首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
亚热带土壤不同矿物组分中铬的吸附   总被引:1,自引:0,他引:1  
Safe application of chromium (Cr)-containing organic industrial wastes to soil requires considering the ability of the soil to adsorb Cr.In this study,the maximum Cr adsorption capacity was assessed for the bulk samples and their clay and iron-free clay fractions of four subtropical soils differing in mineralogy.To this end,the samples were supplied with Cr(Ⅲ) nitrate solutions at pH 4.5 or 5.5.The results of Cr(Ⅲ) adsorption fitted to a Freundlich equation and the adsorption capacity was positively correlated with soil organic matter and iron oxide contents.The clay fractions adsorbed more Cr per unit mass than the bulk soils and the iron-free clay fractions.The Cr(Ⅲ) adsorption capacity increased with increasing soil pH due to more charges on adsorbing surfaces.Our results suggest that the soils rich in organic matter and iron oxides and having a pH above 4.5 are suitable for application of Cr(Ⅲ)-loaded industrial wastes.  相似文献   

2.
城市化对上海土壤环境质量的影响   总被引:21,自引:0,他引:21  
Heavy metal contents in the soils in the Baoshan District of Shanghai were monitored to evaluate the risk of soil environmental quality degradation due to rapid urbanization and to reveal the ways of heavy metal accumulation in soil during rapid urban sprawl. It was found that the soils in this district were commonly contaminated by Pb, Zn and Cd. Evaluated with a geo-accumulation index (Igeo), the rate of Pb contamination in soils was 100% with 59% of these graded as moderate-severe or severe; Zn contamination reached 59% with 6% graded as moderate-severe or severe; and Cd contamination was over 50%, with one site graded as moderate-severe and another severe-extremely severe. Metal contamination of soils around the Shanghai metropolis was mainly attributed to trame, industrial production, wastewater irrigation and improper disposal of solid wastes. Because of continuing urbanization, the cultivated land around the metropolis should be comprehensively planned and carefully managed. Also the soil environmental quality of vegetable production bases in this area should be monitored regularly, with vegetables to be grown selected according to the degrees and types of soil contamination.  相似文献   

3.
Pesticides are an integral part in maintaining agriculture and horticultural productivity and play a vital role in meeting the increasing food, fiber, and fuel needs of the growing population. Globally, organophosphate pesticides(OPPs) are among the most common pesticides used due to their high proficiency and relatively low persistence in the environment. However, recent studies have reported problems due to pesticide use, e.g., phorate contamination of aquatic ecosystems(fresh and groundwater), sediments, fruits and vegetables, and forage crops. This review highlights many cases where phorate has been detected above its respective maximum residue limit values. Organophosphate pesticides, including phorate, have negative impacts on both the environment and human health. The ecological and public health concerns of recurrent pesticide utilization have encouraged the research related to environmental fate of pesticides.Bioremediation is an effective, eco-friendly, and financially viable approach for the decontamination and degradation of toxic OPPs from the environment,compared to the costly, unecological, and time-consuming physicochemical approaches, which lead to the generation of byproducts of higher toxicity.Researchers have recognized that a wide range of microbes, mainly bacteria, can degrade this extremely hazardous pesticide. Therefore, this review discusses the present pesticide scenarios, especially phorate contamination, its toxicity, biodegradation, and metabolic products via bacterial communities, both in India and globally. The latest and up-to-date literatures on the use, contamination, and bacterial application of phorate degradation are also summarized. This article offers national and international food safety organizations and public health authorities the ability to be involved in preventing the risks associated with the use of food and nutrition products contaminated with extremely toxic phorate pesticide. This article would also enable researchers to develop comprehensive and sustainable methods to effectively remediate pesticide-contaminated environments. In conclusion, it is envisaged that the successful application of bacterial communities for degradation of phorate would help in understanding the fate and persistence of such toxic pollutants in a better way.  相似文献   

4.
Soil contamination by heavy metals is a serious environmental problem worldwide,and reduction of heavy metal accumulation in vegetables grown on contaminated land is a matter of urgency.A pot experiment was conducted to study the effects of intercropping with the Cd hyperaccumulators Solanum nigrum and Solanum photeinocarpum from two ecoclimatic regions,Ya'an and Chengdu,Sichuan Province,China,on the growth and cadmium (Cd) uptake of eggplant (Solanum melongena L.).The biomass,photosynthetic pigment contents,and activities of antioxidant enzymes of eggplant were enhanced by intercropping.The biomass of eggplant was the highest after intercropping with S.photeinocarpum from Ya'an,but did not differ significantly from that after intercropping with S.nigrum from Chengdu.The shoot Cd content of eggplant was significantly reduced by intercropping with the hyperaccumulators,which ranked as follows:S.nigrum from Chengdu > S.nigrum from Ya'an > S.photeinocarpum from Chengdu > S.photeinocarpum from Ya'an,with the decreases being 19.60%,14.36%,9.66%,and 6.42%,respectively,as compared with the control.The lowest shoot Cd content and translocation factor of eggplant were attained after intercropping with S.nigrum from Chengdu.Therefore,it was feasible to intercrop eggplant with S.nigrum and S.photeinocarpum on Cd-contaminated soil.  相似文献   

5.
Trichloroethylene (TCE), as one of the most common chlorinated organic compounds in soils and aquifers at many industrial sites, is carcinogenic and often recalcitrant in environment. TCE degradation in artificially contaminated soil samples was conducted using Fenton-like processes, i.e., by addition of excess hydrogen peroxide (H2O2 ). H 2 O 2 could directly oxidize TCE without addition of ferrous iron in contaminated soil. Under the optimal condition (H2O2 concentration of 300 mg kg 1 , pH at 5.0, and reaction time of 30 min), the removal efficiency of TCE in the soil was up to 92.3%. When the initial TCE concentration increased from 30 to 480 mg kg 1 in soil, the TCE removal rates varied from 89.2% to 86.6%; while the residual TCE in soil ranged from 2.28 to 47.57 mg kg 1 . Results from successive oxidations showed that the TCE removal rate with the TCE concentration of 180 mg kg 1 increased slightly from 91.6% to 96.2% as the number of successive oxidation cycle increased from one to four. Therefore, increasing the frequency of H2O2 oxidation was perhaps a feasible way to increase TCE removal rate for TCE-contaminated soil.  相似文献   

6.
通过土壤泥浆中的过氧化氢处理三氯乙烯污染的土壤   总被引:1,自引:0,他引:1  
Chlordecone, one of the most persistent organochlorine pesticides, was applied between 1972 and 1993 in banana fields in the French West Indies, which results in long-term pollution of soils and contamination of waters, aquatic biota, and crops. As human exposure to chlordecone is mainly due to food contamination, early research was focused on chlordecone transfer to crops. Field trials were conducted to investigate chlordecone contamination of yam, sweet potato, turnip, and radish grown on a ferralic Nitisol polluted by chlordecone. We also carried out trials on yam, courgette, and tomato under greenhouse conditions with homogenized Andosol and Nitisol, polluted by chlordecone to various extents. Our results indicated that i) all tubers were contaminated in accordance with the chlordecone content of the soils; ii) the contamination capacity of the Nitisol was greater than that of the Andosol; and iii) whatever the soil type, tuber contamination was related to the soil volumetric content of dissolved chlordecone. Nevertheless, no tubers showed sufficient chlordecone uptake for efficient soil decontamination by means of plant extraction. Soil contact accounted for most of the root crop contamination, which was inversely proportional to the tuber size. Internal transfer might also increase root crop contamination when the root central cylinder contained raw sap flow, as in the case of turnip or radish. Courgette fruits showed high contamination without soil contact. Thus, further research is needed to explore the pattern of both below- and aboveground plant chlordecone contamination and assess the hypothesis of its correlation with sap flow. Finally, we used our results to build a decision-making tool for farmers, relating soil pollution with the maximal contamination of the harvested organs to predict crop contamination and thus assisting farmers in making crop choices at planting in order to conform with the European Union’s regulations.  相似文献   

7.
The behaviour of metals mainly depends on soil p H, carbonate contents and contamination level, which should be considered for the management of contaminated soils. In this study, kitchen garden topsoils(0–25 cm) were sampled from the area around three smelters in France, with different Cd and Pb contamination levels. Effect of a phosphate amendment(a mixture of diammonium phosphate and hydroxyapatite) on the environmental availability and phytoavailability of Cd and Pb was evaluated by different chemical extractions and cultivating lettuce(Lactuca sativa L.), respectively. Changes in the distribution of Cd and Pb were found in most contaminated soils after phosphate amendment. An increase of Cd and Pb in the residual phase was highlighted in almost all carbonated contaminated soils, whereas a decrease of Pb in the exchangeable, water and acid-soluble phase was observed in most contaminated soils with the lowest carbonate contents. The concentrations of extractable Cd and Pb using calcium chloride and acetic and citric acids generally decreased after the soil amendment. Lettuces grown on amended soils were acceptable for human consumption as regard to Pb concentration. In contrast, some lettuces were unacceptable for human consumption, since the concentrations of Cd in the leaves were higher than the European legislation limit. Surprisingly, in carbonated soils with very low concentration of Cd, the Cd concentrations in lettuce reached up to the European legislation limit, making the lettuce unacceptable for human consumption.Our study highlighted the fact that the total metal concentration in soils does not always allow to predict the metal accumulation in the edible parts of vegetables in order to make a judgement about their acceptability or unacceptability for human consumption.  相似文献   

8.
se Medicine59-60R927.11E079;3;EE079_3;罗云000900030006000258-59HPLC法测定小儿氨酚黄那敏颗粒中马来酸氯苯那敏及对乙酰氨基酚的含量万民,郭东妹,杨艳,陈立庆江西南昌济生制药厂,江西南昌济生制药厂,江西南昌济生制药厂,江西南昌济生制药厂 南昌330115 ,南昌330115 ,南昌330115 ,南昌330115HPLC法;;小儿氨酚黄那敏颗粒;;马来酸氯苯那敏;;对乙酰氨基酚0江西中医学院学报Journal of Jiangxi University of Traditional Chinese Medicine61TQ463B016;83;E;BB016_83;万民000600100021000460HPLC法测定利福平含量杨海秀江西制药有限责任公司质检处 南昌330006HPLC;;利福平;;含量测定0江西中医学院学报Journal of  相似文献   

9.
Understanding the mechanisms of Cu pollution-induced community tolerance (PICT) in soil requires the characterization of Cu-resistant microorganisms at a community level using modern molecular tools. A primer pair (copAF2010 (5 -TGCAC CTGAC VGGSC AYAT-3 )/copAR2333 (5 -GVACT TCRCG GAACA TRCC-3 )) tentatively targeting Pseudomonas-like Cu-resistant microorganisms was designed in this study. The specification of the primers was tested through conventional polymerase chain reaction (PCR) and the construction of a Pseudomonas-like copA gene fragment library, and then the primers were used to quantify the Cu-resistant microorganisms using quantitative PCR technique. A significant increase of Cu-resistant microorganisms targeted by the primers was observed in a paddy soil from Jiaxing, China which has been exposed to one-year Cu contamination. The results provided direct evidence for Cu PICT in the soil, and the quantification method developed in this study has the potential to be used as a molecular assay for soil Cu pollution.  相似文献   

10.
Environmental pollution caused by metals, radionuclides and organic pollutants affects quality of the biosphere: soil, water and air.Currently, great efforts have been made to reduce, remove or stabilize contaminants in polluted sites. There has been increasing interest in phytoremediation—the use of plants to reduce concentration of pollutants or to render them harmless. This paper provides a brief review of recent progress in the research and practical application of phytoremediation techniques. Improvements in phytoremediation due to utilization of organic amendments, namely, agro- and industrial wastes(such as sugar beet residue, composted sewage sludge or molasses), biochar, humic substances, plant extracts and exudates are discussed, as well as their influences on soil structure and characteristics, plants growth and bioavailability of pollutants. Both plant-assisted phytoremediation and the use of natural materials in the absence of remediating plant are believed to be cost-effective and environmentally friendly approaches for soil cleanup. However,the characterization and quantification of a range of natural materials used in phytoremediation are essential in order to implement these approaches to practice.  相似文献   

11.
农田土壤重金属污染对食品安全和人体健康构成巨大的威胁。重金属主要通过经口摄入土壤、吸入土壤颗粒、皮肤接触和食物链摄取等暴露途径进入人体,其中经口摄入重金属污染土壤和农产品是主要的暴露途径。人体健康风险评估在农田土壤质量分类和风险管控中起着重要作用。因此,梳理了中国农田土壤重金属污染的人体健康风险评估的发展状况,介绍了人体健康风险评估的基本流程和评估技术,论述了影响人体健康风险评价准确性的主要因素及优化措施。在农田土壤重金属健康风险评估中,应加强耦合污染源识别技术、重视食物消费暴露途径、精准识别不同敏感受体、本土化敏感受体的暴露参数、纳入重金属的生物可给性,同时提高农田土壤重金属健康风险评估的准确性。未来可从加强应对健康风险评估过程不确定性的技术方法、考虑各种饮食的暴露途径和建立本土化的重金属毒性标准数据等多方面深化农田土壤重金属健康风险评估,以期推动中国农田土壤重金属人体健康风险评估的理论和技术发展。  相似文献   

12.
在对石家庄某蔬菜大棚种植区进行采样测试分析的基础上,针对其表层土壤及地下水有机污染特征,依托美国环保局(U.S.EPA)所提健康风险评价四步法,以菜农为敏感人群,尝试开展蔬菜大棚种植区的健康风险评价工作。在评价过程中,主要考虑经口摄入土壤和饮用地下水两种暴露途径,而鉴于蔬菜大棚内表层土壤与大棚周围表层土壤中污染物种类和含量存在明显差异这一事实,又将经口摄入土壤途径细分为经口摄入大棚内表层土壤和经口摄入大棚外表层土壤。评价结果显示,菜农的非致癌风险和致癌风险目前均处于可接受风险水平;邻苯二甲酸二正丁酯是最主要的非致癌污染物,其非致癌风险贡献率高达84.2%,狄氏剂是最主要的致癌污染物,其致癌风险贡献率为51.35%;饮用地下水途径是最主要的非致癌风险贡献途径,其非致癌风险贡献率高达94.42%;经口摄入棚外表层土壤途径是最主要的致癌风险贡献途径,其致癌风险贡献率为47.14%。  相似文献   

13.
Background, Aims and Scope   The management and decisions concerning restoration of contaminated land often require in-depth risk analyses. An environmental risk assessment is generally described as proceeding in four separate steps: hazard identification, dose-response assessment, exposure assessment, and risk characterization. The risk assessment should acknowledge and quantify the uncertainty in risk predictions. This can be achieved by applying probabilistic methods which, although they have been available for many years, are still not generally used. Risk assessment of contaminated land is an area where probabilistic methods have proved particularly useful. Many reports have appeared in the literature, mostly by North American researchers. The aim of this review is to summarize the experience gained so far, provide a number of useful examples, and suggest what may be done to promote probabilistic methods in Europe and the rest of the world. Methods   The available literature has been explored through searches in the major scientific and technical databases, WWW resources, textbooks and direct contacts with active researchers. A calculation example was created using standard simulation software. Results and Discussion   Uncertainty and variability are part of every risk assessment. Much work on risks from contaminated soil has focussed on exposure, and choice and structure of the exposure model is then a basic uncertainty factor. Other factors, e.g. parameter uncertainty, are easier to characterize. Variability can be separated into inter-individual, spatial and temporal components. Both uncertainty and variability in the exposure variables can be investigated using Monte Carlo simulation methods. These simulations enable not only the estimation of the probability for a given risk or exposure, but also add information on the sensitivity of the various input variables. This will assist the assessor in further refining the risk analysis. The large number of applications published encompasses soil contamination by lead, arsenic, chromium, uranium, polychlorinated biphenyls (PCB), polycyclic aromatic hydrocarbons (PAH), hexachlorobenzene, pentachlorophenol and chlorinated solvents. Probabilistic risk assessments have been used in widely different settings, such as the metallurgical industry (mining and smelting operations), manufacturing, gas plants, wood impregnation, infrastructure, and waste landfills. Site-specific remediation goals can be specified using probabilistic methods, and a guideline document has been issued within the US Superfund programme. The usability of probabilistic risk assessment is illustrated by a calculation example. The current Swedish generic guideline value for benzo[a]pyrene in contaminated soil, with ingestion of vegetables as the major route of exposure, is compared with a probabilistic estimate. The toxicological reference value corresponds well with the upper 95th percentile of the estimated variability in intake, but does not account for uncertainty in the partition coefficients. Conclusions and Outlook   The probabilistic approach to risk assessment has proved its value in characterizing variability and uncertainty, and thereby contributing to a more informed and transparent decision-making process. The management of contaminated land is a major environmental application for probabilistic risk assessments. A substantial number of studies have been published and the method is now well established in the scientific community. This development has progressed further in the United States than elsewhere, but similar applications are now being reported from Europe and Asia. Probabilistic risk assessment is used to derive soil guideline values in the United Kingdom, and other countries may be anticipated to follow. However, efficient use of probabilistic methods for risk assessment of contaminated land requires certain components. There is a requirement for quality assurance and transparency that can be met by guidelines specifying data requirements and which items to report on. Both federal and state governments in the United States have issued such guidelines, and we see a similar need from a European perspective. A second component, necessary for a successful implementation of probabilistic methods, is education. We have ourselves developed undergraduate curricula, but we also see a need for continuous education of risk assessors and decision makers. The third component required is case studies, showing how probabilistic risk assessment can be implemented successfully in the cleanup of contaminated land. Most published studies originate from the United States, so here too there is a need for the rest of the world to catch up. In addition to the three components mentioned, there is an obvious need to develop and improve methods and practice of risk communication.  相似文献   

14.
Background, Aims and Scope   Contaminated land is a high priority environmental problem in most of Europe and North-America. Sweden is no exception and generic guideline values have been developed for the initial assessment, but site-specific assessments are also needed. The generic guideline values are not applicable when the exposure conditions are different from the typical Swedish conditions or when the site contains a particularly sensitive ecosystem. The Swedish guideline values have, like in many other countries, been set by using deterministic point estimates for all variables and constants in the used multimedia model. The same approach is common also for site-specific assessments, and a limitation is that it fails to quantify variability and uncertainty. Probabilistic risk assessment provided a method to deal with this problem. Variability and uncertainty in the input parameters (variables or constants) are described by probability distributions, and likewise the output (risk or exposure) is presented as a probability distribution. A substantial number of probabilistic risk assessments for contaminated land at sites in North America, Europe and Asia have been published. However, an extensive review of the literature did not identify any study where probabilistic risk assessment was applied to a site contaminated by an iron or steel industry. Here we will describe such a case, where we have compared a deterministic point estimate with a probabilistic risk assessment for six elements and benzo[a]pyrene. Methods   The site had different metallurgical plants in operation for more than 100 years. Most parts of the steel mill were closed by the mid 1980s, and today the site is used by small-sized enterprises. The soil is contaminated with metals from the previous industrial operations. The present owner plans to develop the site and has therefore initiated extensive investigations of soil contamination. Sixty-two soil samples collected between 1997 and 2000 provided a good coverage of the whole site, and were analyzed for the content of different elements and polycyclic aromatic hydrocarbons (PAH). The exposure assessments were focused on six elements with high concentrations compared to the generic guideline values; arsenic (As), lead (Pb), cadmium (Cd), chromium (Cr), copper (Cu) and zinc (Zn). In addition, benzo[a]pyrene was included due to the high toxicity and comparatively high concentrations. Variability and uncertainty were characterized in a Monte Carlo simulation of exposures (10 000 iterations), and the exposures were evaluated with two land use scenarios; less sensitive use and sensitive use. Results and Discussion   The deterministic point estimates and the probabilistic estimates of the 95th percentile are in approximately the same ranges in the scenario of less sensitive land use. It is only the exposure for arsenic that is slightly above the toxicological reference value (TRV) in the deterministic assessment. In the probabilistic assessment, the exposure for all elements is below the TRV. The results for sensitive land use are applicable to a scenario where the site is developed for general housing. The deterministic point estimates and the probabilistic estimates of the 95th percentile are also here in approximately the same ranges, but the exposure exceeds the TRV for arsenic, cadmium and lead. Drinking water, vegetables grown on site and soil ingestion are the major exposure pathways for this scenario. In this assessment, the estimated intake distributions are applicable to a randomly selected individual. The probability distributions used here to characterize the different soil parameters are typically representing both variability and uncertainty, and the same is true the majority of the exposure variables. We therefore decided not to attempt to separate variability and uncertainty at this stage, but with additional data from a more in-depth site investigation it might be possible to achieve this. Conclusions and Outlook   To the best of our knowledge, this study is the first report on a probabilistic risk assessment on a former iron and steel works site. The materials handled by this industry were less toxic than for many other metallurgical operations, but contaminants may still severely limit the options for future land use. This case study shows that probabilistic exposure estimates for a set of soil contaminants can be quite similar to deterministic point estimates. The main difference is instead to be found in the additional information obtained with the probabilistic assessment. The sensitivity analyses show pathways and input variables that contribute most to variations in the total intake of each contaminant, e.g. dermal contact and ingestion of soil, vegetables and drinking water. This information can be used both in the planning of future land use and for active measures to reduce current exposure. The probabilistic assessment also provides information on the magnitude of exposure and the margin of safety. This information may facilitate risk communication between decision-makers and stakeholders. The presentation of results from probabilistic risk assessments is only briefly discussed in the literature and here we see a need for research and opportunities for enhancement. The choice of data analytical tools may then be of importance, since more complex multimedia models are rather difficult to decipher when implemented within traditional spreadsheet software. Some of the research needs are identified here and in a previous review article in this journal.  相似文献   

15.
贾琳  武雪芳  胡茂桂 《土壤》2015,47(4):740-745
通过研究发达国家(地区)土壤重金属As、Cd、Cr6+、Pb、Hg和Cu筛选值制定的法律依据及其数值的差异,发现各国(地区)土壤筛选值均是依据其污染场地的法律法规确定,主要用于决策污染场地是否需要进一步的场地调查或风险评估。各国(地区)污染场地6种重金属土壤筛选值存在的差异既有政策层面(可接受风险水平),也有制定方法层面(暴露途径、暴露参数、场地水文地质参数、毒性数据、背景值等)的原因。建议我国尽快建立土壤筛选值的相关法律法规,并依据土地利用方式的敏感性确定不同层次的可接受风险水平;考虑具体场地的情况确定暴露参数和暴露途径,并落实各级筛选值的制定和实施办法。  相似文献   

16.
为研究污染物随再生水进入地下环境后其迁移衰减情况及对地下水的潜在危害性,以Multi-cell模型为基础,结合污染物质量守恒、在水土中吸附再分配、生物降解等机理,针对地下水污染风险评估构建了计算污染物随水在土壤剖面的垂向迁移衰减一维模型,并以北京通州大兴再生水灌区为研究区域,以再生水中持久性有机污染物多环芳烃萘和菲为研究对象,根据当地钻孔资料及灌溉水水质、地下水水质资料,应用该模型进行试算。结果表明,经过多年连续灌溉后,通州大兴大部分地区进入潜水含水层的萘、菲浓度较低,整体污染风险较低,仅在通州区潞城镇等个别地区萘、菲浓度较高,应引起重视;由于大兴区整体包气带较厚,其污染风险低于通州区。土壤粘土层是萘、菲积累的主要层位,其吸附容量远大于细砂等粗颗粒介质,在土壤表层低环多环芳烃迁移性更强。应用这一模型,能够较为宏观地掌握通州大兴再生水灌区不同区域地下水中多环芳烃萘和菲的污染风险差异。  相似文献   

17.
王刘炜  程敏  邓渠成  侯仁杰  侯德义 《土壤》2022,54(5):1032-1040
本文以我国西南某矿区典型多金属复合污染农田土壤为例,基于铅(Pb)稳定同位素分析,结合矿物学分析,对土壤Pb来源进行定量解析,并针对其他重金属来源进行外推。同位素源解析结果表明,人为源对于土壤重金属的贡献率高达61%~89%,矿渣浸沥与矿区道路扬尘为主要的污染途径。矿物学分析能够辅助印证Pb稳定同位素分析结果,在一定程度上克服由于污染源信号重叠造成的源解析困难。通过相关分析,可以将Pb同位素源解析的结果合理外推,在一定程度上解释其他重金属元素的来源。本文提出的源解析新思路能够高效、准确地解析多金属复合污染土壤中重金属元素的来源,尤其适用于我国土壤多金属复合污染集中连片存在、成因复杂的现状,具有很强的现实意义。  相似文献   

18.
Dudka  S.  Miller  W. P. 《Water, air, and soil pollution》1999,113(1-4):127-132
Establishing permissible concentrations for As and Pb in soils is of practical importance because of toxicity of these metals, their widespread contamination, and limited resources available for remediation of contaminated soils. The USEPA pathway approach to risk assessment was used to assess an environmental hazard related to As and Pb in soils and to evaluate safe concentrations of these metals in contaminated soil. The results from large-scale field experiments with soil fly ash-biosolids blends were used as input data to analyze pathways of the most intense transfer of the contaminants to a target organism. A direct soil ingestion by children (the soil-human pathway) was considered the most important exposure route to soil As and Pb. A conservative risk analysis shows that As concentrations in soil can reach 40 μg g-1 without a hazard to exposed organisms. A Pb concentration in soil up to 300 μg g-1 does not cause an excessive intake of Pb by humans as evaluated by a direct soil ingestion exposure model.  相似文献   

19.
中国农田土壤重金属污染防治挑战与对策   总被引:53,自引:5,他引:48  
我国农田土壤重金属污染格局多样,区域污染风险突出。发达国家对污染土壤的修复经验对我国具有借鉴意义。我国农田土壤重金属污染防治面临土壤重金属空间异质性强、土壤类型及农作物品种对重金属累积差异大、土壤酸化严重、土壤元素失衡、不科学的发展方式、土壤重金属累积趋势难以逆转、土壤—农作物重金属累积线性关系不显著,修复技术不完善、修复措施长期风险调控机制缺失等主要挑战。根据我国农田土壤污染防治现状及课题组工作基础,我们提出以预防为主、保护优先和风险管控为基本思路,建立土壤污染防治体系,通过"土壤环境质量调查、土壤污染源头管控、分类管理和土壤环境质量基准推导"等4个步骤推进农田土壤重金属污染防治工作。  相似文献   

20.
利用煤矸石、油菜秸秆等废弃资源为原料,按(煤矸石:腐熟秸秆)体积比为2:8、3:7、4:6、5:5和6:4的比例配制成5种混合基质,在人工光照室内以盆栽的方法栽培白菜、生菜、苋菜、菠菜、茄子、番茄、辣椒和萝卜8种蔬菜,采用尼梅罗综合污染指数和Hakanson潜在生态风险指数法对5种混合基质以及其上生长的8种蔬菜的重金属污染和潜在生态风险进行了综合评价。结果表明,5种混合基质中,煤矸石含量较少的T1、T2、T3基质的重金属污染程度较小,潜在生态风险程度较低,在这3种基质上栽种的蔬菜重金属综合污染评价等级为优良或安全,符合蔬菜绿色食品标准。重金属对混合基质产生的污染中,Cd和Hg是主要的重金属污染及潜在生态风险因子,其他重金属的污染能力较小。另外,在评价由煤矸石为无机原料组成的有机生态型无土栽培基质的重金属污染及潜在生态风险时,应选择国家土壤环境质量一级标准作为参比值,且煤矸石在混合基质中所占的体积比一般不应超过1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号