首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
我国设施菜地化肥施用量大,造成了大量的氧化亚氮(N_(2)O)和氨(NH_(3))损失。有机肥替代部分化肥是实现种养体系养分资源循环利用、减少化肥施用及其环境损失的有效措施。本研究以长沙近郊设施菜地为研究对象,利用小区试验种植奶白菜,试验共设不施肥处理(CK)、常规施肥处理(CON)、30%牛粪有机肥氮+70%化肥氮(CM)、30%鸡粪有机肥氮+70%化肥氮(NM)4个处理。采用静态箱法和密闭室间歇抽气法测定奶白菜生长季内的氧化亚氮排放和氨挥发,分析土壤N_(2)O排放和NH_(3)挥发动态,探讨等氮条件下有机无机肥配施对设施奶白菜的N_(2)O排放、NH_(3)挥发的减排效应及其影响因素。结果表明,与常规施肥相比,CM和NM处理的N_(2)O排放量分别减少了38.5%和33.1%,NH_(3)挥发的排放量分别减少了8.5%和19.4%,N_(2)O排放和NH_(3)挥发的总增温潜势分别降低了38.4%和33.0%。两种有机肥处理中,NM处理氨挥发显著低于CM处理,降幅达到11.9%。N_(2)O排放和NH_(3)挥发日通量与土壤温度分别呈极显著和显著正相关。常规施肥和NM处理的N_(2)O排放和NH_(3)挥发日通量与土壤铵态氮呈显著正相关,仅常规施肥处理的N_(2)O排放与土壤硝态氮呈极显著正相关。与常规施肥处理相比,CM和NM处理氮肥利用率分别提高26.8%和41.5%,且产量没有显著差异。因此,30%等氮有机肥+70%化肥在降低设施菜地N_(2)O排放和NH_(3)挥发的同时,还能保障设施蔬菜稳产,对减少蔬菜生产中的氮素损失具有重要意义。  相似文献   

2.
在春小麦-青贮玉米复种体系中,探究不同施氮量对土壤氨挥发的影响。设置春小麦3个施氮量处理(0、360、480 kg/hm~2,分别记作N_(w0)、N_(w1)、N_(w2)),青贮玉米3个施氮量处理(0、150、255 kg/hm~2,分别记作N_(c0)、N_(c1)、N_(c2)),分别于春小麦开花-成熟期、青贮玉米开花-吐丝期采用密闭室法监测土壤氨挥发量,测定土壤含水量和NH~+_4-N含量,以及与氨挥发量的相关关系。研究结果表明,前茬春小麦季施氮量的大小对土壤氨挥发量有明显影响,在一定范围内,随着施氮量增加,氨气挥发量增加,N_(w2)N_(w1);后茬青贮玉米季土壤氨气挥发量表现为N_(c2)N_(c1)N_(c0)。在春小麦季开花-成熟期土壤氨挥发量与土壤含水量的相关性较低,与土壤NH_4~+-N含量的相关性较高;青贮玉米季开花-吐丝期土壤氨挥发量与土壤含水量呈强正相关,与土壤NH_4~+-N含量呈中等正相关,适当减少灌水量等可以减少土壤氨挥发量。由研究结果得出,前茬春小麦施氮量为360 kg/hm~2、后茬青贮玉米施氮量为480 kg/hm~2条件下的氨挥发量较少。  相似文献   

3.
以华北平原农田土壤为研究对象,通过室内静态培养系统研究新型尿素施入土壤后对N_2O排放和氨挥发的影响。供试肥料为聚能网尿素、腐殖酸尿素、控失尿素、普通尿素,脲酶抑制剂为氢醌(C_6H_6O_2),硝化抑制剂为2-氯-6-三氯甲基吡啶(NP)。结果表明,所有施肥处理N_2O排放通量峰值均出现在第2天,其中控失尿素土壤N_2O排放通量最低,为20 168.1μg/(kg·d);与普通尿素相比,控失尿素减少了58.0%的N_2O排放,减排效果最佳。不同新型尿素均能显著降低土壤氨挥发损失量,其中腐殖酸尿素对减少氨挥发损失量的效果最好,聚能网尿素其次,控失尿素最差。培养期间,在0~3 d土壤NO_3~-含量与N_2O排放量显著相关;土壤NH_4~+含量与氨挥发损失量呈极显著相关(P0.01)。  相似文献   

4.
尿素混合生物质炭穴施对土壤氮含量及酶活性的影响   总被引:1,自引:0,他引:1  
为研究尿素与生物质炭混合穴施条件下,生物质炭对土壤氮素转化及土壤酶活性的影响,设单施尿素(N_(120)、N_(180)、N_(240))、尿素混合生物质炭穴施(N_(120)B、N_(180)B、N_(240)B)处理,施氮量分别为240 kg·hm~(-2)(N_(240))、180 kg·hm~(-2)(N_(180))、120 kg·hm~(-2)(N_(120))和不施氮(CK),生物质炭施用量为10 t·hm~(-2)。测定土壤硝态氮、铵态氮、无机氮和碱解氮的含量,以及土壤脲酶、蔗糖酶和碱性磷酸酶的活性。研究表明,第5 d尿素穴施处理的土壤铵态氮、硝态氮、无机氮和碱解氮含量分别是尿素混合生物质炭穴施处理的4.5~8.2、2.0~3.0、2.55~5.81、3.13~4.46倍,第10 d尿素穴施处理的土壤铵态氮、硝态氮、无机氮和碱解氮含量分别是尿素混合生物质炭穴施处理的24.5~58.9、1.21~1.37、2.99~3.82、1.34~1.48倍,第15 d各处理间土壤氮含量差异不显著。第5 d和第10 d,尿素混合生物质炭穴施处理的土壤脲酶活性均显著高于尿素穴施处理,但在第15 d后处理间无显著差异,第5 d尿素混合生物质炭穴施处理的土壤脲酶、蔗糖酶和碱性磷酸酶活性分别是尿素穴施处理的1.80~2.55、1.07~1.77、1.18~1.22倍,第10 d尿素混合生物质炭N_(180)B处理的土壤蔗糖酶活性最高,N_(240)B处理的土壤碱性磷酸酶活性最高,混合生物质炭处理的蔗糖酶活性是单施尿素处理的2.35~2.37倍。因此,生物质炭促进土壤脲酶、蔗糖酶和碱性磷酸酶活性,吸附土壤中的NH_4~+和NO_3~-,赋予土壤氮素缓慢释放特性,尿素混合生物质炭穴施可以促进土壤酶活性,有效降低土壤有效氮素流失的风险。  相似文献   

5.
优化施肥对不同轮作系统稻田氨挥发的影响   总被引:1,自引:0,他引:1  
【目的】探究3种主要水旱轮作系统下,优化施肥对当季稻田NH_3挥发及氮素利用率的影响。【方法】试验设置水稻-小麦、水稻-蔬菜与水稻-冬闲田3种水旱轮作系统,每种轮作系统下设农民习惯施肥方式(FFP)和优化施肥方式(OPT)2种施肥处理,以不施肥处理为对照(CK),其中农民习惯施肥方式氮肥以基肥与分蘖肥施用量比例5∶5施入,优化施肥方式氮肥以基肥、分蘖肥、穗肥施用量比例5∶3∶2施入。于2015─2016年,采用传统抽气密闭室法,田间原位监测了不同处理以及4个环境因子(田面水NH+4-N质量浓度、水层pH、温度和深度)对当季稻田NH_3挥发的影响,并分析了4个环境因子与NH_3挥发通量的相关性,最后测定了不同处理水稻的产量、氮农学利用率、氮回收效率以及氮偏生产力。【结果】当氮肥作为基肥和分蘖肥施用后,由于尿素在水中的快速分解,各处理NH_3挥发通量均在施肥后第2天达到峰值,随后急剧下降,至第10天左右趋近于零;优化施肥方式下,穗肥施用后,由于施肥量较少且此时水稻对氮素的吸收利用增加,NH_3挥发通量无明显峰值,趋近于零。NH_3挥发积累量受施肥方式影响显著(P0.05),轮作制度及其与施肥方式交互作用对NH_3挥发通量影响不显著。3种轮作制度下,农民习惯施肥方式NH_3挥发积累量占氮肥施用量比例为25.9%~27.6%,显著高于优化施肥方式(22.6%~23.0%)。3种轮作制度下,NH_3挥发通量均主要受田面水NH+4-N质量浓度的影响,且二者间呈显著正相关关系,与水层pH、温度均无显著相关性;NH_3挥发通量与水层深度呈负相关关系,其中只有部分处理相关性达显著水平。在3种水旱轮作系统下,优化施肥方式平均水稻产量(9.0~10.2t/hm2)与农民习惯施肥方式(8.9~10.2t/hm2)差异均不显著,但氮肥农学利用率(21.3~26.1kg/kg)、氮回收效率(55.6%~60.3%)、氮偏生产力(50.0~56.8kg/kg)与农民习惯施肥方式(氮肥农学利用率12.6~15.6kg/kg,氮回收效率35.0%~37.6%,氮偏生产力29.8~34.1kg/kg)相比均有显著提高。【结论】不同施肥方式是影响NH_3挥发的主要因素,在不同的水旱轮作系统下优化施肥均可以通过氮肥运筹,在减少施肥量和保证产量水平的基础上,降低稻田的NH_3挥发损失,提高氮素利用率。  相似文献   

6.
为了减少氨挥发带来的氮素损失和面源污染,寻求一种节水、节肥、稳产的水氮运筹模式,研究分析了氨挥发规律及春玉米籽粒产量对不同水氮运筹模式的响应。试验采用裂区设计,共15个处理。主区为灌水定额,设置3个水平,分别为525、750、975 m~3·hm~(-2);副区为施氮量,设置5个水平,分别为0、80、160、240、320 kg·hm~(-2)。于2014、2015年连续两年进行田间试验。采用通气法采集田间氨挥发量,并计算氨挥发速率、氨挥发损失量及损失率。结果表明:2014、2015两年同一处理追肥后的氨挥发速率峰值均大于该处理施入基肥后的氨挥发速率峰值,追肥后氨挥发速率峰值比施入基肥后的氨挥发速率峰值分别高出63.31%和62.06%。施氮量、灌水定额以及两者的交互作用均对NH_3-N损失量具有极显著影响,三者对田间土壤NH_3-N损失量的影响表现为施氮量灌水定额两者的交互作用。2014、2015两年各施氮处理施入基肥后平均NH_3-N损失量为5.71~13.95 kg·hm~(-2),追肥后平均NH_3-N损失量为8.70~18.66 kg·hm~(-2)。2014年各施氮处理NH_3-N总损失量为13.90~32.21 kg·hm~(-2),2015年各施氮处理NH_3-N总损失量为15.45~32.99 kg·hm~(-2)。处理W2N3(灌水定额750 m~3·hm~(-2),施氮量240 kg·hm~(-2))既能节水、节肥,又能保证获得高产,同时显著地降低了NH_3-N损失量,故推荐该处理为适用于当地的最优水氮运筹模式。  相似文献   

7.
采用土壤与粉碎秸秆混合物室内氨挥发模拟试验,研究了不同秸秆添加物对尿素氨挥发的影响。结果表明,施用等量尿素,不同秸秆混合条件下尿素氨挥发损失具有明显差异;添加小麦或玉米秸秆,尿素在施入土壤后的第2天达到挥发高峰,而仅施用尿素的土壤在第3天达到挥发高峰;施肥后氨挥发损失总量为尿素>尿素 玉米秸秆>尿素 小麦秸秆;不同处理氨挥发损失量与土壤pH值和土壤无机氮含量具有显著相关性。  相似文献   

8.
采用室内模拟试验,研究了保水剂CLP对土壤保肥特性的影响。结果表明,随着保水剂用量的增加,土壤渗出液中铵态氮(NH_4~+)、硝态氮(NO_3~-)的含量均依次降低,说明试验所用保水剂具有保氮的能力;随着保水剂在土壤滞留时间的增加,各处理土壤渗出液中铵态氮(NH_4~+)含量呈现增加的趋势,硝态氮(NO_3~-)的含量表现为先增加后减少的变化趋势,可能是由于施入土壤中的尿素在土壤中进行了转化。综合分析可以确定,试验所用保水剂CLP可减少土壤氮素的流失,提高土壤的保肥性。  相似文献   

9.
采用室内培养试验方法,模拟蘖肥施用后氮素转化过程。试验土壤为采自黑龙江省建三江白浆土型水稻土(JSJ)和庆安草甸土型水稻土(QA),采用通气法测定NH3挥发损失,并测定水层p H,以及水层和不同土层中NH4+-N和尿素态氮含量。试验结果显示,施用尿素后短期内水层p H显著提高,随后p H甚至低于不施氮肥处理,p H增加因土壤而异;随施肥时间推移,水层中氮不断减少,进入土壤中以及挥发损失的氮不断增加。JSJ氨挥发累积量占施氮量13.68%~14.42%,氮量和氨挥发为线性关系;QA氨挥发占施氮量3.39%~7.96%,随施肥量增加氨挥发比例增大。施肥后3 d,水层氮占总施肥量24%~33%,有60%~70%氮扩散到土壤中;施肥后10 d水层氮只占施肥量5.0%~6.3%;施肥后21 d,进入到土壤中氮比例为66%~85%,在p H较低土壤中所占比例更大。尿素转化后铵态氮主要集中在0~2和2~4 cm土层,下层土壤铵态氮含量较低,短期内表层土壤铵态氮可反映施肥变化。施肥后第21天,两地氮素回收率分别为75.71%~86.37%和85.32%~98.29%,另有少量氮进入有机氮库或通过反硝化损失。  相似文献   

10.
脲酶抑制剂N-丁基硫代磷酰三胺(NBPT)和硝化抑制剂双氰胺(DCD)对抑制尿素土壤氨挥发损失和提高土壤有效氮积累量有很大潜力,但2种抑制剂配合施用对灌区强碱性灌淤土尿素施用后氨挥发损失和有效氮积累量的抑制作用尚不明确。为此,选取灌区碱性灌淤土为研究对象开展室内试验,设置NBPT与不同浓度DCD组合下的6个处理,对照为单施尿素,研究NBPT及其与不同浓度DCD组合下的尿素土壤氨挥发和有效氮积累量的变化特征及作用效果。结果表明,在没有添加抑制剂的碱性灌淤土中,尿素施用后短期内(3 d左右)土壤氨挥发速率和NH+4-N积累量达最大值;在施肥后第8 d土壤氨挥发总量和NO-3-N积累量达最大值;添加抑制剂NBPT/DCD可显著降低施肥初期(5 d内)氨挥发速率,且有效减少施肥初期累积氨挥发量;单独添加相当于尿素氮量0.1%的NBPT,累积氨挥发量较CK降低了64%,施肥初期土壤NH+4-N和NO-3-N积累量显著低于CK。NBPT和DCD组合研究结果表明,在NBPT添加浓度为尿素氮量的0.1%,DCD为1%的低浓度水平下,土壤累积氨挥发量较CK降低了16.7%,同时土壤NH+4-N积累量增加趋势缓慢,但硝化抑制率在施肥的第5 d后快速下降,土壤NO-3-N积累量快速增加,氮素淋溶损失的风险加大;随着DCD添加浓度增加(2%~5%),其硝化抑制率显著增加,土壤NO-3-N积累量显著降低,但氨挥发损失量显著增大;相关性分析得出,土壤氨挥发速率与NH+4-N积累量呈正相关,与NO-3-N积累量呈负相关。综合分析得出,0.1%NBPT配施2%~3%的DCD时,土壤氨挥发损失量相对较低,土壤有效态氮积累量较高,且在土壤中滞留时间相对较长,可推荐为灌区碱性灌淤土尿素氮肥与2种抑制剂配施的最佳组合。  相似文献   

11.
采用室内培养的方法,对尿素硝酸铵溶液(UAN)在不同土壤类型上的氨挥发特性进行研究。在本研究中,尿素及尿素硝酸铵溶液的氨挥发特性均同时受土壤类型及土壤水分状况影响。实验结果表明,土壤相同水分的条件下,尿素硝酸铵溶液在黑钙土、黑土、白浆土中的氨挥发速率和氨挥发累积量均低于等氮量的尿素,氨挥发累积量分别降低24.7%、38.2%、26.3%。在黑土和黑钙土中尿素硝酸铵溶液的氨挥发损失情况表现为低含水量高于高含水量,氨挥发累积量分别高42.5%和29.7%,但在白浆土中,两种含水量的氨挥发累积量无明显差异;尿素硝酸铵溶液在三种不同土壤类型中的氨挥发速率及氨挥发累积量表现为:黑钙土黑土白浆土。与尿素相比,尿素硝酸铵溶液在三种土壤类型上的氨挥发损失均相对较低,尤其在黑土及白浆土中表现更为显著。  相似文献   

12.
为查明氢醌对土壤中尿素氮系列的影响及其条件,在实验室条件下,取白浆土和冲积性砂壤土0—20cm的耕作土壤为试样,进行了氢醌对土壤脲酶活性动态,土壤硝化作用强度,土壤脲酶活性动态,土壤尿素氨挥发的影响实验,结果表明:(1)氢醌对土壤脲酶活性、尿素氨挥发和硝化强度的抑制率,同土壤脲酶活性大小和培养时间成负相关,同氢醌浓度成正相关;(2)砂壤土中比粘壤土中尿素分解速度快,氨挥发强度大,硝化速率快;(3)在麦秸还田土壤中,脲酶活性增高,尿素分解速率加快,从而降低了氢醌的抑制效应。同时,由于麦秸的“氮因子效应”而弥补了氢醌失效后可能造成的氮素损失。  相似文献   

13.
控释尿素对土壤氨挥发及脲酶活性和氮淋溶的影响   总被引:3,自引:0,他引:3  
为了解控释尿素氨挥发特征、氮淋溶特性及其对土壤脲酶活性的影响,为控释肥新产品的研发提供技术和理论支撑,采用静态吸收法和土壤淋溶法室内模拟试验,研究了2种控释尿素在红壤和褐土中的氨挥发、脲酶活性和氮淋溶情况。结果表明:控释肥不同程度降低了氨挥发和氮淋溶量。与普通尿素相比,控释尿素1和控释尿素2在红壤中氨挥发累积量减少60.0%~62.6%,褐土中减少42.9%~46.3%,两者显著降低了氨挥发的峰值,且在整个培养期表现出较好的稳定性。在施肥后的30d内,控释尿素降低了土壤脲酶活性,延缓了尿素态氮在土壤中的转化进程,氮淋溶量分别较普通尿素少,氮淋洗量分别降低14.8%~25.9%和19.7~34.5%。控释尿素较普通尿素在消减氨排放和氮淋溶上具有明显的效果。  相似文献   

14.
尿素硼是将尿素和无水硼砂或五水硼砂按比例混合造粒制成的新型氮肥。尿素在固态氮肥中含氮量最高,施入土壤后在土壤脲酶的作用下分解转化成碳酸铵再为作物所吸收。由于尿素转化过程中中间产物很不稳定,氨挥发现象严重,氮素作用率很低,一般只有33~45%。在尿素中添加硼砂,可以抑制脲酶的活性,延缓尿素分解速率,增加中间产物NH~+为土壤颗粒吸附的机会,降低氨的挥发损失,提高氮素利用率。在酸性或  相似文献   

15.
应用密闭培养法研究了灌淤土加入外源氮肥后,土壤中氨的挥发机制及数量.试验结果表明,灌淤土氨的挥发与施入的氮肥形态有关,施用硫酸铵后仅1天,氨的挥发量就达到9.9%,3天后达到15%并维持2周基本不变,45天后挥发量达到25.4%.当施用大颗粒尿素3天后,尿素已转化为碳酸铵,氨挥发量为7.3%,45天后挥发量为18.6%,远低于施硫酸铵后同期氨挥发量.施用大颗粒尿素有利于减少氨挥发,提高氮肥利用率.  相似文献   

16.
盐渍化土壤上不同类型氮肥氨挥发损失特征研究   总被引:3,自引:0,他引:3  
在室内采用"磷酸甘油-海绵通气法",对不同类型氮肥在典型非盐渍化土壤、盐化土壤,碱化土壤上的氨挥发损失特征进行研究.结果表明:(1)在相同的施氮量情况下,占施入量1.34;~27.74;的氮以NH3的形式挥发损失;(2)除硝酸钙外,随着土壤盐渍化程度的增加,不同类型氮肥氨挥发损失均随之增加,挥发速率与盐渍化类型有关;(3)不同盐渍化类型土壤上的氨挥发量均为碳酸氢氨>尿素>硝酸铵,硝酸钙几乎不发生氨挥发;因此盐渍土上选择硝态氮肥不失为降低氨挥发损失的一种选择;(4)过量盐分的存在对于氮肥硝化作用的抑制是导致盐渍化土壤上氮肥氨挥发损失增加的主要原因.  相似文献   

17.
在氨挥发模拟系统中,调查施于土壤中碳酸氢铵挥发的过程及其影响因子。发现氨挥发在施肥后迅速发生,13h以内以氨的形态挥发损失掉的肥料氮量最多,这种损失与碳酸氢铵在土壤中的暴露表面有关。施肥方法、浇施碳酸氢铵的兑水量和土壤的水分状况等亦影响氨的挥发。在红黄壤和青紫泥中,条施覆土可减少碳酸氢铵的挥发,与过磷酸钙混合施用,48h内的挥发损失量可减少2%。当在露天或室内从盆钵土上加水淋溶,调查施用于土壤中碳酸氢铵的淋溶损失时,发现碳酸氢铵的淋溶损失(指纵向的损失)比挥发损失少得多。淋溶损失主要以NO_3~-—N的形式,也包括部分NH_4~+—N。碳酸氢铵与硝化抑制剂脒基硫脲(Carbamido sulphururea,简称ASU)混合施用,可以减少NO_3~-—N损失。浇施时NH_4~+—N比穴施损失小。  相似文献   

18.
1不要把肥施在表土层把肥施在表土层,如遇高温干燥天气,不仅养分容易挥发损失,而且会烧伤苗根。因此,肥料应深施并覆土。2不要施尿素后马上浇水尿素中的氮为酰胺态氮,酰胺态氮经3~5天转化为碳酸铵或碳酸氢铵后才能被根系吸收,所以施尿素后立即浇水,会使氮素随水流失。3干旱时不  相似文献   

19.
应用密闭培养法研究了灌淤土加入外源氮肥后,土壤中氨的挥发机制及数量。试验结果表明,灌淤土氨的挥发与施入的氮肥形态有关,施用硫酸铵后仅1天,氨的挥发量就达到9.9%,3天后达到15%并维持2周基本不变,45天后挥发量达到25,4%。当施用大颗粒尿素3天后,尿素已转化为碳酸铵,氨挥发量为7,3%,45天后挥发量为18.6%,远低于施硫酸铵后同期氨挥发量。施用大颗粒尿素有利于减少氨挥发,提高氮肥利用率。  相似文献   

20.
【目的】施用腐殖酸尿素可以有效减少氮素NH3挥发损失,肥料中的腐殖酸发挥了很大作用,但是由于腐殖酸与尿素反应所得产物腐殖酸尿素复合物(UHA)对土壤NH3挥发的影响可能不同于常规腐殖酸(HA),进行相关研究将有利于揭示腐殖酸尿素降低土壤NH3挥发的机理。【方法】利用无水乙醇从腐殖酸尿素中提取得到UHA,在长期不施肥与长期施肥土壤上,开展室内恒温土壤培养试验,研究HA或UHA配施尿素对土壤NH3挥发的影响,二者的用量分别为尿素用量的0.5%与5%,分别用0.5HA+U、5HA+U、0.5UHA+U和5UHA+U表示,同时设置单施尿素(U)及不施尿素与腐殖酸处理(CK)。测定土壤NH3挥发速率及累积量,土壤尿素态氮、硝/铵态氮含量,土壤脲酶活性等。【结果】(1)各施氮处理,长期施肥土壤NH3挥发累积量均高于长期不施肥土壤,这可能与长期施肥导致土壤pH远低于不施肥土壤,土壤硝化过程减弱,尿素水解产生的铵态氮在土壤中累积有关。(2)HA或UHA配施尿素均可以有效降低土壤NH3挥发量,但是降低幅度与土壤是否长期施肥及二者用量有关:在长期不施肥土壤上,与单施尿素(U)相比,HA配施尿素土壤NH3挥发量可显著降低4.4%—22.9%(P<0.05),且5HA+U处理降低幅度大于0.5HA+U处理,但是在长期施肥土壤上,尿素配施HA处理,土壤NH3挥发量仅降低4.1%—7.5%,与U处理无显著差异;然而,尿素配施其用量0.5%的UHA,在长期不施肥与长期施肥土壤上均可以显著降低土壤NH3挥发累积量(P<0.05),土壤NH3挥发量较单施尿素处理分别降低26.5%与12.9%(P<0.05)。(3)HA降低土壤NH3挥发量可能与降低土壤脲酶活性有关,而UHA可能与促进土壤硝化过程有关。【结论】土壤培养条件下,与常规腐殖酸相比,腐殖酸尿素中的腐殖酸尿素复合物可更加有效地减少土壤NH3挥发量,且作用效果与土壤是否长期施肥无关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号