首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Wildfire severity and subsequent ecological effects may be influenced by prior land management, via modification of forest structure and lingering changes in fuels. In 2002, the Hayman wildfire burned as a low to moderate-severity surface fire through a 21-year pine regeneration experiment with two overstory harvest cuttings (shelterwood, seed-tree) and two site preparations (scarified, unscarified) that had been applied in a mature ponderosa pine forest in the montane zone of the Colorado Front Range in 1981. We used this event to examine how pre-fire fine fuels, surface-level burn severity and post-fire soil nitrogen-availability varied with pre-fire silvicultural treatments. Prior to the wildfire, litter cover was higher under both shelterwood and unscarified treatments than seed-tree and scarified treatments. Immediately after the fire in 2002, we assessed burn severity under 346 mature trees, around 502 planted saplings, and in 448 4 m2 microplots nested within the original experimental treatments. In one-fourth of the microplots, we measured resin-bound soil nitrate and ammonium accumulated over the second and third post-fire growing season. Microplots burned less severely than bases of trees and saplings with only 6.8% of microplot area burned down to mineral soil as compared to >28% of tree and sapling bases. Sapling burn severity was highest in unscarified treatments but did not differ by overstory harvest. Microplot burn severity was higher under the densest overstory (shelterwood) and in unscarified treatments and was positively related to pre-fire litter/duff cover and negatively associated with pre-fire total plant cover, grass cover and distance to tree. In both years, resin-bound nitrate and ammonium (NH4+-N) increased weakly with burn severity and NH4+-N availability was higher in unscarified than scarified plots. The lasting effects of soil scarification and overstory harvest regime on modern patterns of surface burn severity after two decades underscores the importance of historic landuse and silviculture on fire behavior and ecological response. Unraveling causes of these patterns in burn severity may lead to more sustainable fire and forest management in ponderosa pine ecosystems.  相似文献   

2.
Fire is an important process in California closed-cone pine forests; however spatial variability in post-fire stand dynamics of these forests is poorly understood. The 1995 Vision Fire in Point Reyes National Seashore burned over 5000 ha, initiating vigorous Pinus muricata (bishop pine) regeneration in areas that were forested prior to the fire but also serving as a catalyst for forest expansion into other locales. We examined the post-fire stand structure of P. muricata forest 14 years after fire in newly established stands where the forest has expanded across the burn landscape to determine the important factors driving variability in density, basal area, tree size, and mortality. Additionally, we estimated the self-thinning line at this point in stand development and compared the size-density relationship in this forest to the theorized (−1.605) log-log slope of Reineke’s Rule, which relates maximum stand density to average tree size. Following the fire, post-fire P. muricata density in the expanded forest ranged from 500 to 8900 live stems ha−1 (median density = 1800 ha−1). Post-fire tree density and basal area declined with increasing distance to individual pre-fire trees, but showed little variation with other environmental covariates. Self-thinning (density-dependent mortality) was observed in nearly all stands with post-fire density >1800 stems ha−1, and post-fire P. muricata stands conformed to the size-density relationship predicted by Reineke’s Rule. This study demonstrates broad spatial variability in forest development following stand-replacing fires in California closed-cone pine forests, and highlights the importance of isolated pre-fire trees as drivers of stand establishment and development in serotinous conifers.  相似文献   

3.
Although wildfires are occurring frequently in the pine–oak forests in the Sierra Madre Oriental (northeastern Mexico), data on post-fire succession and forest structure are still rare. Our objectives were to (1) assess the changes in woody plant species composition after fire and to (2) to relate successional patterns to environmental variability. Based on their fire history 23 plots were selected in the Parque Ecológico Chipinque (PECH). Changes in forest structure across the chronosequence of burned stands were deduced from density, height and diameter measurements of trees and shrubs (>5 cm in diameter) in all plots of 1000 m2. Differences in woody plant species composition among the plots were evaluated using Shannon evenness measure and the Whittaker's measure and by Hierarchical cluster analysis and Detrended Correspondence Analysis. Hierarchical cluster analysis showed a high similarity among all recently burned plots, independed of the aspect. Multivariate analysis showed that local environmental factors, including time since fire, continue to structure species composition. Oak species (mainly Quercus rysophylla) resprouted successfully after fire and dominated young post-fire stands. Pine species (Pinus pseudotrobus and Pinus teocote) only appeared 18 years after fire and were the dominating species in mature stands (62 years after fire). In contrast, woody plant species composition in older stands tended also to be influenced by factors such as aspect and by the potential solar radiation (PSR) during the growing season. The results demonstrate that in the PECH, natural regeneration is sufficient and woody plant species composition will be similar to pre-fire conditions after 60 years of succession. We conclude that the park managers should consider incorporating natural disturbance regimes into their management practices.  相似文献   

4.
To test the direct regeneration hypothesis and support natural disturbance-based forest management we characterized the structure and composition of boreal mixedwood forests regenerating after large wildfires and examined the influence of pre-fire stand composition and post-fire competing vegetation. In stands which had been deciduous (Populus sp.)-dominated, conifer (white spruce)-dominated, or mixed pre-fire we measured regeneration stocking (presence in 10 m2 plots), density and height 10–20 years post-burn in five wildfires in Alberta, Canada. Most plots regenerated to the deciduous or mixed stocking types; plots in the older fire and in stands that were pure conifer pre-fire had higher amounts of conifer regeneration. Surprisingly, regeneration in pre-fire ‘pure’ white spruce stands was most often to pine, although these had not been recorded in the pre-fire inventory. Pre-fire deciduous stands were the most resilient in that poplar species dominated their post-fire regeneration in terms of stocking, density and height. These stands also had the highest diversity of regenerating tree species and the most unstocked plots. High grass cover negatively affected regeneration density of both deciduous and conifer trees. Our results demonstrate the natural occurrence of regeneration gaps, pre- to post-fire changes in forest composition, and high variation in post-fire regeneration composition. These should be taken into consideration when developing goals for post-harvest regeneration mimicking natural disturbance.  相似文献   

5.
Despite the increasing recognition of riparian zones as important ecotones that link terrestrial and aquatic ecosystems and of fire as a critical natural disturbance, much remains unknown regarding the influence of fire on stream-riparian ecosystems. To further this understanding, we evaluated the effects of mixed severity wildfire on riparian plant community structure and composition in headwater streams of the Big Creek Watershed of the Frank Church ‘River of No Return’ Wilderness of central Idaho. Five years after a large stand-replacing fire, we conducted riparian vegetation surveys at sixteen reaches across a range of burn types. Non-metric Multidimensional Scaling (NMS) and Multi-Response Permutation Procedure (MRPP) analyses showed an overall shift in community composition and structure between vegetation at unburned and severely burned reaches. Although total plant cover was significantly less at severely burned areas, recovery of the deciduous understory was apparent. Severely burned reaches were characterized by a marked increase in cheatgrass (Bromus tectorum). Reaches that were exposed to low-severity fire were indistinguishable from unburned reaches relative to vegetation community composition and structure, pointing to a possible disturbance threshold that may need to be crossed in order to alter riparian plant communities.  相似文献   

6.
Wildfire can create a mosaic of impacts of varying severity across the landscape. Although widely recognized, this feature and its causes are little understood or studied in ecology. We studied a 1,200-ha wildfire in the southern boreal forest of the Boundary Waters Canoe Area Wilderness (BWCAW) in northeastern Minnesota, USA, using 275 ground plots (stand-scale) and 1:7,000 scale aerial photographs for the entire burned area (landscape-scale). Fire severity was markedly heterogeneous. Overall, 50% of the burn extent was classified as high burn severity, but patches burned this severely were on average less than 70 m from patches of low severity. As expected, lowlands had lower average fire severity than uplands, but several lowland areas burned, and some upland areas remained unburned. At the landscape scale, pre-fire vegetation type—itself heterogeneous—and patch size of less flammable cover types influenced fire severity. Crown fire severity in upland areas was lowest in pure aspen–birch and red/white pine stands and highest in jack pine and spruce–fir stands. At the stand-scale, slope position and the density of certain tree species at adjacent plots influenced fire severity. Improved understanding of the severity patterns created by wildfire can help to guide the management of spatial patterns of forested systems. Based on our study, a larger range in disturbance severity at scales of 0.1 to several ha and increasing the average size, and range of sizes, of residual patches would in aggregate better mimic natural disturbance than typical harvests.  相似文献   

7.
We investigated the diversity and structure of the ectomycorrhizal (EM) fungal community associated with post-fire regenerated Pinus pinaster Ait., and the influence of fire severity and site slope on EM assemblage patterns. Seedlings were sampled in the first autumn and in both spring and autumn of the second growing season after fire, in a total of three samplings. EM percentages per seedling were assessed, morphotypes described, and tentative identification of EM types performed by restriction fragment length polymorphism (RFLP) and sequencing of nrDNA internal transcribed spacer (ITS) region. Seedlings were highly mycorrhizal in all samplings, independently of the factors studied. A total of 45 EM types were identified, and richness and diversity significantly increased from the first to the second autumn after fire. Neither fire severity nor slope had a significant effect on fungal richness and diversity. Overall EM community composition was similar in all samplings, although fire severity, site slope and elapsed time after fire caused evident shifts in presence or in relative frequencies of a number of EM types. No significant effect of fire severity or slope on EM assemblage patterns was detected in the first two samplings after fire. However, a significant effect of fire severity was observed at the end of the second growing season. The harvest of burned wood did not significantly affect EM fungal assemblages although the slope did. We conclude that there was a high potential of active EM inoculum in soil immediately after fire colonizing post-fire natural regenerated P. pinaster seedlings with high EM percentages, and that factors defining burn intensity, such as fire severity and topography, directly influenced the species composition and assemblage patterns of EM fungal communities, triggering replacements and succession of EM fungal species.  相似文献   

8.
9.
10.
Forest harvesting strategies that approximate natural disturbances have been proposed as a means of maintaining natural species’ diversity and richness in the boreal forests of North America. Natural disturbances impact shoreline forests and upland areas at similar rates. However, shoreline forests are generally protected from harvest through the retention of treed buffer strips. We examined bird community responses to forest management guidelines intended to approximate shoreline forest fires by comparing bird community structure in early (1–4 years) post-burned and harvested boreal riparian habitats and the adjacent shoreline forest. We sampled riparian areas with adjacent: (1) burned merchantable shoreline forest (n = 21), (2) burned non-merchantable shoreline forest (n = 29), (3) 10 m treed buffer with 25% retention in the next 30 m (n = 18), and (4) 30 m treed buffer (n = 21). Only minor differences were detected in riparian species’ abundance and bird community composition between treatments with greater differences in these parameters occurring between post-fire and post-harvest upland bird communities. Indicators of all merchantable treatments were dominated by upland species with open-habitat species and habitat generalists being typical upland indicator species of burned merchantable habitats and forest specialists typical upland indicators of harvested treatments. Riparian species indicative of burned riparian habitats were Common Yellowthroat (Geothlypis trichas), Le Conte’s Sparrow (Ammodramus leconteii) and Eastern Kingbird (Tyrannus tyrannus) and indicators of 30 m buffers were Alder Flycatcher (Empidonax alnorum) and Wilson’s Warbler (Wilsonia pusilla). Multivariate Redundancy Analysis (RDA) of the overall (riparian and upland birds) community showed greater divergence than RDA with only riparian species suggesting less effect of fire and forestry on riparian birds than on upland birds. Higher natural range of variability (NRV) of overall post-fire bird communities compared to post-harvest communities emphasizes that harvesting guidelines currently do not achieve this level of variability. However, lack of a large negative effect on common riparian species in the first 4 years post-disturbance allows for the exploration of alternative shoreline forest management that better incorporates bird community composition of post-fire riparian areas and shoreline forests.  相似文献   

11.
The 2002 Biscuit Fire burned through more than 200,000 ha of mixed-conifer/evergreen hardwood forests in southwestern Oregon and northwestern California. The size of the fire and the diversity of conditions through which it burned provided an opportunity to analyze relationships between crown damage and vegetation type, recent fire history, geology, topography, and regional weather conditions on the day of burning. We measured pre- and post-fire vegetation cover and crown damage on 761 digital aerial photo-plots (6.25 ha) within the unmanaged portion of the burn and used random forest and regression tree models to relate patterns of damage to a suite of 20 predictor variables. Ninety-eight percent of plots experienced some level of crown damage, but only 10% experienced complete crown damage. The median level of total crown damage was 74%; median damage to conifer crowns was 52%. The most important predictors of total crown damage were the percentage of pre-fire shrub-stratum vegetation cover and average daily temperature. The most important predictors of conifer damage were average daily temperature and “burn period,” an index of fire weather and fire suppression effort. The median level of damage was 32% within large conifer cover and 62% within small conifer cover. Open tree canopies with high levels of shrub-stratum cover were associated with the highest levels of tree crown damage, while closed canopy forests with high levels of large conifer cover were associated with the lowest levels of tree crown damage. Patterns of damage were similar within the area that burned previously in the 1987 Silver Fire and edaphically similar areas without a recent history of fire. Low-productivity sites on ultramafic soils had 92% median crown damage compared to 59% on non-ultramafic sites; the proportion of conifer cover damaged was also higher on ultramafic sites. We conclude that weather and vegetation conditions — not topography — were the primary determinants of Biscuit Fire crown damage.  相似文献   

12.
The role of disturbance in structuring vegetation is widely recognized; however, we are only beginning to understand the effects of multiple interacting disturbances on ecosystem recovery and development. Of particular interest is the impact of post-disturbance management interventions, particularly in light of the global controversy surrounding the effects of salvage logging on forest ecosystem recovery. Studies of salvage logging impacts have focused on the effects of post-disturbance salvage logging within the context of a single natural disturbance event. There have been no formal evaluations of how these effects may differ when followed in short sequence by a second, high severity natural disturbance. To evaluate the impact of this management practice within the context of multiple disturbances, we examined the structural and woody plant community responses of sub-boreal Pinus banksiana systems to a rapid sequence of disturbances. Specifically, we compared responses to Blowdown (B), Fire (F), Blowdown-Fire, and Blowdown-Salvage-Fire (BSF) and compared these to undisturbed control (C) stands. Comparisons between BF and BSF indicated that the primary effect of salvage logging was a decrease in the abundance of structural legacies, such as downed woody debris and snags. Both of these compound disturbance sequences (BF and BSF), resulted in similar woody plant communities, largely dominated by Populus tremuloides; however, there was greater homogeneity in community composition in salvage logged areas. Areas experiencing solely fire (F stands) were dominated by P. banksiana regeneration, and blowdown areas (B stands) were largely characterized by regeneration from shade tolerant conifer species. Our results suggest that salvage logging impacts on woody plant communities are diminished when followed by a second high severity disturbance; however, impacts on structural legacies persist. Provisions for the retention of snags, downed logs, and surviving trees as part of salvage logging operations will minimize these structural impacts and may allow for greater ecosystem recovery following these disturbance combinations.  相似文献   

13.
In three different plant communities growing in Mediterranean old fields we studied the short-term changes in soil nitrogen availability that occur after the fire. Two of these communities were grasslands with great capacity of resprouting and contrasted N availability, one dominated by Brachypodium retusum, and the second one dominated by B. retusum and the N fixing shrub Genista scorpius. The third community was an obligate seeder community (shrubland) with low N availability and was dominated by Rosmarinus officinalis. We selected six plots for each type of vegetation and therefore performed 18 experimental fires. During fires we measured temperatures at the soil surface. Maximum temperature recorded during fire and time–temperature integral were used as indexes of fire severity. During the 6 months following fires we measured Net N mineralization and plant uptake by field incubations using the resin-core technique in paired burnt and control plots.Fire severity increased with plant biomass. In grasslands heating of the soil surface increased with plant biomass up to a limit of 1 kg m−2 of above-ground biomass. For high biomass a large proportion of heat released during fire was probably transmitted to the atmosphere or to the deeper soil horizons. The increase of soil mineral N was larger in fires of greater severity. Most mineral nitrogen released to the soil during fire was ammonia. Increases of ammonia post-fire depends on the temperatures measured on the soil surface while increases of the less volatile N form (nitrate) were related to the amount of burnt biomass and were highly dependent on the type of vegetation.The amount of nitrogen released to soil during fire represented a small proportion of the N mineralized during the 6 months following fire and thus the amount of nitrogen mineralized per unit of N released during fire was very different across the different types of vegetation. In grasslands fire induced changes in N mineralization decreased as fire severity increased. In contrast, in shrublands we observed the opposite trend. Differences in potentially mineralizable and in net mineralization N between unburnt grasslands and shrublands could account for this fact. Despite the depression in nitrification that we observed in grasslands between 40 and 80 days after the fire, high nitrate concentration in the soil during that period increased N leaching in burnt plots. No plant uptake was detected at that time. In grasslands the onset of plant uptake in burnt plots was delayed as compared to control. Cumulative changes in N did not depend on the burnt biomass in grassland communities, but it did in the seeder community. On the contrary, soil temperatures measured during fires related to changes in N observed in grasslands but not in the seeder community. It appears therefore, that post-fire N mineralization and leaching in grasslands may have been driven by the changes induced by heating the soil surface while in shrublands it may have been driven by the quantity of ash deposited on the soil surface.  相似文献   

14.
Modeling fire susceptibility in west central Alberta, Canada   总被引:1,自引:0,他引:1  
Strategic modification of forest vegetation has become increasingly popular as one of the few preemptive activities that land managers can undertake to reduce the likelihood that an area will be burned by a wildfire. Directed use of prescribed fire or harvest planning can lead to changes in the type and arrangement of forest vegetation across the landscape that, in turn, may reduce fire susceptibility across large areas. While among the few variables that fire managers can influence, fuel conditions are only one of many factors that determine fire susceptibility. Variations in weather and topography, in combination with fuels, determine which areas are more likely to burn under a given fire regime. An understanding of these combined factors is necessary to identify high fire susceptibility areas for prioritizing and evaluating strategic fuel management activities, as well as informing other fire management activities, such as community protection planning and strategic level allocation of fire suppression resources across a management area. We used repeated fire growth simulations, automated in the Burn-P3 landscape-fire simulation model, to assess spatial variations in fire susceptibility across a 2.4 million ha study area in the province of Alberta, Canada. The results were used to develop a Fire Susceptibility Index (FSI). Multivariate statistical analyses were used to identify the key factors that determine variation in FSI across the study area and to describe the spatial scale at which these variables influence fire susceptibility at a given location. A fuel management scenario was used to assess the impact of prescribed fire treatments on FSI. Results indicated that modeled fire susceptibility was strongly influenced by fuel composition, fuel arrangement, and topography. The likelihood of high or extreme FSI values at a given location was strongly associated with the percent of conifer forest within a 2-km radius, and with elevation and ignition patterns within a 5-km radius. Results indicated that prescribed fire treatments can be effective at reducing forest fire susceptibility in community protection zones and that simulation modeling is an effective means of evaluating spatial variation in landscape fire susceptibility.  相似文献   

15.
The spatial heterogeneity of essential plant resources plays a crucial role in the structure, composition and productivity of many terrestrial ecosystems. Fires may affect both the availability and spatial pattern of soil nutrients. However, little is known about the effect of fire on the spatial pattern of soil resources. We hypothesized that shortly after a wildfire, the spatial patterns of soil mineral-N, organic labile-N (microbial biomass-N and dissolved organic-N) and extractable-P pools would become more clumped because of ash accumulation and post-fire deposition of litter around individual adult trees. To test this hypothesis, we used plots within a Pinus canariensis forest (with both Pinus canariensis and Adenocarpus viscosus present) and sampled them one month before and one month after a wildfire. Using geostatistical analyses, we examined the spatial patterns of soil mineral-N (NH4-N and NO3-N), dissolved organic-N (DON), microbial biomass-N (MB-N) and soil extractable-P (PO4-P). Burned plots of P. canariensis and A. viscosus both had values that were significantly greater than the unburned plots for all variables, except for DON in both cases, and the N:P ratio in the case of A. viscosus, which showed significantly lower values. Except for DON, we observed an increased spatial dependence and range after a fire for all studied variables in the P. canariensis plots (large individuals). However, in plots with A. viscosus (smaller individuals), we only found differences before and after the fire for the PO4-P and DON spatial patterns. Our results confirm the changes in the spatial structure of soil variables with fire, and suggest that, on a short-term basis, the physical structure of the plant community may determine the new spatial structure after fire, with a more clumped distribution around large surviving trees and shrubs. The spatial patch size of limiting resources has important consequences for the success of restoration of forest communities on burned areas.  相似文献   

16.

Context

Mediterranean pine woodlands are strongly affected by wildfires; however, there are knowledge gaps in the role of fire severity on Pinus pinaster Ait. regeneration.

Objectives

The principal questions were: (a) does post-fire regeneration of Maritime Pine differ where canopies were consumed to a low vs. high degree and (b) which factors, besides fire severity, could explain these differences.

Methods

Pine recruitment was monitored from 2 to 36?months after a summer wildfire in 18 25?m2 plots, equally divided over two fire severity classes based on crown consumption. Besides the degree of crown consumption, three quantitative fire severity indices as well as post-fire site conditions, seed input and understory vegetation recovery were measured.

Results

Pine seedling densities were consistently higher in the plots with low than high crown consumption but due to marked spatial variability, they were only significantly different at two out of the eight sampling occasions. This variability could be explained by a quantitative index based on the diameter of twigs, as well as by seed input and post-fire site conditions (ash and litter cover).

Conclusion

Fire severity was found to strongly affect the pine recruitment following wildfire, using both a qualitative visual severity index and a quantitative, more labour-intensive one.  相似文献   

17.
Ecological processes within forests provide vital ecosystem services to society, most of which depend on the persistence of tree cover that can be altered after the impact of a disturbance. The aim of the present study was to examine the role of seed dispersal and resprouting that mediate resilience to large fires and evaluate the economic costs that these ecological functions provide. We used field data from 412 plots of the Spanish National Forest Inventory providing information on pre- and post-fire conditions of Mediterranean Pinus spp. and Quercus spp.-dominated forests. Then, we determined the need for restoration (N Rest) and estimated the minimum pre-fire densities needed to ensure adequate post-fire cover. Economic valuations were assessed through three different scenarios (Sc) of possible human-management actions aimed at ensuring proper post-fire tree cover: Sc. 1) a pre-fire management scenario evaluating the costs of planting Quercus spp. seedlings in the understory, mimicking the whole dispersal function; Sc. 2) a pre-fire scenario in which enrichment plantations increased the densities of natural oaks; and Sc. 3) a post-fire scenario where the restoration is done through planting pines within the burned area. Approximately 90% of the burned area (371 out of 412 plots) was able to recover after fire supporting the view that Mediterranean forests are resilient to fire. This resilience was primarily mediated by biotic seed dispersal and posterior resprouting of tree species. These ecological functions saved between 626 and 1,326 €/ha compared to the human-management actions. Ensuring key ecological processes within forests increases forest resilience and recovery after fire leading to a generally significant saving of economic resources. In a perspective of increased future impact of disturbances and decrease availability of economic resources for forest management, the implications of the present study can be far reaching and extended to other forest planning exercises.  相似文献   

18.
Wildfire is an important element in the dynamics of the blue oak (Quercus douglasii) stand. We evaluated the effect of fire in the regeneration of a stand in Quail Ridge. This protected area is located on a peninsula formed by the flooding of Berryessa Valley (California) which has helped it maintain many elements of the native flora. Major vegetation types are blue oak woodland and forest (Q. douglasii, Fagaceae), chamise chaparral (Adenostoma fasciculatum, Rosaceae), and grasslands. In the blue oak stand, 14 plots were randomly located: seven in the burned area and seven outside of the burned areas (control). The effect of fire on sexual regeneration, asexual regeneration, mortality and species composition was analyzed. The fire caused changes in canopy cover, soil cover and litter cover. Asexual regeneration was significantly favored by the fire, but the effect on sexual regeneration was not significant. Fire caused a significant reduction in the basal area of Q. wislizeni and Arctostaphylos manzanita and a reduction in the density of Heteromeles arbutifolia. We concluded that fire does not have a significant effect on the sexual regeneration of Q. douglasii or Q. wislizeni. Fire does stimulate asexual regeneration in both species of oaks, but grazing reduces the regenerative effect of fire. Fire increases regeneration of Arctostaphylos manzanita and Heteromeles arbutifolia by stimulating asexual and sexual regeneration. The occupancies of these chaparral species are further enhanced by their lower palatability compared to both species of oaks.  相似文献   

19.
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession. We found that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40-fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.  相似文献   

20.
Zagros forests are mainly covered byQuercus brantii L. coppices and oak sprout clumps occupy the forest area like patches. We investigated post-fire herbaceous diversity in the first growing season after fire. For this purpose neighboring burned and unburned areas were selected with the same plant species and ecological conditions. The data were collected from areas subjected to different fire severities. Overall 6 treatments were considered with respect to fire severity and the mi-crosites of inside and outside of oak sprout clumps including: unburned inside and outside of sprout clumps (Ni and No), inside of sprout clumps that burned with high fire severity (H), inside of sprout clumps that burned with moderate fire severity (M), outside of sprout clumps that burned with low fire severity (OH and OM). Different herbaceous com-position was observed in the unburned inside and outside of oak sprout clumps. The species diversity and richness were increased in treatments burned with low and moderate fire severity. However, in treatment burned with high fire severity (H), herbaceous cover was reduced, even-ness was increased, and richness and diversity were not significantly changed. We concluded that besides the microsites conditions in forest, fire severity is an inseparable part of the ecological effect of fire on her-baceous composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号