首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 214 毫秒
1.
杉木幼龄材与成熟材木质素的化学官能团和化学键特征研究   总被引:12,自引:0,他引:12  
秦特夫  黄洛华  周勤 《林业科学》2004,40(2):137-141
采用有机元素分析、红外光谱、质子核磁共振波谱对从杉木幼龄材和成熟材中提取的磨木木质素的化学官能团和化学键特征进行了研究。结果表明 :杉木幼龄材和成熟材木质素的经验式分别为C9H8 73O2 57(OCH3) 0 84 和C9H9 0 1 O2 2 4 (OCH3) 0 90 ;杉木幼龄材木质素的芳香环结构主要由愈疮木基组成 ,而在成熟材中除愈疮木基外还有紫丁香基基团存在 ;杉木成熟材的木质素中具有较多的芳香族化合物 ;杉木木质素结构中的主要键型为 β -O - 4键、β- 5键、β- β键和 β- 1键 ,且成熟材木质素中各种键型的数量均高于幼龄材。  相似文献   

2.
以针叶材马尾松木质素(Pinus massoniana)为快速热解的原料,采用热解-气相色谱-质谱联用(PyGC-MS)技术,分别对磨木木素(MWL)、碱木素(AL)以及酸不溶木素(Klason木素)三种不同种类的木质素及磨木木素在不同热裂解温度下进行了热裂解实验,分析了不同条件下热裂解产物中主要酚类组分相对含量的变化。结果显示,裂解温度为500℃时,马尾松不同类型木质素热裂解产物存在较大差异,磨木木素、碱木素和酸不溶木素裂解产物中总酚相对含量分别为62.3%、44.86%和16.25%,结果说明磨木木素最易裂解,碱木素次之,酸不溶木素最难裂解。热裂解温度从400℃升高到500℃再升高到600℃的过程中,磨木木素裂解产物中总酚相对含量仅从59.78%升高到62.31%再升高到65.72%,主要酚类组分为愈创木酚及其衍生物,各酚类组分相对含量随温度升高呈现出不同的变化趋势。  相似文献   

3.
为解析巨龙竹木质素化学结构特征,采用高效阴离子交换色谱、凝胶色谱、傅里叶变换红外光谱、核磁共振等现代仪器分析技术,对巨龙竹木质素样品进行检测。结果表明:弱酸性环境有利于打断巨龙竹木质素与半纤维素之间的化学联接而使木质素更易于分离,且对木质素中的主要联接键破坏较小;巨龙竹木质素含有紫丁香基(S)、愈创木基(G)以及对羟基苯基(H)3种基本结构单元,属于禾草类木质素;巨龙竹木质素基本单元间化学联接键以β-O-4′结构为主,并存在一定量的β-β′、β-5′、β-1′化学联接。  相似文献   

4.
杉木和"三北"一号杨磨木木质素化学官能团特征的研究   总被引:23,自引:4,他引:23  
秦特夫 《林业科学》1999,35(3):69-75
本研究使用Bjrkman的提取方法,分离出针叶材杉木和阔叶材"三北"一号杨的磨木木质素(MWL),并采用Lundguist方法对分离出的MWL进行提纯.用红外光谱仪(FTIR)、超导核磁共振波谱仪(1HNMR)、液相色谱(HPLC)及紫外/可见分光光度仪(UV)测定了这两个树种MWL的化学结构和官能团.结果表明:(1)杉木木质素碳的含量较杨树高1.23%,氢和氧的含量分别低0.22%和0.85%,"三北"一号杨木质素中的甲氧基含量比杉木的高6.26%.(2)杉木和"三北"一号杨两种磨木木质素的苯基丙烷结构单元的经验式分别为C9H8.08O2.46(OCH3)0.94和C9H7.86O2.33(OCH3)1.41.(3)杉木磨木木质素中的脂肪族羟基(OHaliph)和酚羟基(OHph)数在每C9单元中分别是0.93和0.25,分别占总羟基的78.8%和21.2%."三北"一号杨磨木木质素中的脂肪族羟基(OHaliph)和酚羟基(OHph)数在每C9单元中分别是1.02和0.49,分别占总羟基的67.5%和32.5%.(4)杉木与"三北"一号杨磨木木质素在210nm附近的吸收波长基本相同.但在280nm附近杨树磨木木质素的吸收波长为280.2nm,而杉木磨木木质素由于愈疮木基丙烷产生了深色化效果,使吸收波长向长波长方向移动至282.2nm.(5)杉木的红外光谱吸收峰强度具有典型的针叶材特征,"三北"一号杨磨木木质素的红外光谱吸收峰强度与温带阔叶材的特征不完全吻合.(6)杉木和"三北"一号杨磨木木质素中每C9单元的β-O-4结构的平均质子数分别为0.33和0.50.β-5结构(苯基豆满香)中的平均H质子数量分别为0.23和0.16.β-β结构中Hα的平均质子数量分别为0.92和0.67.  相似文献   

5.
为了解木质素的热解机理,利用密度泛函理论B3LYP方法,在6-31++G(d,p)基组水平上对含有C_α位羰基的β-O-4型木质素二聚体模型化合物(3-羟基-1-(4-羟基苯基)-2-苯氧基-1-丙酮)的热解过程进行了理论计算和分析。结果表明,C_α位上的羰基取代基可大大降低C_β—O的键解离能,提高C_α—C_β的键解离能,使得C_β—O的键解离能比C_α—C_β低91.5 k J/mol,因此该二聚体主要通过C_β—O键均裂的方式发生热解反应,其主要酚类热解产物是苯酚和4-羟基苯甲醛,次要产物是4-羟基苯乙酮,生成4-羟基苯甲醛的动力学最优路径是R7-a,其反应能垒为236.6 k J/mol。  相似文献   

6.
从雷公藤(Tripterygium wilfordii Hook.f.)的根中分离得到7个化合物,经1H NMR、13C NMR和MS鉴定为β-谷甾醇(1)、丁香醛(2)、雷公藤乙素(3)、3-羟基-1-(4-羟基-3-甲氧基苯基)丙酮(4)、5,5'-二甲氧基落叶松脂素(5)、新刺五加酚(6)和16-羟基山海棠酸-18-O-β-D-葡萄糖苷(7)。其中化合物2、4、5和6为首次从雷公藤属植物中分离得到。采用热重和差热分析技术研究了雷公藤乙素(3)、新刺五加酚(6)以及雷公藤活性成分雷公藤内酯甲和去甲泽拉木醛的热稳定性。结果表明:雷公藤乙素、新刺五加酚、雷公藤内酯甲和去甲泽拉木醛的热分解温度均大于200℃。结果可为雷公藤质量标准以及雷公藤煨制机理研究奠定基础。  相似文献   

7.
采用热水和稀酸预处理蔗渣后,根据Bj?rkman法从蔗渣样品中分离出7种木素。此外,从蔗渣硫酸盐制浆黑液中分离出硫酸盐木素(KL)。利用二维核磁(~1H-~(13)C HSQC NMR)和磷谱(~(31)P NMR)分析8种木素样品的分子结构和官能团,再利用木素对1,1-二苯基-2-三硝基苦肼(DPPH)自由基的清除能力评价木素的抗氧化性能,并建立木素清除DPPH自由基的等温反应动力学模型。结果表明,随着热水预处理强度的增加,木素芳基醚键(β-O-4')断裂增加,麦黄酮、阿魏酸和对香豆酸降解率增加,酚羟基和羧基含量增加。抗氧化性测试表明:蔗渣磨木木素的DPPH自由基清除率为86.73%,热水处理木素对DPPH自由基最大清除率为91.70%,稀酸预处理木素和硫酸盐木素的DPPH自由基清除率分别为84.75%和83.22%。等温吸附反应模型分析表明,木素对DPPH自由基的清除过程更符合Langmuir模型,预处理提高了木素对DPPH的清除速率。与蔗渣磨木木素相比,稀酸预处理和硫酸盐蒸煮降低了木素的抗氧化性,热水预处理则提高了木素的抗氧化性。  相似文献   

8.
连续用0.5%、2.0%和5.0%Na OH水溶液在80℃条件下从巨龙竹中抽提得到木质素组分,采用凝胶色谱、红外光谱、核磁共振、热重分析仪表征了竹材木质素的化学结构和热稳定性。结果表明,巨龙竹木质素属于典型的禾草类木质素,其大分子由对羟基苯丙烷(H)、愈创木基丙烷(G)和紫丁香基丙烷(S)3种基本结构单元组成;巨龙竹木质素大分子的主要联接键为β-O-4'醚键、β-β'和β-5'碳-碳键;巨龙竹木质素大分子苯丙烷结构单元侧链γ位碳与对香豆酸和阿魏酸存在化学键联接,形成对香豆酸酯和阿魏酸酯(醚);巨龙竹木质素具有较高的热稳定性,其热稳定性随分子量增加而升高。  相似文献   

9.
天然木质素一般是由愈创木基、紫丁香基和对羟苯基3种基本结构单元通过不同的碳氧键、碳碳键等连接形成的复杂大分子聚合物.作为自然界中含量丰富的天然芳香类聚合物,木质素及其衍生物具有广阔的应用潜力.木质素中含有芳基、酚羟基、酮基以及羧基等官能团,赋予了木质素一定的抗氧化性与抗紫外辐射性能.研究证明,木质素无论在植物的生长发育...  相似文献   

10.
巨龙竹是一种具有极高研究和开发价值的大型经济用材竹种,其基础理化性质有待进一步解析研究。为表征巨龙竹木质素的化学结构,在超声-弱碱协同作用下处理竹材原料,脱蜡竹粉在2%NaOH溶液中分别经超声处理5,20,40,60和90 min,并设置仅在2%NaOH溶液中抽提90 min的对照组,最后得到6个木质素样品L_1~L_6。采用红外光谱(FTIR)、核磁共振碳谱(~(13)C NMR)和二维核磁共振(2D HSQC)分别对分离得到的巨龙竹木质素进行结构分析。结果表明:超声-弱碱协同处理对竹材木质素具有良好的促溶效果,随着超声作用时间的增加,木质素得率从6.6%提高到22.9%;巨龙竹木质素大分子主要由愈创木基(G)、紫丁香基(S)和对羟基苯基(H)结构单元构成,属于禾草类木质素(GSH型);巨龙竹木质素大分子的主要联接键为β-O-4'醚键,其次是β-β'和β-5'结构;但随着超声处理时间的增加,巨龙竹木质素中一定量的β-O-4'联接键会被打断。  相似文献   

11.
Summary The formation of lignin in the cell wall of compression wood of Pinus thunbergii was examined by selective radio-labeling of specific structural units in the lignin and visualization of the label in the different morphological regions by microautoradiography. Deposition of lignin in the tracheid cell wall of compression wood occurred in the order: p-hydroxyphenyl, guaiacyl and syringyl lignin, which is the same order as observed in normal wood. However, the period of lignification in the compression wood was quite different from those of normal and opposite woods. The p-hydroxyphenyl units were deposited mainly in the early stage of cell wall formation in compound middle lamella in normal and opposite woods, while in compression wood, they were formed in both the compound middle lamella and the secondary wall. The most intensive lignification was observed during the formation of the S2 layer, proceeding from the outer to inner S2 layers for a long period in compression wood. In the normal or opposite woods, in contrast, the lignification became active after formation of S3 had begun, then proceeded uniformly in the secondary wall and ended after a short period.A part of this report was originally presented at the 1989 International Symposium on Wood and Pulping Chemistry at Raleigh, NC, U.S.A.  相似文献   

12.
The lignification process and lignin distribution at different stages of cell wall differentiation in the secondary xylem of compression and normal woods of Pinus thunbergii were investigated by thioacidolysis and subsequent desulfuration. We prepared 50-µm-thick, contiguous tangential sections of pine shoots, cut from the cambial zone through to mature xylem. In compression wood, uncondensed guaiacyl (G) and p-hydroxyphenyl (H) lignins were deposited simultaneously from early to late stages of lignification. The various types of G-G, G-H, and H-H dimers were detected in compression wood, and the ratio of G-H and H-H dimers to total dimers increased as lignification proceeded. In contrast, uncondensed and condensed H units were detected in trace amounts in normal wood. Significant differences in the relative distributions of lignin interunit linkages were not observed between compression and normal woods or between differentiating and mature xylems in either compression or normal woods.Part of this report was presented at the 10th International Symposium on Wood and Pulping Chemistry, Yokohama, June, 1999  相似文献   

13.
Different model compounds for lignin, hemicelluloses and pectins were studied by time-of-flight secondary-ion mass spectrometry (ToF–SIMS). Mass spectra of Klason lignin from normal and compression spruce wood, aspen wood and wheat straw were compared. Spectra of brominated spruce and aspen wood sections showed fragment ions attributed to brominated guaiacyl and syringyl units in lignin at m/z 215, 217, 229 and 231, and m/z 245, 247, 249 and 261, respectively. Spectra of mono-, oligo- and polysaccharides showed fragment ions at m/z 127 and 145 characteristic for hexose units, and ions at m/z 115 and 133 characteristic for pentose units. The same ions were detected in spectra of delignified spruce and aspen wood sections. Labelling of anionic groups by Sr2+ ions followed by ToF–SIMS analysis showed that pectins were present at specific locations on the surfaces of spruce and aspen wood sections still after delignification with hydrogen peroxide in acetic acid.  相似文献   

14.
Summary A sieving technique has been developed for the separation of middle-lamella fragments. The middle-lamella fraction as well as the whole wood and compression wood from Picea abies have been analysed by nitrobenzene oxidation and acidolysis in order to determine the content of p-hydroxyphenylpropane units in the middle-lamella lignin. These analyses revealed only traces of p-hydroxyphenylpropane units in the whole wood and in the middle-lamella fraction but considerable amounts were found in compression-wood lignin. This points to the fact that middle-lamella lignin is of guaiacyl nature and that earlier results reporting high proportions of p-hydroxyphenylpropane units in the middle lamella-lignin may be due to the inclusion of compression wood in the fraction studied. The acidolysis experiments further indicate that the middle-lamella lignin has fewer uncondensed -0-4 aryl ether structures than the whole wood lignin.The skilful technical assistance of Mrs. Britta Samuelsson and Mr. Johan Lindberg is highly appreciated. The author also thanks Dr. Knut Lundquist for supplying some of the reference compounds, and Dr. Hanne-Lise Hardell for help with the microscopic pictures  相似文献   

15.
Summary The distribution of lignin in normal and compression wood of loblolly pine (Pinus taeda L.) has been studied by the technique of lignin skeletonizing. Hydrolysis of the wood carbohydrates with hydrofluoric acid left normal wood tracheids with a uniform distribution of lignin in the S1 and S2 cell wall layers. However, the S3 region of both earlywood and latewood tracheids consistently retained a dense network of unhydrolyzable material throughout, perhaps lignin.Lignin content in compression wood averaged about 7% more than in normal wood and appears to be concentrated in the outer zone of the S2 layer. The inner S2 region, despite helical checking, is also heavily lignified. The S1 layer, although thicker than normal in compression wood tracheids, contains relatively little lignin.Ray cells, at least in normal wood, appear to be lignified to the same extent, if not more so in certain cases, than the longitudinal tracheids. Other locations where lignin may be concentrated include initial pit border regions and the membranes of bordered pits.This report is a detailed excerpt from the Ph. D. dissertation of R. A. P. Financial support provided by the College of Forestry at Syracuse University and the National Defense Education Act is hereby gratefully acknowledged.  相似文献   

16.
对从杨树心、边材提取的磨木木质素进行了元素分析和红外光谱(FTIR)质子和碳-13核磁共振波谱(^1H,^13C NMR)等化学特征研究。研究结果表明:杨树心、边材木质素的经验式分别为C9H7.16O2.38(OCH3)1.99和C9H8.61O2.73(OCH3)1.33。心材木质素甲氧基含量28.16%,比边材高8.73%。两种木质素均具有典型阔叶材的特征,化学结构类型基本一致,碳骨架结构基本相同,但化学官能团和键型的组成上存在差异。  相似文献   

17.
Summary The phenolic hydroxyl group content of wood lignin has been determined in situ by a periodate oxidation method for four softwood and six hardwood species. Hardwood lignins, in contrast to softwood lignins, showed a significant variation among different species in this functional group content which decreased with an increase in the proportion of syringyl units in the wood lignin.Financial support from the Empire State Paper Research Associates is greatly appreciated  相似文献   

18.
To investigate the linkage types between carbohydrates and lignin, residual lignins were isolated from three different unbleached pulps [kraft, alkaline sulfite anthraquinone methanol (ASAM), and soda with anthraquinone (AQ) and methanol] of spruce and beech wood and then characterized by oxidation with 2,3-Dichloro-5,6-dicyanobenzoquinone and followed by Prehm’s methylation. In residual lignins, sugar moieties were bound to lignins via benzyl ether bonds. In particular, galactose and mannose are predominantly linked to lignin fragments in residual lignins of spruce wood, while xylose and galactose are favored in the formation of LC bonds in the residual lignins of beech wood. In the case of hexoses, primary hydroxyl groups (C6 position) preferentially take part in benzyl ether linkages. Hydroxyl groups in the C2 and C3 positions of xylose participate in LC bonds and a small portion of arabinose was notably connected to lignin via the C5 position. Approximately seven or eight sugars were connected in soda/AQ/methanol residual lignin per 100 C9 lignin units, while the frequencies of LC bonds in kraft and ASAM residual lignins were distinctively less at one to three sugars per 100 C9 lignin units. The publication of this article was made possible by an Emachu Research Fund. The authors are grateful for the fund.  相似文献   

19.
Summary To advance the discussion on the evolution mechanism of tree growth stresses, the relation between released strain and the chemical components was investigated experimentally. The expansive released strain in the longitudinal direction assumed large values as the lignin content increased in the compression wood, but there was no relation between released strain and lignin content in the normal wood region. The contractive released strain assumed large values as the cellulose content and its crystallinity increased. Their correlation was very high and clear. From these facts, it is considered that the lignin deposition plays an important role in the generation of the growth stresses in compression wood but is not important in normal or tension wood regions. Cellulose microfibrils contract along their longitudinal axis during cell maturation, and the stress included by the contraction creates a longitudinal growth stress in normal and tension woods.The authors thank Prof. R. R. Archer, University of Massachusetts, for his valuable advice. A part of this research was supported by a grant under the Monbusho International Scientific Research Program  相似文献   

20.
Summary It has been found that the lignin in a middle lamella fraction isolated by a sieving technique has the same reactivity to bromine as the whole wood lignin. A plataue value of 1 mole bromine/mole C9-unit was obtained for both samples. The lignin in compression wood had a considerably lower reactivity to bromine than the normal wood lignin. A plataue value of 0.68 mole bromine/mol C9-unit was obtained with such lignin. The discrepancy between this and earlier results from the bromination of middle lamella and the implication of the results for lignin determination by the SEM- and TEM-EDXA technique are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号