growth, and on nutrient and trace elements content in lettuce and tomato plants grown in large, 40-L pots. Our findings showed inhibition of plants’ growth with increasing dose of MSW-compost, compared to plants receiving conventional fertilization. Growth inhibition was associated with a sharp decrease in soil NO3–N content. On the other hand, a slower decrease in soil NO3–N content occurred in non-planted pots amended with MSW-compost. These findings provide evidence that N immobilization and/or decreased N mineralization were responsible for inhibited growth by constraining N availability. With regard to the other macro-nutrients, K, P, Mg, Ca, and Fe, their contents in leaves of both crops were maintained at optimum levels. Higher zinc and copper content was measured in leaves of both crops but they did not exceed the optimum range for growth. No accumulation of trace elements was found in the fruits. The content of heavy metals in the tissues of plants grown in MSW-compost amended soil, remained at levels similar to those of the non-amended soil, suggesting that they do not pose a significant risk either for plant growth or public health. The findings of our study suggest that further emphasis should be given on the investigation of the factors regulating N mineralization and availability in order to avoid reductions in crop yield.  相似文献   

19.
Boron Fixation and Its Release in Soils and Bark Compost   总被引:1,自引:0,他引:1  
Batch studies were conducted to investigate the fixing and release behavior of boron (B) in the soils from Haruo-cho, Kochi, and a bark compost (BC). Boron fixation on river sand (RS) was extremely low. The amount of B fixed was 6.3 mg kg−1 for the greenhouse soil (GS). However, BC showed a 10-fold higher fixation of B (64.1 mg kg−1) compared to GS, indicating that BC here displayed a significant capacity for B trapping. In GS, only around 9% of the adsorbed B was released during a 1-month period of incubation. Bark compost showed the highest amount of release during the incubation period, accounting for 64% of the adsorbed B. Moreover, the ratio of B release increased to 77% in the case of the soil mixed with BC. These results, suggest that different kinds of fixation-releasing mechanisms operate in the soil and BC. The B fixation on soil is considered as specific adsorption on minerals. A possible mechanism for B fixation on BC is ligand exchange. B-diol complexes might be formed with BC, and then after decomposition by microorganisms, they may release B during the incubation period.  相似文献   

20.
以烟草废弃物为主要原料,添加合适比例猪粪进行高温堆肥试验,研究了烟草废弃物堆肥体系中加入两种微生物菌剂(NNY、FB)后的温度、总氮(T-N)、NH4+-N、C/N、种子发芽指数(GI)的动态变化及其对烟草废弃物堆肥产品品质的影响。结果表明,添加微生物菌剂缩短了烟草废弃物堆肥达到高温的时间,延长了高温分解持续时间,增加全氮含量,加快物料NH4+-N和C/N比的降低速率,提高种子发芽指数(GI),加快了烟草废弃物堆肥腐熟化进程。纯烟草废弃物单独堆肥,最高温度为43℃,GI最高为78.4%。添加微生物菌剂NNY、FB的堆肥处理都在堆肥2d后进入高温分解阶段(〉50℃),高温持续时间分别为15、12d,较仅添加合适猪粪比例处理进入高温分解阶段时间提前2d,高温持续时间分别延长5、2d。至堆肥11d,添加微生物菌剂NNY和FB的堆肥处理种子发芽指数较纯烟草废弃物处理分别增加了185.5%和117.7%,较仅添加合适比例猪粪处理分别增加了41.4%和7.6%。添加NNY、FB微生物菌剂的处理可以显著增加烟草废弃物堆肥产品的N、P、K养分含量,降低堆肥容重,提高堆肥总孔隙度和持水孔隙度,改善了堆肥产品的品质。两种微生物菌剂对烟草废弃物高温腐熟效果较优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号