共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The structure of an RNA polymerase II-transcribing complex has been determined in the posttranslocation state, with a vacancy at the growing end of the RNA-DNA hybrid helix. At the opposite end of the hybrid helix, the RNA separates from the template DNA. This separation of nucleic acid strands is brought about by interaction with a set of proteins loops in a strand/loop network. Formation of the network must occur in the transition from abortive initiation to promoter escape. 相似文献
6.
7.
8.
The structure of a T7 RNA polymerase (T7 RNAP) initiation complex captured transcribing a trinucleotide of RNA from a 17-base pair promoter DNA containing a 5-nucleotide single-strand template extension was determined at a resolution of 2.4 angstroms. Binding of the upstream duplex portion of the promoter occurs in the same manner as that in the open promoter complex, but the single-stranded template is repositioned to place the +4 base at the catalytic active site. Thus, synthesis of RNA in the initiation phase leads to accumulation or "scrunching" of the template in the enclosed active site pocket of T7 RNAP. Only three base pairs of heteroduplex are formed before the RNA peels off the template. 相似文献
9.
Using single-molecule DNA nanomanipulation, we show that abortive initiation involves DNA "scrunching"--in which RNA polymerase (RNAP) remains stationary and unwinds and pulls downstream DNA into itself--and that scrunching requires RNA synthesis and depends on RNA length. We show further that promoter escape involves scrunching, and that scrunching occurs in most or all instances of promoter escape. Our results support the existence of an obligatory stressed intermediate, with approximately one turn of additional DNA unwinding, in escape and are consistent with the proposal that stress in this intermediate provides the driving force to break RNAP-promoter and RNAP-initiation-factor interactions in escape. 相似文献
10.
11.
Macrae IJ Zhou K Li F Repic A Brooks AN Cande WZ Adams PD Doudna JA 《Science (New York, N.Y.)》2006,311(5758):195-198
The specialized ribonuclease Dicer initiates RNA interference by cleaving double-stranded RNA (dsRNA) substrates into small fragments about 25 nucleotides in length. In the crystal structure of an intact Dicer enzyme, the PAZ domain, a module that binds the end of dsRNA, is separated from the two catalytic ribonuclease III (RNase III) domains by a flat, positively charged surface. The 65 angstrom distance between the PAZ and RNase III domains matches the length spanned by 25 base pairs of RNA. Thus, Dicer itself is a molecular ruler that recognizes dsRNA and cleaves a specified distance from the helical end. 相似文献
12.
RNA as an RNA polymerase: net elongation of an RNA primer catalyzed by the Tetrahymena ribozyme 总被引:7,自引:0,他引:7
A catalytic RNA (ribozyme) derived from an intervening sequence (IVS) RNA of Tetrahymena thermophila will catalyze an RNA polymerization reaction in which pentacytidylic acid (C5) is extended by the successive addition of mononucleotides derived from a guanylyl-(3',5')-nucleotide (GpN). Cytidines or uridines are added to C5 to generate chain lengths of 10 to 11 nucleotides, with longer products being generated at greatly reduced efficiency. The reaction is analogous to that catalyzed by a replicase with C5 acting as the primer, GpNs as the nucleoside triphosphates, and a sequence in the ribozyme providing a template. The demonstration that an RNA enzyme can catalyze net elongation of an RNA primer supports theories of prebiotic RNA self-replication. 相似文献
13.
14.
15.
16.
Liu L Botos I Wang Y Leonard JN Shiloach J Segal DM Davies DR 《Science (New York, N.Y.)》2008,320(5874):379-381
Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA), a molecular signature of most viruses, and triggers inflammatory responses that prevent viral spread. TLR3 ectodomains (ECDs) dimerize on oligonucleotides of at least 40 to 50 base pairs in length, the minimal length required for signal transduction. To establish the molecular basis for ligand binding and signaling, we determined the crystal structure of a complex between two mouse TLR3-ECDs and dsRNA at 3.4 angstrom resolution. Each TLR3-ECD binds dsRNA at two sites located at opposite ends of the TLR3 horseshoe, and an intermolecular contact between the two TLR3-ECD C-terminal domains coordinates and stabilizes the dimer. This juxtaposition could mediate downstream signaling by dimerizing the cytoplasmic Toll interleukin-1 receptor (TIR) domains. The overall shape of the TLR3-ECD does not change upon binding to dsRNA. 相似文献
17.
18.
19.