共查询到20条相似文献,搜索用时 0 毫秒
1.
黄土高原不同种植年限苜蓿地土壤温室气体排放特征 总被引:1,自引:0,他引:1
《草业科学》2020,(1)
紫花苜蓿(Medicago sativa)作为黄土高原退耕还林主要草种,其种植面积日益扩大。本研究依托布设在黄土高原雨养农业区不同种植年限的苜蓿栽培试验,分析不同种植年限苜蓿草地(14、12、5 a)土壤温室气体(CO_2、N_2O和CH_4)排放特征的影响,同时从土壤温度、含水量及酶活性的角度探究不同种植年限苜蓿对以上温室气体的影响机制。结果表明,黄土高原苜蓿地为CO_2和N_2O的排放源,CH_4的吸收汇;在测定期内CO_2排放速率表现为6月最高,1月最低;N_2O排放速率表现为7月最高,12月最低;CH_4吸收速率表现为7月最高,3月最低。CO_2累计排放量表现为5 a 14 a 12 a,5 a苜蓿地较12 a苜蓿地和14 a苜蓿地分别显著增加16.60%、13.01%(P 0.05);N_2O累计排放量表现为14 a 12 a 5 a,不同处理间差异不显著(P 0.05);CH_4累计吸收量表现为5 a 12 a 14 a,各处理间差异显著。分析综合增温潜势发现5 a苜蓿地增温潜势显著高于12 a和14 a苜蓿地。逐步回归分析表明,CO_2排放通量主要影响因素为土壤温度和水分(R~2=0.870),N_2O排放通量主要影响因素为土壤温度(R~2=0.930),CH_4排放通量主要影响因素为土壤温度和脲酶含量(R~2=0.962)。 相似文献
2.
不同种植年限苜蓿地土壤理化性状 总被引:2,自引:0,他引:2
本研究分析了半干旱区不同种植年限苜蓿(Medicago sativa)地土壤理化性状。结果表明,随着苜蓿种植年限的增加,0-100 cm土层土壤容重出现不规律的波动,苜蓿地土壤容重值整体偏大;土壤有机质随种植年限的增加而增大,随土层深度增加而显著减小(P<0.01),并且在种植5年的苜蓿地中提高最明显,在种植8年的苜蓿地中最低。各年限苜蓿地均表现出土壤有机质的“表聚性”。在一定的种植年限范围内,种植苜蓿对土壤有机质具有累积作用;土壤全氮含量随苜蓿种植年限的增长表现为先增大后减小的趋势,随土层深度的加深而逐渐减小,种植苜蓿4年时土壤全氮含量最大,8年时苜蓿地土壤全氮含量最低,并且土壤全氮含量主要集中于0-40 cm土层,全氮显著累积作用于表层土壤;土壤硝态氮随着苜蓿种植年限的增加而先增加后减小,随着土层的加深而逐渐降低,表层土壤对土壤硝态氮有累积作用,并且与苜蓿种植时间长短有显著相关性(P<0.05)。而铵态氮含量在剖面上变化不大,与苜蓿生长年限没有显著相关性(P>0.05)。今后需从栽培苜蓿草地的管理措施上深入探讨栽培苜蓿地的最佳种植和利用年限。 相似文献
3.
4.
不同种植年限紫花苜蓿田土壤理化性质和酶活性研究 总被引:1,自引:0,他引:1
为了帮助苜蓿田经营者判断处于潜在退化危险的土地,给出潜在问题和潜在机遇的早期预警,试验对松嫩平原紫花苜蓿田土壤酶活性、土壤理化性质的动态变化进行初步评价。结果表明:在松嫩平原西部干旱地区,不同种植年限紫花苜蓿田土壤理化性质在紫花苜蓿种植第9年时是个转折点,其中土壤p H值、全磷含量、全钾含量、速效磷含量随种植年限的增加呈先升后降的趋势,其中全磷和速效磷高峰值在第6年出现,p H值和全钾均在第9年达到最高,但是全钾在第6年和第9年间差异不显著(P0.05),之后趋于平稳;土壤含水量、全碳含量、全氮含量、速效氮含量、速效钾含量随年份的延长整体呈先降后升的趋势,并且均在9年时达到最低,与其他各年份差异显著(P0.05)。纤维素酶活性与可溶性氮含量呈极显著正相关(P0.01),而与其他理化性质不相关;转化酶与各理化性质均不相关;脲酶活性与全碳含量和速效氮含量呈极显著正相关(P0.01),与全钾呈显著负相关(P0.05);过氧化氢酶活性与土壤p H值呈显著负相关(P0.05),与全磷呈显著正相关(P0.05)。说明在松嫩平原西部干旱地区紫花苜蓿种植9年时可作为评价紫花苜蓿潜在退化的临界时期。 相似文献
5.
球囊霉素相关土壤蛋白(GRSP)是丛枝菌根真菌(AMF)分泌的一种糖蛋白,有利于土壤团聚体形成。本研究借助于黄土高原半干旱区的长期定位试验,以不同建植年限(L2019、L2012、L2003)紫花苜蓿(Medicago sativa)草地为研究对象,玉米(Zea mays)田为对照,研究GRSP含量的主要调控因子及其与土壤有机碳和团聚体结构特征的关系。结果表明,随苜蓿种植年限增加,AMF丰度(侵染率、菌丝密度)和GRSP含量显著提高(P <0.05),线性回归分析结果表明,总提取球囊霉素相关土壤蛋白(T-GRSP)含量与土壤有机碳和微生物生物量碳之间显著正相关(P <0.05),而易提取球囊霉素相关土壤蛋白(EE-GRSP)和总提取球囊霉素土壤蛋白含量均与水稳性团粒特征平均重量直径(MWD)和大于0.25 mm的团聚体含量(R0.25)之间显著正相关(P <0.05),冗余分析(RDA)结果表明,影响土壤AMF丰度和GRSP含量的主要环境因子是土壤速效磷(P=0.002)和微生物量... 相似文献
6.
黄土高原不同粮草种植模式土壤碳氮及土壤酶活性 总被引:3,自引:0,他引:3
通过在陇中黄土高原半干旱区对苜蓿(Medicago sativa)-作物轮作地进行长期定位试验,探讨不同种植模式对土壤碳氮形态及其相关酶活性的影响。6种种植模式分别为苜蓿-苜蓿、苜蓿-休闲、苜蓿-小麦(Triticum aestivum)、苜蓿-玉米(Zea mays)、苜蓿-马铃薯(Solanum tuberosum)和苜蓿-谷子(Setaria italica)。结果表明,苜蓿-作物种植模式不利于土壤总有机碳的积累,而苜蓿翻耕后保持休闲则可维持较高的有机碳含量;与苜蓿连作相比,苜蓿-作物种植模式的土壤有机碳降低了1.60%~23.11%,全氮含量增加了3.81%~21.83%。不同作物对土壤养分吸收利用状况不同,进而引起土壤酶发生变化。与苜蓿连作相比,苜蓿粮食作物种植模式在降低土壤过氧化氢酶和蛋白酶活性的同时,提高了土壤硝酸还原酶活性;其中土壤过氧化氢酶活性和蛋白酶活性分别降低了5.20%~12.30%和15.03%~43.43%,硝酸还原酶活性提高了1.26%~28.79%。苜蓿连作和苜蓿-粮食作物种植模式间的土壤脲酶活性无显著差异(P0.05),但均高于苜蓿-休闲处理。相关性分析结果表明,土壤脲酶活性与土壤有机碳、全氮含量呈显著正相关(P0.05),可作为衡量土壤肥力的指标。 相似文献
7.
不同生长年限啤酒花土壤酶活性的研究 总被引:1,自引:0,他引:1
通过田间采样和室内分析测试相结合的方法,研究啤酒花不同生长年限对土壤过氧化氢酶、脲酶、中性磷酸酶和多酚氧化酶活性的影响。结果表明,根际土壤过氧化氢酶、脲酶和中性磷酸酶活性均显著高于非根际,而多酚氧化酶活性明显低于非根际。随啤酒花植龄延长,过氧化氢酶活性显著降低,脲酶活性显著升高,而中性磷酸酶和多酚氧化酶的活性先升高后降低。与5年植龄的相比,植龄为8,18,20和22年的根际土壤过氧化氢酶活性分别降低14.80%,24.34%,23.03%和22.04%,差异均显著;脲酶活性分别提高3.96%,30.35%,80.99%和106.33%,除8年外,差异均达显著水平。通过对产量和α-酸含量的分析表明,植龄为18和20年时啤酒花产量最高,与其他植龄差异显著;α-酸含量在植龄为5和8年时最高,与其他植龄间差异显著。 相似文献
8.
黄土高原不同种植年限苜蓿草地土壤与植物化学计量特征 总被引:4,自引:0,他引:4
为探讨植被种植过程中土壤–植被生态系统养分动态变化规律,本研究以黄土高原多年生紫花苜蓿(Medicago sativa)为研究对象,分析了不同生长年限(种植1、10、20和30年)苜蓿草地土壤与植物养分含量变化及生态化学计量学特征。结果显示,1)土壤有机C和全N含量随种植年限的增加呈先增大后减小的趋势;在0–200 cm土层中,土壤C和N的垂直分布具有一致性,含量随着土层的加深而逐渐减少,并在30 cm以下基本保持稳定;土壤P的含量随着土层的加深基本保持稳定;土壤C∶N,C∶P和N∶P均随苜蓿种植年限的增长呈先增加后减少的趋势,种植10年达到最大值。2)苜蓿叶片C、N、P含量的变化规律与土壤养分变化规律相似,种植10年达到最大值;叶片C∶N、C∶P、N∶P随种植年限的增加均先下降后回升。3)土壤化学计量特征与植物化学计量特征无显著相关关系(P> 0.05)。研究结果表明,当苜蓿种植到10年之后,应采取一定的管理措施来改善土壤质量以保证苜蓿正常生长。 相似文献
9.
对山西安太堡露天矿排土场不同复垦年限苜蓿地(3年、8年、20年),自然恢复地和耕地不同深度土壤总有机碳(C)、全氮(N)、全磷(P)及其化学计量比进行分析,结果表明:土壤C、N随复垦年限延长递增,P相对稳定;耕地和20年苜蓿地,C、N随土层深度增加递减。20年苜蓿地0~10 cm土壤C、N分别较耕地提高30.1%和28.8%;0~40 cm与耕地接近,说明复垦能提高,特别是提高表层土壤C、N质量分数。C∶P,N∶P随复垦年限增加而上升,C∶N呈先增加、后降低的趋势;20年苜蓿地0~40 cm土壤C∶N,C∶P,N∶P均与耕地接近。土壤C和N极显著相关,C∶P,N∶P与C、N极显著相关,C∶N与C、N相关性不显著,说明C∶P,N∶P分别由碳、氮控制,C∶N受碳、氮共同控制,生物措施对复垦土壤C、N的提升作用比P明显。 相似文献
10.
黄土高原不同种植年限紫花苜蓿根系分泌物GC-MS分析 总被引:1,自引:0,他引:1
为研究不同种植年限(1年、10年、20年、30年)紫花苜蓿‘中苜一号’根系分泌物的组分,分别以不同极性的浸提剂(乙酸乙酯、二氯甲烷)浸提其根际土壤,最终借助GC-MS气质联用技术分析其根系分泌物的化学组分。结果表明:苜蓿的根系分泌物主要含有烷烃类、酯类、醇类、酸类、酚类、酮类、醚类化合物,其中以烷烃类所占比重最大,占到75%以上,多数为直链烷烃,但也包括少数的支链烷烃和环烷烃。在二氯甲烷提取结果中种植10年、20年、30年的苜蓿根系分泌物以二十一烷、三十六烷、四十烷所占的比例较大,在种植1年的苜蓿分泌物中又以邻苯二甲酸二乙酯、1.54-二溴五十四烷、二十烷、三十六烷、二十一烷等所占比例较大。乙酸乙酯提取结果显示,在四种年限的提取结果中二十一烷的相对含量比例较大,分别占8.82%、11.5%、17.85%、25.69%,但相较于二氯甲烷结果,它提取到的物质种类相对较少。 相似文献
11.
黄土高原沟壑区苜蓿地土壤碳、氮、磷组分的变化 总被引:4,自引:3,他引:4
对黄土高原沟壑区不同种植年限苜蓿(Medicago sativa)地土壤碳、氮、磷组分的分析结果表明:连续种植5年,土壤碳、氮各组分含量最低,而年限延长含量则有所提高;15年生苜蓿生长已进入衰退期,各组分含量远低于土壤肥力得到一定程度恢复的23年生苜蓿地.P与C、N组分的变化不同,Ca2-P和Fe-P含量随年限延长逐渐降低,到23年时又有升高趋势,而Ca8-P、Al-P、O-P变化趋势则与之相反,5年生苜蓿地以中活性有机磷为主,10年、15年、23年生苜蓿土壤有机磷组分的变化表现为:中稳性有机磷(MROP)>中活性有机磷(MLOP)>高稳性有机磷(HROP)>活性有机磷(LOP). 相似文献
12.
不同种植年限紫花苜蓿人工草地土壤有机碳及土壤酶活性垂直分布特征 总被引:11,自引:0,他引:11
通过测定土壤容重、土壤有机碳含量和土壤酶活性,探讨了不同种植年限(1,3,4,5和8年)紫花苜蓿人工草地剖面土壤有机碳含量、土壤碳密度及土壤酶活性的垂直分布差异。结果表明,1)1~8年0~100 cm土壤平均SOC含量分别为4.519,4.865,5.120,5.348和3.334 g/kg,各土壤剖面SOC含量主要集中在0~40 cm深度内,分别占0~100 cm土壤有机碳含量的69.7%,65.8%,73.8%,70.0%和67.2%,SOC含量自40 cm以下急剧下降。2) 1~8年0~100 cm土壤平均SOC密度分别为1.148,1.217,1.231,1.398和0.840 kg/m2,表层0~40 cm约占54.8%~61.8%;0~100 cm SOC含量及其密度均以种植5年苜蓿地最高,依次为8年(19.9 g/kg和5.04 kg/m2)<1年(27.7 g/kg和6.77 kg/m2)<3年(29.7 g/kg和7.26 kg/m2)<4年(30.4 g/kg和7.38 kg/m2)<5年(32.2 g/kg和8.53 kg/m2)。3)3种土壤酶活性都随着土层加深和种植年限的增加而降低,土壤表层(0~10 cm)及次表层(10~20 cm)酶活性显著降低,土壤酶活性主要集中在0~20 cm深度内,表现出表聚性。 相似文献
13.
14.
不同生长年限紫花苜蓿人工草地土壤酶活性及分布 总被引:2,自引:1,他引:2
分层取土样,对不同生长年限紫花苜蓿Medicago sativa人工草地中脲酶、过氧化氢酶、蔗糖酶、淀粉酶和纤维素酶的分布特征进行研究,结果表明:在0~40 cm土层内,脲酶、过氧化氢酶、蔗糖酶和淀粉酶的活性2年生紫花苜蓿地均相应高于5年生紫花苜蓿地,纤维素酶活性5年生紫花苜蓿地高于2年生紫花苜蓿地;脲酶、过氧化氢酶、蔗糖酶活性均随土层深度的增加而递减,淀粉酶活性则随土层深度的增加而增高,纤维素酶活性2年生紫花苜蓿地随土层深度的增加而降低,5年生紫花苜蓿地随土层深度的增加而增高. 相似文献
15.
《蚕业科学》2022,(1)
为探究林木根际土壤真菌群落的演变规律,按照空间换时间法,基于Illumina高通量测序分析研究大时间跨度下不同栽植年限(10 a、80 a和200 a)桑树根际土壤真菌群落的组成变化情况。结果表明,10 a、80 a和200 a树龄桑树根际土壤真菌共有的门为9个,各树龄桑树根际土壤中优势菌门相同,但相对丰度存在差异,第1优势菌门为子囊菌门(Ascomycota),其次是担子菌门(Basidiomycota)和被孢霉门(Mortierellomycota);前5优势菌属均为杯盘菌属(Ciboria)、被孢霉属(Mortierella)、土球酵母属(Solicoccozyma)、镰刀菌属(Fusarium)、假裸囊菌属(Pseudogymnoascus),随着树龄的升高,土球酵母属的相对丰度增加,镰刀菌属和杯盘菌属的相对丰度先升高后降低,被孢霉属的相对丰度降低。对优势菌属影响最大的是土壤氯离子含量,其次是速效磷含量、有机质含量、速效钾含量、碱解氮含量、全盐量和钠离子含量。栽植年限的增长提高了桑树根际土壤真菌的相对丰度和均匀度,改变了桑树根际土壤真菌的群落组成,减少了子囊菌门真菌的积累。 相似文献
16.
分别选取建植5、10、15和20年的白沙蒿(Artemisia sphaerocephala), 研究其根际与非根际土壤中营养元素含量及土壤pH值的变化。结果表明, 1)随建植年限的增加, 白沙蒿根际土壤有效N、P含量增加, 铵态氮和有效磷的最大富集率分别为91.15%和127.30%;2)有效Cu表现为负富集, 其在根际的含量随建植年限的增加而降低, 其它有效微量元素均表现出根际含量大于非根际, 其中有效Mn随年份增加有明显积累, 在20年株龄富集率达到最高值, 85.24%;3)5、10年株龄沙蒿根际pH无明显变化, 15、20年株龄白沙蒿根际土壤表现出明显的酸化作用;4)土壤有效元素间的相关性存在明显的根际效应。 相似文献
17.
为探究土壤绝对酶活性和相对酶活性在果园不同覆盖模式下的变化特征及相关影响因素,为果园土壤质量评价提供理论依据,本试验以传统清耕(Conventional tillage, CT)为对照,研究秸秆(Corn stalk, CS)、黑麦草(Lolium perenne L. Ryrgrass, RE)和白三叶(Trifolium repens L. White clover, WC)处理下α-葡萄糖苷酶(α-glucosidase, AG)、β-葡萄糖苷酶(β-glucosidase, BG)、β-木糖苷酶(β-xylosidase, BXYL)、纤维二糖苷酶(Cellobiosidase, CBH)、乙酰氨基葡萄糖苷酶(Acetylglucosaminidase, NAG)、亮氨酸氨基肽酶(L-leucine aminopeptidase, LAP)和碱性磷酸酶(Alkaline phosphatase, ALP)变化特征及影响因素。结果表明,覆盖措施不同程度提高了0~40 cm各土层土壤绝对酶活性。AG,BG,BXYL,CBH,NAG和ALP活性表现为CS>RE>WC>... 相似文献
18.
试验采集未种植、种植1年、3年和5年的黄花蒿根际土壤,采用常规分析和Illumina MiSeq高通量测序技术,研究了土壤微生物生物量、酶活性及真菌群落组成。结果表明,在人工种植黄花蒿的土壤中,微生物生物量碳氮减少,碳氮比例改变;脱氢酶、脲酶和蔗糖酶活性降低,酸性磷酸酶活性增强;说明黄花蒿释放的化感物质选择性抑制了土壤微生物生长、繁殖和代谢。在不同种植年限的土壤中,主成分分析显示代表不同种植年限土壤真菌群落的点在坐标图中分布距离较远,表明它们的群落组成发生了显著变化(P<0.05)。此外,子囊菌门占土壤真菌的66.10%~95.28%,黄花蒿种植时间影响真菌门类和优势真菌的丰富度。在前20种优势真菌中,有14种共存于不同种植年限的土壤中,每种土壤中存在1~3种独有真菌,说明土壤是决定真菌种群组成的主导因素,又因种植黄花蒿而改变。在栽培1~5年的黄花蒿土壤中,优势菌株中出现蒿属的常见病菌——蒿白粉菌和艾菊柄锈菌,提高相应病害的发生风险。 相似文献
19.
陇中黄土高原不同种植年限苜蓿草地土壤水分及产量响应 总被引:4,自引:0,他引:4
本研究利用黄土高原西部典型半干旱雨养农业区不同种植年限苜蓿草地布设田间试验,系统研究了3,6,8,10,12以及14 a 紫花苜蓿生产力及其土壤水分变化特征。结果表明,不同种植年限紫花苜蓿草产量差异显著,且表现为随着种植年限的增加,呈先增加后减小的趋势,其中以 8 a 苜蓿草产量最高,为12128 kg/hm2。持续种植3,6,8,10,12和14 a 苜蓿草地0300 cm土层平均含水量均明显低于当地土壤稳定湿度值,其中12和14 a仅为9.20% 和7.14%,甚至低于作物有效水分下限。随着苜蓿种植年限的延长,土壤干燥化程度加剧,但干燥化速率呈减缓趋势。综合苜蓿生产力动态和土壤水分状况,本研究表明陇中黄土高原地区紫花苜蓿适宜的种植年限为8 a。 相似文献