首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our objectives were to evaluate the dose/payout pattern of trenbolone acetate (TBA) and estradiol-17β (E(2)) implants and feeding of zilpaterol hydrochloride (ZH) on performance and carcass characteristics of finishing beef steers. A randomized complete block design was used with a 3 × 2 factorial arrangement of treatments. British × Continental steers (n = 168; initial BW = 362 kg) were blocked by BW and allotted randomly to 42 pens (7 pens/treatment; 6 pens/block; 4 steers/pen). The main effects of treatment were implant [no implant (NI); Revalor-S (REV-S; 120 mg of TBA + 24 mg of E(2)); and Revalor-XS (REV-X; 200 mg of TBA + 40 mg of E(2))] and ZH (0 or 8.3 mg/kg of DM for 20 d with a 3-d withdrawal before slaughter). Blocks were split into 2 groups, and block groups were fed for either 153 or 174 d. No implant × ZH interactions were noted for cumulative performance data. Overall, shrunk final BW (567, 606, and 624 kg for NI, REV-S, and REV-X, respectively), ADG (1.25, 1.51, and 1.60 kg), and G:F (0.14, 0.16, and 0.17) increased (P < 0.05) as TBA and E(2) dose increased. Implanting increased (P < 0.05) DMI, but DMI did not differ (P > 0.10) between REV-S and REV-X (8.8 for NI vs. 9.4 kg/d for the 2 implants). From d 1 to 112 of the feeding period, implanting increased (P < 0.05) ADG and G:F, but REV-S and REV-X did not differ (P > 0.10). From d 112 to end, ADG increased by 19% (P < 0.05) and G:F was 18% greater (P < 0.05) for REV-X vs. REV-S. Carcass-adjusted final BW (29-kg difference), ADG (0.2-kg/d difference), and G:F (0.02 difference) were increased (P < 0.05) by ZH, but daily DMI was not affected by feeding ZH. Hot carcass weight was increased (P < 0.05) by ZH (19-kg difference) and implant, with REV-X resulting in the greatest response (HCW of 376 for NI vs. 404 and 419 kg for REV-S and REV-X, respectively; P < 0.05). An implant × ZH interaction (P = 0.05) occurred for dressing percent (DP). Without ZH, implanting increased DP, but DP did not differ (P > 0.10) between REV-X and REV-S. With ZH, REV-X increased (1.7%; P < 0.05) DP vs. NI and REV-S. Marbling score, 12th-rib fat, and KPH were not affected (P > 0.10) by implant or ZH. Overall, treatment increased steer performance and HCW in an additive fashion, suggesting different mechanisms of action for ZH and steroidal implants. In addition, a greater dose of TBA + E(2) and extended payout improved steer performance and HCW.  相似文献   

2.
Two experiments were conducted at two locations to determine the effects of dietary CP concentration and source on performance, carcass characteristics, and serum urea nitrogen (SUN) concentrations of finishing beef steers. British x Continental steers were blocked by BW (357 +/- 28 and 305 +/- 25 kg initial BW; n = 360 and 225; four and five pens per treatment in Exp. 1 and 2, respectively). Steam-flaked corn-based diets were arranged in a 3 x 3 factorial with three CP concentrations (11.5, 13, or 14.5% of DM) and three sources of supplemental CP (N basis): 100% urea; 50:50 blend of urea and cottonseed meal; or 100% cottonseed meal. Steers in both experiments were initially implanted with Ralgro and reimplanted with Revalor-S on d 56. Performance and carcass data were pooled across locations. Crude protein concentration x source interactions were not observed (P = 0.22 to 0.93) for performance and carcass data. Crude protein concentration affected ADG (P = 0.02) and carcass-adjusted (to a common dressing percent within location) ADG quadratically (P = 0.06). Increasing the concentration of supplemental urea linearly increased carcass-adjusted ADG and G:F (P < 0.05) and carcass-adjusted G:F (P < 0.001). Dry matter intake was not affected (P = 0.93) by either CP concentration or source. Hot carcass weight (HCW; P = 0.02), LM area (P = 0.05), and dressing percent (P = 0.03) increased linearly with increasing urea concentration, whereas increasing CP concentration quadratically affected HCW (P = 0.02), with a maximum at 13% CP. Differences in backfat thickness and yield grade were negligible across treatments. Neither marbling score nor percentage of carcasses grading USDA Choice was affected by CP concentration or source. At all times measured, SUN concentrations increased (P < 0.05) with increasing CP concentration, but effects of CP source were small and variable across time. Results indicate that increasing CP concentrations from 11.5 to 13% slightly increased ADG and carcass-adjusted ADG, whereas increasing the proportion of supplemental urea increased carcass-adjusted ADG, G:F, and carcass-adjusted G:F and increased HCW, LM area, and dressing percent. A CP concentration above 13% seemed detrimental to ADG and HCW. Serum urea N increased over time, with CP concentration having a greater effect than CP source.  相似文献   

3.
Six experiments were conducted to evaluate dietary cation-anion difference (DCAD) in concentrate diets on urinary pH, feedlot performance, and N mass balance. In Exp. 1, 15 wether lambs (33.5 ± 3.0 kg) in five 3 × 3 Latin squares were fed a basal diet of 82.5% dry-rolled corn (DRC), 7.5% alfalfa hay, 5% molasses, and 5% supplement with different proportions of anionic and cationic salts. The DCAD was -45, -24, -16, -8, 0, +8, +16, +24, +32, and +40 mEq per 100 g of DM with the control basal diet (DCAD = +8) included in each square. Urinary pH increased (cubic, P < 0.01) as DCAD increased and DMI increased linearly (P < 0.01) with increasing DCAD. In Exp. 2 and 3, 8 Holstein steers (312 ± 24 kg) were used in 2 consecutive 4 × 4 Latin squares. Steers were fed either the same basal diet as Exp. 1 or a basal diet with 20% wet distillers grains (WDGS) replacing DRC. In Exp. 2, DCAD was adjusted to -2, -12, and -22 mEq per 100 g of DM from the basal diet (DCAD = +8) and DCAD was adjusted in Exp. 3 to -12, -22, and -32 mEq per 100 g of DM from the basal WDGS diet (DCAD = -2). Urinary pH decreased linearly as DCAD decreased (P < 0.01) in both experiments, whereas DMI decreased linearly in Exp. 2 (P = 0.02) but not Exp. 3 (P = 0.96). In Exp. 4, 6 crossbred steers (373 ± 37 kg) were used in a 2-period crossover design. Steers were fed the same basal diet as Exp. 3 with DCAD of -16 (NEG) and +20 (POS) mEq per 100 g of DM. Urinary pH and DMI (P < 0.05) were less for cattle fed the NEG diet compared with POS. In 2 experiments, steers (n = 96 each) were fed NEG or POS as calves (260 ± 22 kg of BW) for 196 d from November to May (Exp. 5) or as yearlings (339 ± 32 kg of BW) for 145 d from June to October (Exp. 6). Final BW, DMI, ADG, and HCW were not different (P > 0.11) among treatments in either experiment. Efficiency of BW gain was increased (P = 0.05) for steers fed NEG compared with POS in Exp. 5 but was not different (P = 0.11) in Exp. 6. Amount of N intake, retention, excretion, and manure N (kg/steer) were not different (P > 0.11) among treatments in either experiment. Manure pH (soil, feces, and urine) was decreased (P < 0.01) in pens fed NEG compared with POS in both experiments. Amount of N lost (kg/steer) was not different (P = 0.44) in Exp. 5, but tended (P = 0.09) to be 10.6% greater for POS compared with NEG in Exp. 6. Urinary pH was decreased by reducing DCAD, but this had minimal effect on N losses in open feedlot pens in these experiments.  相似文献   

4.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

5.
Two commercial feedlot experiments and a metabolism study were conducted to evaluate the effects of monensin concentrations and bunk management strategies on performance, feed intake, and ruminal metabolism. In the feedlot experiments, 1,793 and 1,615 steers were used in Exp. 1 and 2, respectively, in 18 pens for each experiment (six pens/treatment). Three treatments were evaluated: 1) ad libitum bunk management with 28.6 mg/kg monensin and clean bunk management strategies with either 2) 28.6 or 3) 36.3 mg/kg monensin. In both experiments, 54 to 59% of the clean bunk pens were clean at targeted clean time, or 2200, compared with 24 to 28% of the ad libitum pens. However, only 13% of the pens were clean by 2000 in Exp. 1 (summer), whereas 44% of the pens in Exp. 2 (winter) were clean by 2000. In Exp. 1, bunk management and monensin concentration did not affect carcass-adjusted performance. In Exp. 2, steers fed ad libitum had greater DMI (P < 0.01) and carcass-adjusted ADG (P < 0.01) but feed efficiency (P > 0.13) similar to that of clean bunk-fed steers. Monensin concentration had no effect on carcass-adjusted performance (P > 0.20) in either experiment. A metabolism experiment was conducted with eight fistulated steers in a replicated 4 x 4 Latin square acidosis challenge experiment. An acidosis challenge was imposed by feeding 125% of the previous day's DMI, 4 h later than normal. Treatments consisted of monensin concentrations (mg/kg) of 0, 36.7, 48.9, or 36.7 until challenged and switched to 48.9 on the challenge day and 4 d following. Each replicate of the Latin square was managed with separate bunk management strategies (clean bunk or ad libitum). Feeding any concentration of monensin increased number of meals and decreased DMI rate (%/h) (P < 0.12) for the 4 d following the acidosis challenge. Meal size, pH change, and pH variance were lower (P < 0.10) for steers fed monensin with clean bunk management. However, no monensin effect was observed for steers fed ad libitum. Bunk management strategy has the potential to decrease DMI and ADG when steers managed on a clean bunk program are restricted relative to traditional, ad libitum bunk programs. Monensin helps control intake patterns for individuals, but increasing concentration above currently approved levels in this study seemed to have little effect.  相似文献   

6.
Two experiments were conducted to investigate the effects of proportion of dietary corn silage during periods of feed restriction on performance of steers. In Exp. 1, Simmental x Angus steer calves (n = 107; initial BW = 273 +/- 3.8 kg) were allotted to 12 pens with eight or nine steers/pen and four pens/treatment. Periods of growth were 273 to 366 kg BW (Period 1), 367 to 501 kg BW (Period 2), and 502 to 564 kg BW (Period 3). In two of the dietary regimens, steers were given ad libitum access to feed throughout the experiment and were fed either a 15% corn silage diet in each period or an 85, 50, and 15% corn silage diet in Periods 1, 2, and 3; respectively. In the third feeding regimen, a programmed intake feeding regimen was used. Steers were fed a 15% corn silage diet in each period. However, feed intake was restricted to achieve a predicted gain of 1.13 kg/d in Period 1 and 1.36 kg/d in Period 2, and feed was offered for ad libitum consumption in Period 3. For the entire experiment, ADG was similar (P = 0.41) among treatments and feed efficiency was lower (P < 0.10) for steers in the corn silage regimen than for steers in the programmed intake and ad libitum regimens. In Exp. 2, Simmental x Angus steer calves (n = 106; initial BW = 233 +/- 2 kg) were allotted by BW to 12 pens (three pens/treatment) and fed in three periods similar to those described in Exp. 1. Four feeding regimens were investigated: 1) AL; steers were offered a 15% corn silage diet for ad libitum consumption in all three periods; 2) PI; DMI was programmed to achieve gains as described in Exp. 1; 3) CS-HLL; programmed intake as described above except diets contained 85, 15, and 15% corn silage in Periods 1, 2, and 3, respectively; and 4) CS-HIL; same feeding regimens as CS-HLL, except diets contained 85, 50, and 15% corn silage in Periods 1, 2, and 3, respectively. Steers were given ad libitum access to feed in Period 3. Overall ADG was lower (P < 0.05) for steers in the CS-HLL and CS-HIL feeding regimens than for steers in the AL and PI regimens; feed efficiency was greatest for steers in the PI regimen. Few effects of feeding regimen on carcass characteristics were observed.  相似文献   

7.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

8.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

9.
Twenty-eight Angus (289 +/- 3.8 kg) steers were used in a completely randomized design to evaluate the effect of isocaloric supplementation of 2 different energy sources to steers rotationally grazing tall fescue pastures for 197 d in comparison to positive and negative controls. Steers were supplemented with either corn grain (0.52% BW on a DM basis; PC) or soybean hulls plus corn oil (0.45% BW on a DM basis + 0.10% BW on an as-fed basis; PO) using Calan gates for individual intake measurement. Negative, pasture only (PA), and positive, high-concentrate control diets (85% concentrate:15% roughage on DM basis; C) were also included in the study. Steers on PC, PO, and PA treatments were managed together under a rotational grazing system, whereas C steers were fed a high-concentrate diet for the final 113 d using Calan gates. Forage DMI and apparent DM and NDF digestibility for the grazing treatments were evaluated using Cr(2)O(5) and indigestible NDF as digesta markers. Energy supplementation decreased (P = 0.02) forage DMI (% of BW) with respect to PA, but not (P = 0.58) total DMI. There were no differences (P = 0.53) among grazing treatments on apparent total DM digestibility. However, NDF digestibility was less (P < or = 0.05) in PC than in PO and PA; the latter 2 treatments did not differ (P > 0.05). Overall ADG was greater (P < 0.01) in supplemented, regardless of type, than in nonsupplemented grazing treatments. During the final 113 d, ADG was greater (P < 0.01) in C than in the grazing treatments. Overall supplement conversion did not differ (P = 0.73) between supplement types and was less (P = 0.006) than C. Carcass traits did not differ (P > 0.05) between energy sources. Dressing percentage and HCW were greater (P < 0.01) in supplemented cattle than in PA. Fat thickness and KPH percentage for PA were less (P < 0.05) than for PO but did not differ (P > 0.14) from PC. Marbling score, LM area, and quality grade did not differ (P > 0.05) between grazing treatments. Hot carcass weight for C was heavier (P < 0.001) than for pastured cattle. Quality and yield grades of C carcasses were also greater (P < 0.001) than carcasses from pastured steers. Energy supplementation, regardless of source, to grazing steers increased ADG, dressing percentage, and carcass weight compared with PA steers; however, supplemented steers had less ADG, efficiency, dressing percentage, and carcass weight compared with high-concentrate finished steers.  相似文献   

10.
One grazing and two feeding experiments were conducted to compare the feeding value of corn residue or corn grain from a genetically enhanced corn hybrid (corn rootworm-protected; event MON 863) with nontransgenic, commercially available, reference hybrids. In Exp. 1, two 13.7-ha fields, containing corn residues from either a genetically enhanced corn root-worm-protected hybrid (MON 863), or a near-isogenic, nontransgenic control hybrid (CON) were divided into four equal-sized paddocks. Sixty-four steer calves (262 +/- 15 kg) were stratified by BW and assigned randomly to paddock to achieve a stocking rate of 0.43 ha/steer for 60 d, with eight steers per paddock and 32 steers per hybrid. A protein supplement was fed at 0.45 kg/steer daily (DM basis) to ensure protein intake did not limit performance. Steer ADG did not differ (P = 0.30) between steers grazing the MON 863 (0.39 kg/d) and CON (0.34 kg/d) corn residues for 60 d. The four treatments for the feeding experiments (Exp. 2 and 3) included two separate reference hybrids, the near-isogenic control hybrid (CON), and the genetically enhanced hybrid (MON 863) resulting in two preplanned comparisons of CON vs. MON 863, and MON 863 vs. the average of the reference hybrids (REF). In Exp. 2, 200 crossbred yearling steers (365 +/- 19 kg) were fed in 20 pens, with five pens per corn hybrid. In Exp. 3, 196 crossbred yearling steers (457 +/- 33 kg) were fed in 28 pens, with seven pens per corn hybrid. In Exp. 2, DMI and G:F did not differ (P > 0.10) between MON 863 and CON; however, steers fed MON 863 had a greater (P = 0.04) ADG than steers fed CON. Gain efficiency was greater (P = 0.05) for MON 863 cattle than for REF cattle in Exp. 2, but other performance measurements (DMI and ADG) did not differ (P > 0.10) between MON 863 and REF. No differences (P > 0.10) were observed for performance (DMI, ADG, and G:F) between MON 863 and CON or MON 863 and REF in Exp. 3. In terms of carcass characteristics, no differences (P > 0.10) were observed between MON 863 and CON, as well as MON 863 and REF, for marbling score, LM area, or 12th rib fat thickness in both Exp. 2 and 3. Overall, performance was not negatively affected in the corn residue grazing or feedlot experiments, suggesting the corn rootworm-protected hybrid (event MON 863) is similar to conventional, nontransgenic corn grain and residues when utilized by beef cattle.  相似文献   

11.
The efficacy of replacing broiler litter with rice mill feed was evaluated in four experiments. In Exp. 1, 40 predominantly Angus steers (initial BW = 277+/-18.2 kg) were fed four dietary treatments for 112 d (five steers per pen; two pens per diet). Dietary treatments (DM basis) were as follows: 1) 47% broiler litter:53% corn; 2) 60% rice mill feed:40% corn; 3) 50% rice mill feed:50% corn; and 4) 40% rice mill feed:60% corn. All diets, along with bermudagrass hay, were fed free choice. Daily gains were faster (P < 0.10) for the 50:50 and 40:60 diets (1.26 and 1.30 kg/d, respectively) than for the broiler litter diet (0.89 kg/d). Daily DMI was less (P < 0.10) by steers consuming rice mill feed-based diets than by those consuming broiler litter-based diets. In Exp. 2, 16 Angus x Charolais steers (initial BW = 277+/-22.7 kg) were fed the same four diets used in Exp. 1 while housed in individual metabolism stalls for determination of nutrient digestibility. Daily DMI was not different (P > 0.10) among diets. Nutrient digestibilities did not differ among diets (P > 0.10). In Exp. 3, 40 Continental cross steers (initial BW = 257+/-21.3 kg) were fed one of four dietary treatments for 112 d (five steers per pen; two pens per diet). On a DM basis, diets were as follows: 1) 47% broiler litter:53% soyhulls; 2) 70% rice mill feed:30% soyhulls; 3) 60% rice mill feed:40% soyhulls; and 4) 50% rice mill feed:50% soyhulls. All diets, along with bermudagrass hay, were fed free choice. Daily gains were less (P < 0.05) for the broiler litter diet than for the 60:40 and 50:50 diets (1.05, 1.16, and 1.28 kg/d, respectively), and steers fed the broiler litter diet consumed less DM than did steers fed the varying rice mill feed-based diets (P < 0.10). In Exp. 4, 16 Angus x Charolais steers (initial BW = 292+/-21.1 kg) were fed the same four diets as in Exp. 3 while housed in individual metabolism stalls for determination of nutrient digestibility. Daily DMI was less (P < 0.01) for the broiler litter diet (5.0 kg/d) than for the 70:30, 60:40, and 50:50 diets (7.8, 7.9, and 7.9 kg/ d, respectively). Digestibilities for DM, OM, and ADF did not differ (P > 0.10) among treatments; however, CP digestibility was greatest (P < 0.10) for the 60:40 diet, and NDF digestibility was least (P < 0.10) for the 70:30 diet. Rice mill feed can be used to replace broiler litter to formulate low-cost diets for stocker calves. Soyhulls and corn can be blended with rice mill feed to produce acceptable backgrounding diets for growing beef calves.  相似文献   

12.
In a 4-yr study, early-weaned Simmental steers (n = 192) of known genetics were individually fed to determine genetic, performance, and carcass factors explaining variation in carcass value and profitability. Steers were weaned at 88.0 +/- 1.1 d of age and pen-fed a high-concentrate diet (108.99 dollars/t) for 84.5 +/- 0.4 d before allotment. Calves were implanted with Synovex C at weaning and successively with Synovex S (Fort Dodge Animal Health, Fort Dodge, IA) and Revalor S (Intervet, Inc., Millsboro, DE). Steers consumed a 90% concentrate diet (98.93 dollars/t), consisting primarily of coarse cracked corn and corn silage, for 249.7 +/- 0.7 d and slaughtered at 423.3 +/- 1.4 d of age. Five-year price data were collected for feedstuffs, dressed beef, and grid premiums, and discounts. Average dressed beef price was 110.67 dollars/45.4 kg. Premiums (dollars/45.4 kg) were given for Prime (5.62 dollars), Average Choice (1.50 dollars), and yield grades (YG) 1 (2.46 dollars), 2A (1.31 dollars), and 2B (1.11 dollars). Discounts (dollars/45.4 kg) were given for Standard (-16.85 dollars), Select (-8.90 dollars), and YG 3A (-0.12 dollars), 3B (-0.19 dollars), 4 (-14.16 dollars), and 5 (-19.56 dollars). Discounts were given for HCW extremes as well (409 to 431 kg, -0.64 dollars; 432 to 454 kg -11.39 dollars; > 454 kg, -19.71 dollars). Input costs included annual cow costs (327.77 dollars), veterinary/medical and labor (35 dollars per animal), feed markup (22 dollars/t), yardage (0.25 dollars/d per animal), and interest (10%). Dependent variables were carcass value and profit per steer. Independent variables were year, weaning weight EPD, yearling weight EPD, marbling EPD, DMI, ADG, G:F, HCW, calculated YG, and marbling score (MS). Carcass value was correlated (P < 0.05) with yearling weight and marbling EPD, DMI, ADG, feed efficiency, HCW, and MS. Carcass weight, MS, and YG accounted for nearly 80% of the variation in carcass value among steers, explaining 51, 10, and 8%, respectively. Profit was correlated (P < 0.05) with DMI, ADG, feed efficiency, HCW, and MS. Carcass weight, MS, YG, and DMI accounted for nearly 78% of the variation in profit among steers, explaining 21, 18, 12, and 3%, respectively. Carcass weight was the most critical factor contributing to carcass value, whereas BW and carcass quality were the primary factors affecting steer profitability. These models represent the relative importance of factors contributing to value and profitability in early-weaned Simmental steers based on historical pricing scenarios.  相似文献   

13.
14.
Two experiments with a randomized complete block design were conducted to determine the effects of phase feeding of CP on performance, blood urea nitrogen (BUN), manure N:P ratio, and carcass characteristics of steers fed in a feedlot. In Exp. 1, 45 crossbred steers (initial BW = 423 +/- 3.3 kg) were individually fed a diet formulated to contain 13.0% CP (DM basis) for 62 d. On d 63, the dietary CP was maintained at 13.0% or formulated to contain 11.5 or 10.0% CP until slaughter. Actual CP values were 12.8, 11.8, and 9.9%, respectively. Reducing the CP concentration of the diet did not affect ADG of steers from d 62 to 109 (P = 0.54) or over the 109-d feeding period (1.45, 1.50, and 1.49 kg/d for 13.0, 11.5, and 10.0% CP, respectively; P = 0.85). No differences (P > 0.12) among treatments were detected for BUN concentrations on d 0, 62, or 109. Gain:feed, DMI, and carcass characteristics did not differ among treatments (P > 0.10). In Exp. 2, 2 trials were conducted using 184 (initial BW = 406 +/- 2.6 kg) and 162 (initial BW = 342 +/- 1.9 kg) crossbred steers. Data from the 2 trials were pooled for statistical analysis, and trial effect was added to the statistical model. Steers were fed a diet formulated to contain 13.0% CP until reaching approximately 477 kg. When the average BW of the pen was 477 kg, diets were maintained at 13.0% CP or reduced to contain 11.5 or 10.0% CP. Actual CP values were 12.4, 11.5, and 9.3% CP for treatments 13.0, 11.5, and 10.0% CP, respectively. Reducing the CP content of the diet did not affect ADG after the diet changed (P = 0.16) or throughout the finishing period (P = 0.14). Immediately before slaughter, steers fed the 13.0% CP diet had greater (P < 0.001) BUN concentrations than steers fed the 11.5 and 10.0% CP diets. Carcasses from cattle fed the 11.5% CP diet had greater (P = 0.02) fat thickness than the 13.0 and 10.0% CP treatments, whereas carcasses from cattle fed 13.0% CP had greater (P = 0.004) marbling scores than steers fed the 11.5 or 10.0% CP diets. Other carcass characteristics, DMI, and G:F did not differ (P > 0.10) among treatments. The N:P ratio was increased with the 10.0% CP diet (P = 0.02) compared with the 11.5 or 13.5% CP treatments; however, manure composition did not differ (P > 0.10) among treatments. These results indicate that reduced CP concentration during the finishing period does not affect feedlot performance but can improve the N and P relationship in the manure.  相似文献   

15.
Effects of bovine respiratory disease (BRD) on stocker cattle systems are unknown under extensive rangeland environments. Three experiments were conducted to test the hypothesis that BRD-based morbidity is a major factor affecting the productivity and profitability of stocker cattle grazing Southern Plains rangelands. In Exp. 1 (658 male calves; average BW = 231 kg), 17% of the cattle were treated for BRD <8 d, 6% for 8 to 14 d, and 8% for >14 d. Morbid cattle had lower ADG than did healthy cattle (P < 0.10). Cattle requiring 14 d of pharmaceutical therapy gained less than cattle having <14 d therapy (P < 0.01). In Exp. 2, (279 steers and bulls; average BW = 216 kg), the ADG by steers (0.74 kg x animal(-1) x d(-1)) was greater (P < 0.05) than by bulls castrated after arrival (0.64 kg x animal(-1) x d(-1)). Castration after arrival led to a 13.5% loss in daily gain and a 10.3% loss in season-long gain. More (P < 0.05) bulls castrated after arrival (60%) were morbid compared with steers (28%). In Exp. 3, 633 heifers (average BW = 251 kg) were used to test the effects of morbidity on weight gain and reproduction. Heifers with lower initial weights exhibited increased (P < 0.05) morbidity. Heifers requiring two or more antibiotic treatments gained 0.03 kg/d less (P < 0.10) than did healthy heifers and had lower (P < 0.05) conception rates (66 vs. 81%). Conception rate in twice-treated heifers was 19% less than healthy heifers. Morbid heifers conceived 0.6 mo later (P < 0.05) than healthy heifers. Under the conditions of Exp. 1 and Exp. 2, morbidity decreased net returns 9.7 to 21.3% per animal. Adjusted gross returns per animal in Exp. 3 for replacement heifers were 3 to 7.8% less for morbid heifers.  相似文献   

16.
Three studies were conducted to evaluate the feeding value of slice alfalfa hay in feedlot diets. In Exp. 1, 108 steer calves (183.1 +/- 1.2 kg initial BW; 6 pens/treatment) were used in a completely randomized design to evaluate the effect of baling method on performance and morbidity of newly received calves. The study lasted 28 d. Treatments consisted of a 65% concentrate receiving diet containing 1) ground or 2) slice alfalfa hay. Steer calves were fed daily at 0800 h. Animals also received long-stem sudangrass hay the first 7 d. Steers were weighed on d 0, 16, and 28. Feed, sudangrass hay, or feed plus sudangrass hay intakes were not affected (P > 0.25) by treatment. Conversely, ADG from d 0 to 16 was greater (P < 0.001) for slice than ground (1.27 vs. 0.81 +/- 0.067 kg/d, respectively) and from d 0 to 28 (1.23 vs. 0.91 +/- 0.042 kg/d, respectively). In addition, G:F was greater (P < 0.001) for slice than ground hay from d 0 to 16 (0.39 vs. 0.25 +/- 0.021), and from d 0 to 28 (0.31 vs. 0.24 +/- 0.013 for slice and ground, respectively). Moreover, morbidity (40.5 +/- 3.9%; P = 0.20) and retreatment rates (30.7 +/- 7.5%; P = 0.14) were similar for slice and ground. In Exp. 2, 176 crossbred steers (393.9 +/- 10.8 kg initial BW) were used in an 84-d feeding experiment (4 pens/treatment) in a randomized complete block experimental design with a 2 x 2 factorial arrangement of treatments to evaluate effects of alfalfa baling method (ground or slice) and forage level (8 or 14%) on growth performance. Experimental diets were based on steam-flaked corn. Daily BW gain was greater (P = 0.10) for steers consuming ground compared with the slice hay diet. A baling method x forage level interaction (P = 0.07) was observed for DMI. Baling method did not (P = 0.98) influence DMI with 8% roughage level. But with 14% roughage, DMI was greater (P = 0.02) for steers consuming ground hay than the slice diet. The G:F ratio was affected (P = 0.03) only by forage level (0.194 vs. 0.182 +/- 0.003 for 8 and 14% roughage, respectively). In Exp. 3, 4 ruminally cannulated mixed-breed steers were used in a 4 x 4 Latin square design to evaluate effects on digestive function. No baling method effects (P >or= 0.16) were detected for DM, OM, CP, or NDF intakes or DM, OM, and NDF total tract digestibility. Digestibility of NDF and OM were greater (P 相似文献   

17.
Three experiments were conducted to determine the effects of cattle age and dietary forage level on the utilization of corn fed whole or ground to feedlot cattle. In Exp. 1, 16 steers were used to investigate the effects of cattle age and corn processing on diet digestibility. Two cattle age categories were evaluated (weanling [254 +/- 20 kg BW] and yearling [477 +/- 29 kg BW]; eight steers per group), and corn was fed either ground or whole to each cattle age category. Cattle age and corn processing did not affect (P > 0.10) diet digestibility of DM, OM, starch, CP, NDF or ADF, and no interactions (P > 0.10) between these two factors were detected. In Exp. 2, the effects of forage level and corn processing on feedlot performance and carcass characteristics were evaluated. One hundred eighty steers (310 +/- 40 kg BW) were allotted to 24 pens, and were fed one of the following diets: high-forage (18.2% corn silage) cracked corn (HFCC); high-forage shifting corn (whole corn for the first half of the trial, then cracked corn until harvest; HFSC); high-forage whole corn (HFWC); low-forage (5.2% corn silage) cracked corn (LFCC); low-forage shifting corn (LFSC); and low-forage whole corn (LFWC). For the high-forage diets, steers fed cracked corn had 7% greater DMI than those fed whole corn, whereas for the low-forage diets, grain processing did not affect DMI (interaction; P = 0.02). No interactions (P > 0.10) between forage level and corn processing were found for ADG and G:F. Total trial ADG and G:F, and percentage of carcasses grading USDA Choice, and carcass yield grade were not affected (P > 0.10) by corn processing. Cattle with fewer days on feed grew faster and more efficiently when cracked corn was fed, whereas cattle with longer days on feed had greater ADG and G:F when corn was fed whole (interaction; P < 0.10). In Exp. 3, the effects of forage level and corn processing on diet digestibility were evaluated. The high-forage cracked corn, high-forage whole corn, low-forage cracked corn, and low-forage whole corn diets used in Exp. 2 were fed to 16 steers (350 +/- 27 kg BW) in a digestion trial. No interactions (P > 0.10) between forage level and corn processing were detected for starch digestibility. Forage level and corn processing (grinding) did not affect (P > 0.10) diet DM, OM, starch, CP, and NDF digestibility. Processing corn did not provide additional benefits to feedlot cattle performance under these experimental conditions.  相似文献   

18.
Two experiments were conducted to examine the effect of previous BW gain during winter grazing on subsequent growth, carcass characteristics, and change in body composition during the feedlot finishing phase. In each experiment, 48 fall-weaned Angus x Angus-Hereford steer calves were assigned randomly to one of three treatments: 1) high rate of BW gain grazing winter wheat (HGW), 2) low rate of BW gain grazing winter wheat (LGW), or 3) grazing dormant tallgrass native range (NR) supplemented with 0.91 kg/d of cottonseed meal. Winter grazing ADG (kg/d) for HGW, LGW, and NR steers were, respectively, 1.31, 0.54, 0.16 (Exp. 1) and 1.10, 0.68, 0.15 (Exp. 2). At the end of winter grazing, four steers were selected randomly from each treatment to measure initial carcass characteristics and chemical composition of carcass, offal, and empty body. All remaining steers were fed a high-concentrate diet to a common backfat end point. Six steers were selected randomly from each treatment for final chemical composition, and carcass characteristics were measured on all steers. Initial fat mass and proportion in carcass, offal, and empty body were greatest (P < 0.001) for HGW, intermediate for LGW, and least for NR steers in both experiments. Live BW ADG and gain efficiency during the finishing phase did not differ (P = 0.24) among treatments, but DMI (% of mean BW) for NR and LGW was greater (P < 0.003) than for HGW steers. Final empty-body composition did not differ (P = 0.25) among treatments in Exp. 1. In Exp. 2, final carcass and empty-body fat proportion (g/kg) was greater (P < 0.03) for LGW and NR than for HGW steers. Accretion of carcass fat-free organic matter was greater (P < 0.004) for LGW than for HGW and NR steers in Exp. 1, but did not differ (P = 0.22) among treatments in Exp. 2. Fat accretion in carcass, offal, and empty body did not differ (P = 0.19) among treatments in Exp. 1, but was greater (P < 0.05) for LGW and NR than for HGW steers in Exp. 2. Heat production by NR steers during finishing was greater (P < 0.02) than by HGW steers in Exp. 1 and 2. Differences in ADG during winter grazing and initial body fat content did not affect rate of live BW gain or gain efficiency during finishing. Feeding steers to a common backfat thickness end point mitigated initial differences in carcass and empty-body fat content. However, maintenance energy requirements during finishing were increased for nutritionally restricted steers that were wintered on dormant native range.  相似文献   

19.
Two experiments were conducted to determine the effects of DMI restriction on diet digestion, ruminal fermentation, ME intake, and P retention by beef steers. In Exp. 1, twelve Angus x steers (average initial BW = 450 +/- 18 kg) were assigned randomly to 1 of 3 diets that were formulated to promote a 1.6-kg ADG at intake levels corresponding approximately to 100% (ad libitum, AL), 90% (IR90), or 80% (IR80) of ad libitum DMI. In Exp. 2, twelve crossbred steers (average initial BW = 445 +/- 56 kg) fitted with ruminal cannulae were randomly assigned to 1 of 2 diets that were formulated to promote a 1.6-kg ADG at AL or IR80. All diets delivered similar total NE, MP, Ca, and P per day. During both experiments, fecal DM output by IR80 was less (P /= 0.20) among treatments during both experiments, whereas P retention was similar (P >/= 0.46) among treatments during Exp. 1. Total VFA and the molar proportion of acetate of AL were greater (P 相似文献   

20.
Two studies were conducted to evaluate the availability of dietary Cu offered to growing beef cattle consuming molasses-based supplements. In Exp. 1, 24 Braford heifers were assigned randomly to bahiagrass (Paspalum notatum) pastures (two heifers/pasture). Heifers were provided 1.5 kg of TDN and 0.3 kg of supplemental CP/heifer daily using a molasses-cottonseed meal slurry. Three treatments were randomly assigned to pastures (four pastures/treatment), providing 100 mg of supplemental Cu daily in the form of either CuSO4 (inorganic Cu) or organic-Cu. A third treatment offered no supplemental Cu (negative control). Heifer BW was collected at the start and end of the study. Jugular blood and liver samples were collected on d 0, 29, 56, and 84. In Exp. 2, 24 Brahman-crossbred steers were fed the same molasses-cottonseed meal supplement at the same rates used in Exp. 1. Steers were housed in individual pens (15 m2) with free-choice access to stargrass (Cynodon spp.) hay. Four Cu treatments were assigned to individual steers (six pens/treatment) providing 1) 10 ppm of Cu from an organic source; 2) 10 ppm Cu from Tri-basic Cu chloride (TBCC); 3) 30 ppm of Cu from TBCC; or 4) 30 ppm of Cu, a 50:50 ratio of TBCC and organic Cu. Body weights and jugular blood and liver samples were collected on d 0, 24, 48, and 72. In Exp. 1, liver Cu concentrations did not differ between heifers supplemented with inorganic and organic Cu. Each source resulted in increased (P < 0.05) liver Cu concentrations compared with the unsupplemented control. Plasma ceruloplasmin concentrations were higher (P < 0.05) for Cu-supplemented heifers, independent of Cu source. Heifer ADG tended (P = 0.11) to increase with Cu supplementation compared with the unsupplemented control. In Exp. 2, liver Cu was greater (P < 0.05) on d 24, 48, and 72 for steers consuming 30 vs. 10 ppm of Cu. Steers supplemented with organic Cu had lower DMI than steers supplemented with 10 or 30 ppm of TBCC. These data suggest that the inorganic and organic Cu sources evaluated in these studies were of similar availability when offered in molasses supplements. A dietary Cu concentration greater than 10 ppm might be necessary to ensure absorption in beef cattle fed molasses-based supplements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号