首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
While urban areas are increasingly recognized as having potential value for biodiversity conservation, the relationship between biodiversity and the structure and configuration of the urban landscape is poorly understood. In this study we surveyed birds in 39 remnant patches of native vegetation of various sizes (range 1-107 ha) embedded in the suburban matrix in Melbourne, Australia. The total richness of species within remnants was strongly associated with the size of remnants. Remnant-reliant species displayed a much stronger response to remnant area than matrix-tolerant species indicating the importance of large remnants in maintaining representative bird assemblages. Large remnants are important for other ecological groups of species including migratory species, ground foraging birds and canopy foraging birds. Other landscape (e.g. amount of riparian vegetation) and structural components (e.g. shrub cover) of remnants have a lesser role in determining the richness of individual remnants. This research provides conservation managers and planners with a hierarchical process to reserve design and management in order to conserve the highest richness of native species within urban areas. First of all, conservation efforts should preferentially focus on the retention of larger remnants of native vegetation. Second, where possible, riparian vegetation should be included within reserves or, where it is already present, should be carefully managed to ensure its integrity. Third, efforts should be focused at maintaining appropriate habitat and vegetation structure and complexity.  相似文献   

2.
With recent emphasis on sustainable agriculture, conservation of native biota within agricultural systems has become a priority. Remnant trees have been hypothesized to increase biological diversity in agro-ecosystems. We investigated how remnant Oregon white oak (Quercus garryana) trees contribute to conserving bird diversity in the agro-ecosystem of the Willamette Valley, Oregon, USA. We compared bird use of isolated oak trees in three landscape contexts - croplands, pastures, and oak savanna reserves - and ranked the relative importance of four factors thought to influence bird use of individual trees: (i) tree architecture; (ii) tree isolation; (iii) tree cover in the surrounding landscape; and (iv) landscape context, defined as the surrounding land use. We evaluated species-specific responses and four community-level responses: (i) total species richness; (ii) richness of oak savanna-associates; (iii) tree forager richness; and (iv) aerial and ground forager richness. We documented 47 species using remnant oaks, including 16 species typically occurring in oak savanna. Surprisingly, landscape context was unimportant in predicting frequency of use of individual trees. Tree architecture, in particular tree size, and tree cover in the surrounding landscape were the best predictors of bird use of remnant trees. Our findings demonstrate that individual remnant trees contribute to landscape-level conservation of bird diversity, acting as keystone habitat structures by providing critical resources for species that could not persist in otherwise treeless agricultural fields. Because remnant trees are rarely retained in contemporary agricultural landscapes in the United States, retention of existing trees and recruitment of replacement trees will contribute to regional conservation goals.  相似文献   

3.
The effects of grazing on the richness of understorey plant communities are predicted to vary along gradients of resources and tree cover. In temperate Australia livestock management has involved phosphorus addition and tree removal but little research has examined how the effects of grazing on plant species richness may vary with these management regimes. Patterns of understorey plant species richness were examined in 519, 0.09 ha quadrats in grazed pastures and remnant grassy forests and woodlands in southern Australia. Sheep grazing was the primary land use and sites varied widely in grazing frequency and density, tree cover and phosphorus fertiliser history. Using an information theoretic approach the available data provides strong evidence that the effect of grazing on total species richness varies according to available phosphorus and tree cover. Intermittent grazing and no grazing were associated with high total and native plant richness, but only at low phosphorus concentrations. Phosphorus was strongly negatively correlated with richness, particularly at low grazing frequency. Total species richness was positively correlated with tree cover except under frequent grazing at high stocking rates, suggesting that heavy grazing eliminates spatial and temporal heterogeneity imposed by trees. Native plant species richness was negatively correlated with a history of cultivation, positively correlated with tree cover and varied according to landscape position and geological substrate. Frequent high density grazing, particularly when associated with clearing, cultivation and fertiliser addition, was associated with the persistence of very few native plant species. In contrast, the richness of exotic plant species was relatively invariant and performance of the best model was low. While several studies have highlighted the importance of the grazed and cleared matrix for the conservation of native plant species, this benefit may be limited in landscapes where intensive grazing management systems dominate. Strong evidence for interactions between grazing, phosphorus and tree cover suggest that failure to consider other land use practices associated with grazing management systems could lead to erroneous conclusions regarding vegetation responses to livestock grazing.  相似文献   

4.
In south-eastern Australia large-scale re-establishment of woody vegetation is required to halt loss of biodiversity, land degradation and dryland salinisation. Revegetation is often undertaken via intensive replanting by tube-stock or seed although such methods are costly and can have limited biodiversity benefits. Regeneration from naturally dispersed seed is an alternative and cost-effective method of revegetation. Describing the relationships between broad-scale patterns of natural regeneration, landscape characteristics, climate and current and historical land use could assist in the development of regional revegetation strategies. In this paper we describe the results of a survey of eucalypt regeneration across 519 sites in grassy dry forests and grassy woodlands of central Victoria, Australia. Eucalypt regeneration was observed in 27% of all sites. The probability of eucalypt regeneration was reduced by intensive past land use (cultivation), regular livestock grazing, increasing distance to remnant trees and high cover of exotic annual vegetation. Even when these factors were taken into account, public land was predicted to have higher probabilities of supporting regeneration suggesting that a long-history of agriculture can limit future recruitment even when grazing is removed. Although the highest probability of regeneration was observed in ungrazed sites, regeneration also occurred under intermittent grazing regimes. Natural regeneration has potential to make considerable contributions to future tree cover in these landscapes. Scenario testing at three farms suggests that under current patterns of tree cover (2.7%), 40% of the total area has a high probability of supporting natural regeneration in the absence of livestock grazing. However, due to paddock tree decline this could be reduced to 18% of total farm area if no management action is taken in the next 30 years.  相似文献   

5.
We examined data on bird and reptile assemblages in a plantation landscape in southern New South Wales, south-eastern Australia, for evidence of threshold responses to the amount of native eucalypt vegetation in circular areas of 2000 and/or 1000 m around field survey sites. These circular areas contained varying proportions of native Eucalyptus and exotic radiata pine Pinus radiata forest thereby providing a basis for examining potential threshold effects in relation to the area of native vegetation cover. For bird species richness or the probability of detection of individual bird species we found no empirical evidence of a threshold response to the area of native vegetation cover, or any other potential explanatory variables. All relationships were characterised by considerable variability in the response data. “Broken-stick” relationships which involved sudden change points did not fit the response data better than smooth relationships obtained from generalised additive or linear models. As with birds, there was no evidence that a threshold model between lizard richness and the amount of native vegetation within 1000 m described the relationship any better than a smooth, continuous or other type of relationship. Several related factors may explain our results. An important one is that species-specific responses to landscape conditions mean that marked thresholds will not be seen for an aggregate measure like species richness at a given value for a given landscape variable. Another is that factors other than the amount of native vegetation may significantly influence underlying patterns of species occurrence. This highlights a need to be aware of the potential effects of various ecological processes, even when a substantial amount of native vegetation cover remains.Our findings do not rule out the possibility of the existence of threshold relationships. However, irrespective of the choice of measure of predictor variable (e.g., the amount of native vegetation cover), it will often be difficult to detect and estimate threshold responses due to high inherent variability - a characteristic of the vast majority of ecological datasets. Furthermore, even if it is possible to estimate functional (threshold) forms and although they might be useful from an explanatory perspective, in most instances they are likely to be of limited value in a predictive sense. This calls into question the practical significance of the threshold concept.  相似文献   

6.
To guide tree planting for restoration in southern Australia bats were sampled in revegetation from a wide variety of shapes, sizes, age and isolation. Young and old age-classes were sampled and these were stratified by size and shape. Where possible, revegetated categories were compared to remnant native vegetation with the same patch sizes, as well as very large remnants (>1000 ha) and grazed paddocks. In total 120 sites were surveyed, with 10 replicates in each stratum. All bat species used revegetation sites, often with high activity (passes/night) levels. However, activity and species richness in revegetation was not greater than that recorded in the paddock matrix and activity in revegetation was less than a third of that recorded in remnants. Old, large plantings were an exception, recording twice the activity of paddocks, indicating that this was the only revegetation treatment that was used by bats more frequently than paddocks. The tree stand structure of old plantings was usually patchy, including the presence of gaps induced by drought and grazing associated mortality. Bats were generally insensitive to the effects of patch size and shape as well as the amount of remnant vegetation in the landscape. A negative relationship with understorey cover (including eucalypts if <5 m high) was the most consistent predictor of total activity and species richness. The avoidance of clutter by many species of bats suggests that efforts to restore woodland communities should use lower stem densities. Improvements to revegetation programs to benefit bats are recommended and more broad-based studies that consider the varied requirements of a diverse fauna are encouraged.  相似文献   

7.
Reference conditions remain widely used as a benchmark for ecosystem management, but there remains conjecture about the definition of the reference state. Many techniques used to predict reference conditions are difficult to apply operationally because they are resource-intensive, subjective, or applicable for a limited suite of environmental variables or over a narrow range of environmental variation. We defined the reference state as variation in native vegetation exhibiting relatively little evidence of modification by humans since European settlement. Using data from 462 sites supporting native vegetation in a fragmented landscape in south-eastern Australia, we demonstrated a relatively quick and cost-effective way of objectively predicting reference conditions for various surrogates of biodiversity. We predicted reference values for several variables that are used as biodiversity surrogates (i.e., tree densities by diameter class, trees with hollows, tree regeneration, trees with mistletoe, fallen timber, vegetation cover by vertical stratum, litter cover, cryptogam cover and native plant species richness) using generalized additive models (GAMs) fitted with predictors representing measures of human modification since European settlement (exotic plant cover, number of stumps, evidence of firewood collection, evidence of rabbits, evidence of recent grazing by stock, surrounding land use) and measures of environmental variation (floristic composition, mean annual precipitation, mean annual temperature, solar insolation, aspect, slope). Reference values for each response variable were predicted from these models by holding the significant explanatory variables representing modification since European settlement at their minimum observed values, that is, our definition of the reference state. We demonstrated the importance of independently evaluating predictions of this type using generic ecological models and estimates of reference conditions derived from other sources.  相似文献   

8.
Relationships between fire history, vegetation structure and composition, and invasion by introduced plant species have received limited attention in Australian woodlands. A study in a Mediterranean, fire adapted urban Banksia woodland remnant in the biodiversity hotspot of southwest Australia investigated: (1) Have significant changes occurred in the woodland tree canopy between 1963 and 2000? (2) Do correlations exist between fire frequency and canopy cover? (3) If there is a difference in the vegetation composition of Banksia woodland invaded by the South African Ehrharta calycina (PCe) and Pelargonium capitatum (PCp) compared to largely intact remnants (GC)? and (4) Do correlations exist between vegetation condition, composition, fire frequency and invasion? Aerial photography, processed in a Geographical Information System, was used to establish fire history and changes in canopy cover over time (1963–2000). PCe and PCp sites experienced the greatest number of fires, with a net reduction in canopy cover in all areas experiencing four or more fires (60% of all woodlands). Frequent fire corresponded with a decline in native cover, richness and diversity, a shift from native to introduced species, changes in the relative importance of fire response categories, and loss of native resprouting shrub cover. Life forms of introduced species, which included no trees, shrubs and perennial sedges, contrasted strongly with those of native species, which had poor representation of annual and perennial grasses. Clear ecological and conservation consequences due to the loss of species diversity, changes in fire ecology and invasion have occurred in the Banksia woodlands. This study provides an understanding of the invasion process, enhancing conservation knowledge to improve the adaptive management of the key threatening process of invasion in biodiverse communities.  相似文献   

9.
In south-eastern Australia, strips of planted native trees and shrubs (shelterbelts) are frequently established to restore ecosystem services altered by agriculture. Despite their wide use, little is known about the effects of establishing shelterbelts on soil macro invertebrates, especially earthworms, which are of major importance in soil processes. We assessed earthworm composition, diversity and biomass in three land use systems: native shelterbelts dominated by Acacia and Eucalyptus species, agricultural pastures and native remnant woodland fragments dominated by Eucalyptus blakelyi and/or Eucalyptus melliodora. Earthworm communities differed significantly among systems, with abundance, biomass and diversity greatest under pasture. Within shelterbelts we saw a shift from high earthworm biomass and density to low with increasing time after establishment. Soil edaphic variables did not correlate strongly with earthworm biomass or density, but were correlated with earthworm community composition. Overall the introduction of native woody vegetation was associated with a decline in density and biomass of earthworms, including a decrease in the relative abundance of exotic species. As such shelterbelts can be used to promote native earthworm relative abundance, which may be important for local diversity, soil function and landscape connectivity.  相似文献   

10.
Habitat remnants on urban green-space areas (i.e. parks, gardens and golf courses) sometimes provide refuge to urban-avoiding wildlife, leading some to suggest these areas may play a role in wildlife conservation if they are appropriately designed and managed. The high densities observed on some green-space areas may however be attributed to external influences. Localised efforts to enhance the habitat value of urban green-space areas may therefore have little more than a cosmetic effect. This study investigated environmental factors influencing bird, reptile, mammal and amphibian diversity on Australian golf courses to assess the efficacy of small-scale conservation efforts. Abundance and species richness did not simply reflect local habitat qualities but were instead, partly determined by the nature of the surrounding landscape (i.e. the area of adjacent built land, native vegetation and the number of connecting streams). Vertebrate abundance and species richness were however, also associated with on-site habitat characteristics, increasing with the area of native vegetation (all vertebrates), foliage height diversity and native grass cover (birds), tree density, native grass cover and the number of hollows (mammals), woody debris, patch width and canopy cover (reptiles), waterbody heterogeneity and aquatic vegetation complexity (frogs). Localised conservation efforts on small land types can benefit urban-avoiding wildlife. Urban green-space areas can provide refuge to urban-avoiding vertebrates provided combined efforts are made at patch (management), local (design) and landscape (planning) scales.  相似文献   

11.
Rangeland rehabilitation has multiple, sometimes conflicting goals, such as the reestablishment of the predisturbance vegetation, soil protection, and forage production. The rehabilitation techniques should be also cost‐effective and practicable. Given the difficulties and high costs of restoring Succulent Karoo rangelands and the continuously high grazing pressure in the communal lands, tradeoffs should be accepted in the achievement of these goals. We tested the capability of paddock manure redistribution to reverse degradation trends in a heavily grazed Succulent Karoo rangeland in South Africa. Over 3 years, the effects of the manure application were compared with areas planted with mature shrubs as a benchmark for a predisturbance vegetation structure and with four popular rehabilitation techniques: (1) livestock exclusion; (2) brushpacking (coverage of dead shrubs); (3) mineral fertilizing; and (4) microcatchment construction. Manure was, besides planting, the only treatment that resulted in a significant increase in drought‐resistant vegetation cover, but it compromised the dominance of native vegetation. In the manure plots, a pasture‐like vegetation of non‐native forage plants (which germinated mainly from seeds in the dung), developed (foremost Atriplex semibaccata). Manure application counteracted erosion as effectively as the planted shrubs and brushpacks. Expected negative side effects such as a decrease in plant species richness or salinization of topsoil were not detected. We also checked the potential of topsoil salinization by the halophytic A. semibaccata and found it to be low. For sites where a decrease in grazing pressure is unrealistic under current land tenure, redistribution of manure should be further explored to mitigate acute symptoms of degradation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Agricultural landuse alters landscape pattern, with important consequences for native species. Complex responses to changes in landscape pattern may be observed for species with strong inter-specific relationships. We investigate how the abundance of an ecologically important food resource, the grey mistletoe (Amyema quandang), is influenced by the interactive influences of human-modified landscape pattern, bird disperser abundance and host condition. Mistletoe abundance was estimated in brigalow (Acacia harpophylla) dominated remnants in three separate study areas with differing landscape patterns. Negative binomial generalised linear models of mistletoe abundance were tested with combinations of seven explanatory variables: study area, landscape connectivity and edge contrast, patch shape, bird disperser abundance, brigalow foliage cover and basal area of standing dead trees. Ranking of model averaged parameter estimates showed that study area, bird disperser abundance, patch shape, dead trees and connectivity had the strongest influence on A. quandang abundance. Mistletoe abundance apparently increased with landscape modification, particularly in narrow linear patches, but may be limited by the availability of seed dispersers and host condition. Given high landscape modification and ongoing degradation, management should be targeted towards maintaining brigalow remnant condition to ensure bird and mistletoe populations can be supported in the long-term.  相似文献   

13.
Remnants of native vegetation in regions dominated by agriculture are subject to degradation, especially by livestock grazing and weed invasion. Ground-foraging birds are amongst the most threatened bird groups in Australia, and these agents of degradation might be contributing to their decline by causing a reduction in food availability. We studied the foraging behaviour and microhabitat use of seven species of ground-foraging insectivores in south-eastern Australian buloke woodland remnants with native, grazed and weedy ground-layers. If birds must resort to using more energetically expensive prey-attack manoeuvres, or selectively use substrates and microhabitats that are less available in degraded habitats, then such degradation is likely to be negatively impacting on these species. We found evidence of a negative impact of one or both of these types of degradation on five of the seven bird species. Three species that employ a range of foraging manoeuvres to attack prey used potentially more energetically expensive aerial manoeuvres significantly more frequently in weedy remnants than in remnants with a native or grazed ground layer. Red-capped robins Petroica goodenovii and brown treecreepers Climacteris picumnus both selectively foraged near trees in grazed sites, and hooded robins Melanodryas cucullata, red-capped robins and willie wagtails Rhipidura leucophrys avoided foraging in microhabitats with a high percentage cover of exotic grasses in weedy sites. Brown treecreepers were also less likely to be present in weedy sites that had been protected from grazing than in either grazed or native sites. These results suggest that although grazing appears to have a detrimental impact on foraging habitat of ground-foraging birds, the exclusion of livestock grazing from previously disturbed buloke remnants alone is not adequate to restore habitat values for ground-foraging birds. A conservation strategy for this habitat type should consider the exclusion of heavy grazing from sites with an intact cryptogamic crust and the management of weeds in disturbed remnants, potentially through the use of carefully controlled light grazing.  相似文献   

14.
The global trend toward more intensive forms of agriculture is changing the nature of matrix habitat in agricultural areas. Removal of components of matrix habitat can affect native biota at the paddock and the landscape scale, particularly where intensification occurs over large areas. We identify the loss of paddock trees due to the proliferation of centre pivot irrigation in dryland farming areas as a potentially serious threat to the remnant biota of these areas. We used a region of south-eastern Australia as a case study to quantify land use change from grazing and dryland cropping to centre pivot irrigation over a 23-year period. We also estimated rates of paddock tree loss in 5 representative landscapes within the region over the same period. The total area affected by centre pivots increased from 0 ha in 1980 to nearly 9000 ha by 2005. Pivots were more likely to be established in areas which had originally been plains savannah and woodlands containing buloke (Allocasuarina luehmannii), a food source for an endangered bird. On average, 42% of paddock buloke trees present in 1982 were lost by 2005. In the two landscapes containing several centre pivots, the loss was 54% and 70%. This accelerated loss of important components of matrix habitat is likely to result in species declines and local extinctions. We recommend that measures to alleviate the likely negative impacts of matrix habitat loss on native biota be considered as part of regional planning strategies.  相似文献   

15.
We analyze the impact of grazing on dung beetle diversity at the Barranca de Metztitlán Biosphere Reserve, a xeric ecosystem in central Mexico with a long history of use by humans. We compared the community structure, as well as the alpha and beta diversity between two cover conditions (open and closed vegetation) that represent the impact of grazing within a habitat, and between habitat types (submountainous and crassicaule scrublands). From 576 samples we collected 75,605 dung beetles belonging to 20 taxa. While mean species richness and diversity were different between habitat types, cumulative species richness was not. The effects of grazing on vegetation structure influenced the cumulative species richness and diversity of dung beetles in the submountainous scrubland, where grazing has created land mosaics of a grassland matrix with scrubland patches. This was not the case in the crassicaule scrubland where the impact of grazing is not as evident. Beta diversity significantly responds to the effects of grazing on habitat conditions. We discuss the ecological factors that may promote these responses by landscape diversity components. We also identify the species that could act as useful indicators to monitor the effect of land management on biodiversity. Our results indicate cattle farming maintains a diversified land mosaic, and these areas support more diverse dung beetle ensembles than homogeneous areas of closed, shrubby vegetation cover. Thus, controlled grazing activity could certainly favour the conservation of dung beetle biodiversity and improve ecosystem functioning by maintaining dung decomposition rates.  相似文献   

16.
Pollination has received attention recently due to reported sharp declines of Apis mellifera in several locations, and it has been proposed that diverse native bee communities may be key for continued pollination of economically important crops. However, there is some inconsistency in the literature as to how these communities should best be managed. To address this issue, we collected bees from an intensively managed agricultural region in eastern Australia using blue vane traps. Both linear remnants of vegetation, which form part of a larger corridor network, and adjacent fields of native and exotic pastures, wheat, canola, and lucerne were sampled. A total of 3249 individual bees, representing four families and 36 species were collected. Highly modified environments of nectar-bearing crop supported the most species-rich bee assemblages, and the highest abundance of individual bee species. Distance from the remnants did not limit the body size of species occupying fields (up to 400 m). However, richness of bee assemblages also responded positively to the presence of conservation land in nearby areas, or the number of remnant native trees surrounding traps. Linear remnants of native vegetation contributed to assemblage heterogeneity by adding unique species to the regional pool. Our findings indicate that agricultural industries that currently rely on pollination by A. mellifera should ensure that intensive land use is complemented by untilled areas in the form of conservation land, or farm dams and scattered trees in fields, to support wild pollinators that may act as insurance against further future losses of managed hives.  相似文献   

17.
Remnant forest strips are frequently proposed as valuable conservation tools in fragmented tropical landscapes, yet we currently lack evidence to evaluate their potential conservation value for native biota. We examined the potential value for understorey forest birds of 30-year-old riparian and terra firme (unflooded) primary forest strips within a large silvicultural landscape in the north-east Brazilian Amazon, where the matrix is dominated by Eucalyptus plantations. We conducted mist-netting in eight forest strips connected to continuous forest (four of each forest type), with a total of 24 replicate sampling sites located near to (<1 km), far from (2.5-9 km), and within undisturbed forest controls (i.e. 16 samples within the strips, and 8 in controls). Bird communities in both strip types changed with increasing distance along forest remnants into the plantation matrix. Matrix-embedded samples were characterised by a higher representation of birds typical of secondary growth forest but not those typical of the Eucalyptus-dominated matrix. While the long-term viability of the bird populations in these remnants remains unclear, our data demonstrate that forest strips can provide important habitat for many bird species that are otherwise rarely found outside primary forest. Forest strips therefore provide an important tool to enhance biodiversity conservation in plantation landscapes. The relative practical ease with which these areas can be selected and maintained means that the protection of forest strips as part of a wider conservation strategy is likely to have particular appeal to policy makers and landscape managers working in the human-dominated tropics.  相似文献   

18.
Gully erosion plays an important role in degradation processes of Mediterranean environments. In this paper aerial orthophotographs were used for (i) analysing the evolution of a valley bottom gully and its relation with land use and vegetation cover, (ii) exploring the role of land use and vegetation cover on the coefficients of the equation S = aA −b (where S is slope at the headcut and A is drainage area), which is based on the topographical threshold concept and is commonly used to predict gully initiation. The study was carried out in a small catchment (99·5 ha) located in the southwest of the Iberian Peninsula. Gullies and headcuts were mapped together with land use and vegetation cover using aerial photographs for the years 1945, 1956, 1989, 1998, 2002 and 2006, which had to be digitized and orthorectified in advance. The results showed an increase of the area affected by gullying from 695 m2 in 1945–1009 m2 in 2006, reaching a maximum of 1560 m2 in 1956. Gullying was closely related with land use, especially with the amount of cultivated areas within the catchment and also with grazing intensity. No clear relationship was found between the evolution of the gullied area and rainfall amounts. Finally, the values of the exponent b obtained for different headcuts and different dates (close to 0·4) were similar to those proposed by other authors for gully erosion caused by Hortonian overland flow in semiarid environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
20.
Eucalyptus plantations have become increasingly common in Latin America. However, because Eucalyptus is an exotic species, its presence has raised concerns about changes in the environment, especially to soil properties. The objective of this study was to investigate possible changes in selected soil enzyme activity after several years of Eucalyptus cultivation. Soil samples were collected from four locations: a native forest (Atlantic Forest) used as a reference for the original soil conditions and three E. grandis plantations aged 2, 3 and 5 years, established in 2008, 2007 and 2005, respectively. The native vegetation had been removed and the soil graded and ploughed to establish these plantations. We evaluated soil enzymatic activities (β‐glucosidase, acid phosphatase, dehydrogenase, urease and arylsulfatase) at each location. The activity of β‐glucosidase, phosphatase, dehydrogenase and urease was improved after 5 years, whereas arylsulphatase was impacted negatively. The multivariate analysis showed that the majority of enzyme activities reached the values observed in native forest after the third year of reforestation. The activity of β‐glucosidase was crucial in differentiating the area with 2 years of reforestation from the native forest. The removal of native vegetation in order to establish commercial plantations raises concerns about the real impacts of this practice on the soil. In the present study, plantations of Eucalyptus improved most of the selected enzyme activities after the third year of reforestation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号