首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Island biogeography theory (IBT) provides a basic conceptual model for understanding habitat fragmentation. Empirical studies of fragmented landscapes often reveal strong effects of fragment area and isolation on species richness, although other predictions of the theory, such as accelerated species turnover in fragments, have been tested less frequently. As predicted by IBT, biota in fragments typically ‘relax’ over time towards lower species richness. Beyond these broad generalizations, however, the relevance of IBT for understanding fragmented ecosystems is limited. First, IBT provides few predictions about how community composition in fragments should change over time, and which species should be most vulnerable. Second, edge effects can be an important driver of local species extinctions and ecosystem change, but are not considered by IBT. Third, the matrix of modified vegetation surrounding fragments—also ignored by IBT—can strongly influence fragment connectivity, which in turn affects the demography, genetics, and survival of local populations. Fourth, most fragmented landscapes are also altered by other anthropogenic changes, such as hunting, logging, fires, and pollution, which can interact synergistically with habitat fragmentation. Finally, fragmentation often has diverse impacts on ecosystem properties such as canopy-gap dynamics, carbon storage, and the trophic structure of communities that are not considered by IBT. I highlight these phenomena with findings from fragmented ecosystems around the world.  相似文献   

2.
Despite scientific and media attention on pollinator declines, there is still only a rudimentary understanding of the response of bees—the most important group of pollinators worldwide—to ongoing land use changes. Euglossine bees are an ecologically important Neotropical clade of forest-dependent pollinators. Despite the fact that euglossines are well studied relative to other groups of tropical bees, only three previous studies, all from Brazil, address the response of euglossines to forest fragmentation. In this study, I tripled the maximum sample size of previous efforts by sampling male euglossines in 22 forest fragments ranging in area from 0.25 ha to 230 ha in southern Costa Rica, using chemically baited Van Someren traps. Abundance of euglossine bees was significantly positively related to forest fragment size, negatively related to shape (edge:area ratio), and marginally related to fragment isolation. Euglossine species richness showed similar, but weaker trends: richness was significantly positively related to the quantity of forest edge, marginally negatively related to fragment area, and not related to fragment isolation. The positive relationship between euglossine richness and abundance and forest fragment edge is consistent with other studies that have found high euglossine density in secondary or disturbed forest. The data suggest that individual euglossines move between forest fragments, as has been shown in other systems. Still, forest fragmentation appears to affect euglossine bees more strongly than other bee groups in the study region. Their large flight range and positive relationship with forest edges may help to buffer the negative effects of fragmentation, allowing euglossines to utilize even the very smallest forest fragments in the study area.  相似文献   

3.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

4.
The consequences of fragmentation for communities of mutualist partners are for the most part unknown; moreover, most studies addressing this issue have been conducted on plant-pollinator communities. We evaluated how the experimental fragmentation of lowland Amazonian rain forest influenced a community of ant-plant mutualists. We inventoried a total of 1057 myrmecophytes in four fragments and four continuous forest sites; the twelve plant species recorded were occupied by 33 ant morphospecies, of which 11 were obligate plant inhabitants. Neither plant species richness, ant species richness, nor total ant-plant density were significantly lower in forest fragments. However, eight of the plant species, including three of the four most common, had higher mean densities in continuous forest than fragments. Of these four species, only one (Cordia nodosa) had significantly different colonization rates between habitat types, with higher colonization rates of plants in fragments. This may be because the Azteca species it is associated with increases in abundance in forest isolates. Although our results suggest that communities of ant-plant mutualists are likely to persist in fragmented tropical landscapes 25 years after fragment isolation, most species are rare and populations sizes in fragments are extremely low. Environmental and demographic stochasticity could therefore limit long-term population viability. We suggest future studies focus on evaluating how fragmentation has altered herbivore pressure and the dispersal of ants and plants to fragments, since the interaction of these factors is likely to have the greatest impact on long-term patterns of population persistence.  相似文献   

5.
Habitat loss and fragmentation promote relatively predicable shifts in the functional signature of tropical forest tree assemblages, but the full extent of cascading effects to biodiversity persistence remains poorly understood. Here we test the hypotheses that habitat fragmentation (a) alters the relative contribution of tree species exhibiting different reproductive traits; (b) reduces the diversity of pollination systems; and (c) facilitates the functional convergence of reproductive traits between edge-affected and early-secondary forest habitats (5-32 years old). This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic forest of northeastern Brazil. We assigned 35 categories of reproductive traits to 3552 trees (DBH ? 10 cm) belonging to 179 species, which described their pollination system, floral biology, and sexual system. Trait abundance was calculated for 55 plots of 0.1 ha across four habitats: forest edges, small forest fragments (3.4-83.6 ha), second-growth patches, and core tracts of forest interior within the largest available primary forest fragment (3500 ha) in the region. Edge-affected and secondary habitats showed a species-poor assemblage of trees exhibiting particular pollination systems, a reduced diversity of pollination systems, a higher abundance of reproductive traits associated with pollination by generalist diurnal vectors, and an elevated abundance of hermaphroditic trees. As expected, the reproductive signature of tree assemblages in forest edges and small fragments (edge-affected habitats), which was very similar to that of early second-growth patches, was greatly affected by both habitat type and plot distance to the nearest forest edge. In hyper-fragmented Atlantic forest landscapes, we predict that narrow forest corridors and small fragments will become increasingly dominated by edge-affected habitats that can no longer retain the full complement of tree life-history diversity and its attendant mutualists.  相似文献   

6.
Forested landscapes in Southeast Asia are becoming increasingly fragmented, making this region a conservation and research priority. Despite its importance, few empirical studies of effects of fragmentation on biodiversity have been undertaken in the region, limiting our ability to inform land-use regimes at a time of increased pressure on forests. We estimated the biodiversity value of forest fragments in peninsular Malaysia by studying fragmentation impacts on insectivorous bat species that vary in dependence of forest. We sampled bats at seven continuous forest sites and 27 forest fragments, and tested the influence of fragment isolation and area on the abundance, species richness, diversity, composition and nestedness of assemblages, and the abundance of the ten most common species. Overall, isolation was a poor predictor of these variables. Conversely, forest area was positively related with abundance and species richness of cavity/foliage-roosting bats, but not for that of cave-roosting or edge/open space foraging species. The smallest of fragments (<150 ha) were more variable in species composition than larger fragments or continuous forest, and larger fragments retained substantial bat diversity, comparable to continuous forest. Some fragments exhibited higher bat abundance and species richness than continuous forest, though declines might occur in the future because of time lags in the manifestation of fragmentation effects. Our findings suggest that fragments >300 ha contribute substantially to landscape-level bat diversity, and that small fragments also have some value. However, large tracts are needed to support rare, forest specialist species and should be the conservation priority in landscape-level planning. Species that roost in tree cavities or foliage may be more vulnerable to habitat fragmentation than those that roost in caves.  相似文献   

7.
The establishment of plant species depends crucially on where the seeds are deposited. However, since most studies have been conducted in continuous forests, not much is known about the effects of forest fragmentation on the maintenance of abiotic and biotic characteristics in microhabitats and their effects on seed survival. In this study, we evaluated the effects of forest fragmentation on the predation upon the seeds of the palm Syagrus romanzoffiana in three microhabitats (interior forest, forest edge and gaps) in eight fragments of semi-deciduous Atlantic forest ranging in size from 9.5 ha to 33,845 ha in southeastern Brazil. Specifically, we examined the influence of the microhabitat structure, fauna and fragment size on the pattern of seed predation. Fragments <100 ha showed similar abiotic and biotic characteristics to those of the forest edge, with no seed predation in these areas. Forest fragments 230-380 ha in size did not present “safe sites” for S. romanzoffiana seed survival and showed high seed predation intensity in all microhabitats evaluated. In fragments larger than 1000 ha, the seed predation was lower, with abiotic and biotic differences among gaps, interior forests and forest edges. In these fragments, the survival of S. romanzoffiana seeds was related to squirrel abundance and interior forest maintenance. Based on these results, we concluded that there are no safe sites for S. romanzoffiana seed establishment in medium- and small-sized fragments as result of the biotic and abiotic pressure, respectively. We suggest that on these forest fragments, management plans are needed for the establishment of S. romanzoffiana, such as interior forest improvement and development in small-sized sites in order to minimize the edge effects, and on medium-sized fragments, we suggest post-dispersal seed protection in order to avoid seed predation by vertebrates. Our findings also stress the importance of assessing the influence of forest fragmentation on angiosperm reproductive biology as part of the effective planning for the management of fragmented areas.  相似文献   

8.
In theory, habitat fragmentation alters plant community dynamics by influencing both local (within patch) and regional (among patch) processes. However, the lengthy generation times of plant taxa relative to the short duration of most experiments has precluded studies from assessing the impact of fragmentation at both local and regional scales. Due to their accelerated life cycles, high rates of local extinction, and naturally patchy substrates, epiphyllous bryophyte assemblages are an appropriate plant guild for empirically testing metacommunity-based predictions associated with habitat fragmentation. By examining the local abundance and regional distribution patterns of 67 epiphyllous (leaf-inhabiting) bryophyte species in an experimentally fragmented landscape in Amazonia, we demonstrate that changes in local abundance wrought by habitat fragmentation are best explained by fragment size rather than proximity to forest edge. Furthermore, evidence of a simultaneous inter-specific decline in epiphyll local abundance and regional distribution in small (1- and 10-ha) forest fragments corroborate with metapopulation-based predictions highlighting the importance of immigration in buffering from patch extinction risk (i.e., the rescue effect). Collectively, these results provide indirect evidence that dispersal limitation, rather than compromised habitat quality attributable to edge effects, likely account for species loss from small tropical forest fragments. Whether dispersal limitation is due to increased insularity from regional sources for epiphyll recolonization or rather to lowered within-fragment dispersal potential is unknown; nonetheless, the long-term persistence of these microscopic plant metacommunities depends on the preservation of rain forest reserves of at least 100-ha in size.  相似文献   

9.
Forest fragmentation results in population declines and extinctions for many forest vertebrates, but little is known about the mechanisms causing declines in fragments. We investigated potential causes of declines in forest fragments for an Amazonian forest frog (Colostethus stepheni) at an experimental fragmentation study site in central Amazonian Brazil using field estimates of abundance and vital rates coupled with population simulations. Although adult male survival was not reduced by fragmentation, mean clutch size was reduced by 17%. Population simulations demonstrate that a reduction in clutch size of this magnitude is sufficient to cause the observed magnitude of population declines in fragments. Female snout-vent length was also reduced in fragments and may be related to the observed reduction in clutch size.  相似文献   

10.
Habitat loss and fragmentation have turned into the most important threats to biodiversity and ecosystem function worldwide. Here we investigate the effects of habitat fragmentation and drastic changes in tree communities on dung beetle richness and community structure. This study was carried out in a severely fragmented 670-km2 forest landscape of the Atlantic Forest of north-eastern Brazil. Sampling was carried out in 19 forest fragments between September 2007 and March 2008 with the use of pitfall traps and flight interception traps. A total of 5893 individuals and 30 species of dung beetle were collected. Fragment area and isolation were the most significant explanatory variables for predictable and conspicuous changes in dung beetle species richness. Smaller and isolated fragments presented lower number of species, but fragments with lower tree species richness and lower proportion of shade-tolerant species were also considerably impoverished in terms of dung beetle species richness. The body mass of dung beetles were explained by fragment area and the percentage of emergent trees with smaller and less stratified fragments being dominated by small-bodied dung beetles. An ordination analysis segregated dung beetle communities between small fragments (<100 ha) and the control area. Seventy-seven percent of the species were recorded in the control area and 22% of all species were unique to this habitat. Our findings indicate that large fragments in the Atlantic Forest appear to consist in a sort of irreplaceable habitats for particular groups of dung beetle species, as well as for the integrity of their communities.  相似文献   

11.
With tropical forests under increased pressure from fragmentation and nascent effects of climate change, it is imperative to reliably predict change for timely reduction of impacts. This depends on measuring the right variables and analyzing them in ways that best detect change. I compared the usefulness of density, species richness, species diversity, and size in detecting edge penetration; and other parameters in revealing edge effect on tree species in Bwindi Impenetrable National Park, Uganda. Trees were sampled in 104 1 km edge-interior transects set around the entire park. Density and species richness were better indicators of edge-width than girth size and diversity measurements, both showing edge penetration as most intense within 300 m, although effect was detectable up to 900-1000 m. This estimate compared closely with an earlier estimate of 300-350 m obtained using incidences of resource harvest. Among other measures, measures of tree species abundance and frequency showed significant response to the edge by both early succession and primary forest species; while analyses of density showed edge response primarily by forest interior species. Parameters of tree size and their derivatives showed edge response by the lowest number of species. These results suggest that to measure edge effects reliably, it is important to select the right parameters.  相似文献   

12.
Species response to forest fragmentation may strongly vary according to ecological requirements, shape, spatial configuration and connectivity of fragments, and the structure of the surrounding matrix. Bats are natural candidates for studies on forest fragmentation. However, the conclusions of such studies are often contradictory. We present the results of a study on the effects of forest fragmentation on bat communities in Alter do Chão, Santarém area, in Central Amazonia, Brazil, an area composed by forests and fragments surrounded by savanna-like vegetation. We compared the species composition between habitats, tested the effect of size, shape and density of trees of forested areas on the presence species and their relative frequency of captures, and investigated the savannas as an ecological barrier for the dispersion of bats. With an effort of 5678 mistnet-hours, we captured 3740 bats (64 species). Multidimensional Scaling indicated no strong separation between the habitats sampled, however, savanna sites were grouped distinctly of fragments and forest sites. Multiple linear regressions indicated no significant correlation between the number of bat species recorded and the size, shape or tree density in forest sites and fragments. There was a significant correlation between the number of captures and the variables tested, explained by the shape of the sites, but not by size or tree density. In general, sites with bigger shape indices had fewer captures. Ten of the 20 most captured species showed no significant difference between the three habitats. The bat communities in Alter do Chão were not strongly affected by forest fragmentation, and the savannas did not appear to act as an ecological barrier to bats.  相似文献   

13.
Forest fragmentation is a common disturbance affecting biological diversity, yet the impacts of fragmentation on many forest processes remain poorly understood. Forest restoration is likely to be more successful when it proceeds with an understanding of how native and exotic vertebrates utilize forest patches of different size. We used a system of forest fragments isolated by volcanic activity 153 years ago in Hawaii to examine how long-term fragmentation, as well as fragment size and structural features affect the richness of native and exotic bird species. The total number of bird species increased rapidly with forest fragment size, with most of the native species pool found in patches <3 ha. Smaller fragments were dominated by native bird species with several exotic bird species found only in the largest fragments, suggesting that exotic bird species in this landscape show greater area-sensitivity than native species. We used airborne scanning light detection and ranging (LiDAR) to assess whether fragment area was correlated with estimates of fragment vegetation volume as well as measures of tree height. Fragment area was highly correlated with vegetation volume, maximum tree height, and canopy height heterogeneity, and these variables were strong predictors of bird richness, demonstrating that remote sensing can provide key insights into the relationship between fragment structural attributes and biodiversity indicators. Overall, this work demonstrates the value of conserving small remnant mid-elevation forest patches for native birds in Hawaii. This work also provides insight into how newly created forest patches might be used by native and exotic bird species in Hawaii.  相似文献   

14.
Because agoutis (Dasyprocta sp.) and acouchies (Myoprocta sp.) are the most important dispersers of several large-seeded Amazonian trees, knowing their responses to forest fragmentation is essential and urgent. But until now, there was no study showing their population trends in Amazonian land forest fragments. The present study was conducted at the Biological Dynamics of Forest Fragments Project, Central Amazon, Brazil. Eleven sites (three fragments of 1 ha, three of 10 ha, two of 100 ha and three sites of continuous forest) were surveyed between 2003 and 2005. Agoutis and acouchies were systematically counted at each site through standard transect censuses and their densities were estimated with DISTANCE 4.1. Overall, I walked 100 km, and encountered 136 acouchies and 35 agoutis. Fragmentation had a significant negative effect on acouchies and a significant positive effect on agouti densities. Acouchy density was 0.64 ± 0.09 inds./ha in continuous forests and 0.07 ± 0.07 inds./ha in 1-ha fragments. On the other hand, agouti density was 0.16 ± 0.05 inds./ha in continuous forests and 0.71 ± 0.24 inds./ha in 1-ha fragments. This study is consistent with the idea that in fragments, larger species of mammals are initially less affected by forest fragmentation than smaller ones. More critical to conservation is the fact that acouchies, which were negatively affected by fragmentation, are restricted to the core region of the Amazonian rainforests. Continued fragmentation of Amazonian forests should have vast negative consequences for the genus.  相似文献   

15.
To evaluate edge effects on recruitment of the understory perennial herb Trillium camschatcense, spatial distribution and stage-class structure based on four life-history stages were investigated within a small forest fragment in eastern Hokkaido, Japan. Seedlings were most affected by edge effects. The density of seedlings was considerably lower in the forest edges than in the interiors and was higher on the northern side of the forest. Although three stages suffered edge and orientation effects, flowering plants experienced much more moderate edge effects than juvenile stages and showed relatively uniform distribution. The results suggest that the recruitment of juvenile stages was strongly limited near forest edges. Seedling density was correlated with microclimatic conditions, not with seed production. The edge and orientation effects on stage-class structures were also observed in two other small populations, emphasizing the role of edge-related decreases in seed germination and subsequent survival for limiting the recruitment of small, fragmented populations of T. camschatcense.  相似文献   

16.
Developing a predictive theory for species responses to habitat fragmentation is a large, complex challenge in conservation biology, and meeting this challenge likely requires tailoring predictions to specific habitats and taxa. We evaluate the effects of fragmentation on forest birds living in three distinct forest ecosystems found in Brazilian Atlantic forest: seasonal semi-deciduous forest (SF), mixed rain forest (MF), and dense rain forest (DF). We test the hypotheses that (1) bird species most prevalent in SF (relative to other habitat types) will be least vulnerable to population declines in fragmented SF, and (2) species with stronger affiliations with DF or MF will be relatively more sensitive to fragmentation in SF. Using an exploratory statistical technique called “Rank Occupancy–Abundance Profiles (ROAPs),” we compared distribution and abundance of birds among large “continuous” areas of each forest type, then compared abundances in continuous SF forests with patterns of abundance in small fragments of SF, where edge effects could play a marked role in population dynamics. Overall, 39 species showed substantially lower local abundance, occupancy, or both in SF fragments versus continuous SF. As predicted, a higher proportion of bird species associated with DF appeared sensitive to fragmentation in SF; by contrast, species most abundant in SF and MF were similarly abundant in fragmented SF. Our study demonstrates how quantifying distribution and abundance in diverse habitats may enhance managers’ ability to incorporate species-specific responses to human disturbances in their conservation plans, and points out ways that even small reserves may have significant conservation value.  相似文献   

17.
The biotic and abiotic changes associated with habitat fragmentation have been shown to have major consequences for plant recruitment and survivorship. However, few studies have quantified the growth of plants that persist in fragments. Over the course of a decade, we measured annual growth of 5200 individuals of the common understory herb Heliconiaacuminata (Heliconiaceae) in an experimentally fragmented Amazonian forest. We tested (A) whether annual growth rates were lower in fragments than in continuous forest, and (B) whether cumulative growth rates of plants that survived the entire period were lower in fragments. While mean annual growth rates were often lower in fragments, differences were not significant in any year. After 10 years, however, the cumulative effect was that plants in fragments were significantly smaller. This had a clear demographic consequence – plants in fragments produced fewer inflorescences than plants in continuous forest. Our results demonstrate that chronic reduced individual growth may be an important mechanism contributing to reduced population viability in fragmented forests, and that negative demographic consequences of fragmentation for plants can take years to manifest themselves.  相似文献   

18.
Using the abundance and distribution of small mammals at 26 sites in an Atlantic forest landscape, we investigated how species abundance and alpha and beta diversity are affected by fragment size and the presence of corridors. To account for the variability in forest structure among fragments, we described and minimized the influence of foliage density and stratification on small mammal data. Sites were distributed among three categories of fragment size and in continuous forest. For small and medium-sized categories, we considered isolated fragments and fragments connected by corridors to larger remnants. Small mammal abundance and alpha and beta diversity were regressed against site scores from the first axis of a Principal Component Analysis on forest structure variables. Residuals were used in analyses of variance to compare fragment size and connectivity categories. Forest structure influenced total abundance and abundance of some species individually, but not the diversity of small mammal communities. Total abundance and alpha diversity were lower in small and medium-sized fragments than in large fragments and continuous forest, and in isolated compared to connected fragments. Three species were less common, but none was more abundant in smaller fragments. At least one species was more abundant in connected compared to isolated fragments. Beta diversity showed an opposite relationship to fragment size and corridors, increasing in small and isolated fragments. Results highlight the importance of secondary forest for the conservation of tropical fauna, the hyper-dynamism of small isolated fragments and the potential of corridors to buffer habitat fragmentation effects in tropical landscapes.  相似文献   

19.
In this study we compared ground beetles (Carabidae) from a range of different forest fragments along an urbanization gradient in Brussels, Belgium. We address the following questions: (i) How does the degree of urbanization in the surrounding habitat affect forest beetles, and does it interact with the effects of patch size and distance to forest edge? (ii) Do these factors have a different effect at the level of individual species, habitat affinity groups or total community? During 2002 we sampled 13 forest plots in 10 forest patches, ranging in size from 5.27 to 4383 ha. The beetles were captured using transects of pitfall traps from the edge to a distance of 100 m into each woodland and identified to species level. Effects of urbanization, forest size and forest edge were evaluated on total species number, abundance and habitat affinity groups and ten abundant, widespread model carabid species. Overall, the effects of urbanization, forest size and edge effects slightly influenced total species richness and abundance but appeared to have a major effect on ground beetle assemblages through species specific responses. More urbanized sites had significantly fewer forest specialists and more generalist species. Large forest fragments were favoured by forest specialist species while generalist species and species frequently associated with forest (forest generalists) dominated the smaller forests. Forest edges mainly harboured generalist species while forest specialist species were more frequent into the forests if the forest patches were large enough, otherwise they disappeared due to the destruction or impoverishment of their habitat. Our results show the importance of differentiating between habitat affinity, especially habitat generalists versus specialists, the latter having a higher value in nature conservation, and merely the quantity of species represented in human-dominated areas.  相似文献   

20.
We combine mist-net data from 24 disturbance treatments taken from seven studies on the responses of understorey Amazonian birds to selective logging, single and recurrent wildfires, and habitat fragmentation. The different disturbance treatments had distinct effects on avian guild structure, and fire disturbance and the isolation of forest patches resulted in bird communities that were most divergent from those in continuous, undisturbed forest in terms of their species composition. Although low-intensity logging treatments had the least noticeable effects, the composition of understorey birds was still markedly different from the composition in undisturbed forest. This analysis demonstrates the importance of preventing habitat fragmentation and the spread of fires in humid tropical forests, and highlights the need for more research to determine the long-term suitability of large areas of degraded forest for forest birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号