首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
沿海滩涂棉花叶片叶绿素含量高光谱遥感估算模型研究   总被引:2,自引:0,他引:2  
卢霞 《安徽农业科学》2011,39(12):7452-7454
以连云港滩涂棉花地为研究区域,利用ASD便携式光谱仪在晴朗天气条件下测试了野外采集的棉花叶片反射光谱,选取原始光谱和一阶导数光谱作为多变量,三边参数(红边、黄边和蓝边)和归一化植被指数NDVI、比值植被指数RVI、结构相关色素指数SIPI、叶面叶绿素指数LCI、水分指数WI、窄波段微分植被指数1DZ_DGVI和窄波段植被指数TCARI/OSAVI作为单变量,分析棉花叶片叶绿素含量与这些变量之间的相关性;在相关分析的基础上构建棉花叶片叶绿素含量估算模型。结果表明,叶绿素a、b和a+b含量与单变量参数之间的相关性均未达显著水平;而与原始光谱、导数光谱都存在显著相关性。对叶绿素a含量而言,基于440 nm处的一阶导数光谱应用指数函数和幂函数构建的估算模型精度最高,R2为0.231。对叶绿素b含量而言,基于652 nm处的一阶导数光谱应用一元线性回归法构建的高光谱估算模型精度最高,R2为0.165。对叶绿素a+b含量而言,基于440 nm处的一阶导数光谱应用指数函数、复合函数和生长函数构建的估算模型精度高,R2为0.155。该研究为进一步加强滩涂农业管理和提高滩涂农作物的产量提供技术支持。  相似文献   

2.
【目的】研究猕猴桃叶片叶绿素含量的高光谱估算方法,为猕猴桃长势的遥感监测提供理论依据。【方法】以陕西杨凌蒋家寨村2018年不同生育期(初花期、幼果期、膨果期、壮果期、果实成熟期)的猕猴桃叶片为研究对象,分别测定其高光谱反射率和叶绿素含量(SPAD值),分析原始光谱和5个常见的植被指数(归一化植被指数、归一化叶绿素指数、改进的叶绿素吸收反射率指数、MERIS地面叶绿素指数、土壤调整指数)与叶绿素含量之间的相关关系,提取各生育期的特征波段,分别建立基于特征波段和植被指数的单波段叶绿素含量一元线性估算模型。利用主成分分析对原始光谱数据进行降维,将得到的主成分得分作为随机森林模型的输入变量,建立基于多波段信息的叶绿素含量多元估算模型,并对模型进行精度验证和分析。【结果】不同生育期猕猴桃叶片光谱反射率变化趋势基本一致,整体趋势为可见光波段反射率低,近红外波段反射率高;在可见光波段,光谱反射率随着叶绿素含量的升高而降低;在近红外波段,光谱反射率则随着叶绿素含量的增加而升高。通过相关性分析可知,初花期、幼果期、膨果期、壮果期、果实成熟期原始光谱的特征波段分别为729,548,707,707和712 nm,估算模型决定系数(R~2)分别为0.18,0.85,0.54,0.85和0.82,其中初花期估算模型未通过显著性检验,其余生育期均通过极显著性检验。在5个常用植被指数中,初花期与叶绿素含量相关性最高的是归一化叶绿素指数(NPCI),但是估算模型决定系数R~2只有0.1,未通过显著性检验;其他生育期与叶绿素含量相关性最高的是MERIS地面叶绿素指数(MTCI),所建立的估算模型拟合效果好,预测精度高。基于主成分分析和随机森林回归建立的不同生育期猕猴桃叶片叶绿素含量估算模型的R~2在0.91~0.98,均通过极显著性检验,其拟合效果和预测精度远高于单波段一元线性回归和基于植被指数的一元线性回归模型,是估算猕猴桃叶片叶绿素含量的最优模型。【结论】基于主成分分析的随机森林模型包含了更完整的波段信息,对不同生育期猕猴桃叶片叶绿素含量具有较好的预测能力。  相似文献   

3.
基于高光谱遥感的棉花叶片叶绿素含量估算   总被引:2,自引:0,他引:2  
为提高高光谱植被指数对棉花叶绿素含量的估算精度,以陕西省关中地区棉花花铃期叶片高光谱反射率为数据源,分析了13种植被指数与棉花叶片叶绿素相对含量(SPAD)的相关关系;同时采用降精细采样法,详细分析400~2 000nm波段范围内原始光谱反射率的任意两两波段组合而成的优化光谱指数RSI与SPAD值的定量关系,构建线性及非线性回归监测模型,并对模型进行验证。结果表明:1)所提取的13种植被指数中NIR/NIR与SPAD值的相关系数最大(r=0.914),并且基于NIR/NIR(R780/R740)构建的回归方程模型优于其他植被指数,其构建的二次曲线方程回归模型建模与验模R2分别为0.900和0.785,RMSE为4.762,RE为7.86%,为基于提取的12种植被指数构建SPAD值估算模型中最佳模型;2)优化后的比值光谱指数RSI(Ration spectral index)的敏感波段为500和563nm,RSI(500,563)与SPAD值的相关系数r=0.999,与棉花叶片SPAD含量在0.01水平下呈显著相关,其构建的二次曲线方程模型效果最优,建模和验模R2分别为0.912和1.000,RMSE为2.848,RE为4.38%。与提取的13种植被指数相比,基于RSI指数二次曲线回归模型为估算叶绿素含量的最佳模型,并且模型预测值和实测值之间的符合度较高R2=0.843,表明基于波段优化算法的优化光谱指数RSI能更好的预测棉花叶片叶绿素含量。  相似文献   

4.
通过分析红花(Carthamus tinctorius L.)原始光谱、变换光谱以及其他25种应用最普遍的高光谱参数与其叶绿素含量的相关性,并选择每个生长期与红花叶绿素含量相关性较好的高光谱指数和波段,建立不同生长期红花叶绿素含量的线性、抛物线、指数和对数模型,并用RMSE评价模型精度。最后得出各期的最佳模型:出苗期归一化差异指数(NDI)的抛物线模型具有最大模型精度0.900和检验精度0.932;分枝期黄边幅值(Dy)的抛物线模型精度为0.850,检验模型精度为0.811;始花期444 nm处二阶导数光谱的抛物线模型精度为0.734,检验精度为0.866;终花期798 nm处二阶导数光谱的抛物线模型精度为0.929;成熟期795 nm处二阶导数光谱的指数模型精度为0.904,检验精度为0.868。  相似文献   

5.
基于高光谱参量茶叶叶绿素含量估算模型研究   总被引:1,自引:0,他引:1  
根据实测叶绿素含量数据,采用原始光谱、导数光谱技术分析,得到估算铁观音茶树鲜叶叶绿素含量的光谱特征参数(DV640,R716),构建叶绿素含量的光谱参量模型,结果表明:用第5、6片叶的DV640参量构建模型估测精度较高,最高达到93%.  相似文献   

6.
【目的】 研究一种快速、简便、无损的苹果冠层叶绿素含量估测模型。探索苹果品种岩富10号冠层的高光谱特征和叶绿素含量的估测方法,为该地区岩富10号苹果营养的快速诊断奠定基础,为红富士苹果精准化管理和-7光谱尺度研究提供参考依据。【方法】以红富士苹果(Malus domestica Borkh. cv. Red Fuji)主栽品种岩富10号叶绿素含量以及冠层高光谱反射率为数据源,分析叶绿素含量与冠层原始光谱(R)、微分光谱(R')之间的相关关系,利用敏感波段建立新的对应关系,构建岩富10号叶绿素含量的多种回归估测模型,并对不同模型进行了精度评价。【结果】微分光谱用于岩富10号叶绿素含量的估测精度要显著高于原始光谱反射率;利用敏感波段组合新定义的衍生变量拟合程度更优;在多种回归方式中,三次多项式模型的拟合程度最好,最优模型为357 nm等7个波段组合定义的新植被指数所建立的三次多项式模型,其精度为0.839。【结论】应用光谱技术对南疆塔里木盆地阿克苏地区岩富10号叶绿素含量进行定量反演是可行的。  相似文献   

7.
粳稻冠层叶绿素含量PSO-ELM高光谱遥感反演估算   总被引:1,自引:0,他引:1  
目的 叶绿素含量是表征粳稻生长状态的重要指示信息,利用无人机高光谱遥感技术及时获取区域尺度的粳稻叶绿素含量。方法 以2016—2017年沈阳农业大学辽中水稻实验站粳稻无人机遥感试验数据为基础,利用连续投影算法(SPA)进行有效波段的提取,提取的特征波段分别为410、481、533、702和798 nm。将提取出的特征波段作为输入,利用极限学习机(ELM)和粒子群优化的极限学习机(PSO-ELM)分别建立粳稻冠层叶绿素含量反演模型。在PSO-ELM模型中,针对PSO算法的种群规模(p)、惯性权重(w)、学习因子(C1C2)、速度位置相关系数(m)这5个参数进行了优化。结果 确定了最优参数:p为80,w为0.9~0.3线性递减,C1C2分别为2.80和1.10,m为0.60。利用优化后的ELM和PSO-ELM所建立的粳稻冠层叶绿素含量模型的决定系数分别为0.734和0.887,均方根误差分别为1.824和0.783。结论 利用优化后的PSO-ELM建立的粳稻叶绿素含量反演模型精度要明显高于单纯利用ELM建立的反演模型,前者具有较好的粳稻叶绿素含量反演能力。本研究为东北粳稻叶绿素含量反演无人机遥感诊断提供了数据支撑和应用基础。  相似文献   

8.
准确估算叶绿素含量对于植物生长监测、产量预测、生境的适宜性评价具有重要作用。为寻求叶片叶绿素含量的高精度估算模型,以石楠为对象,实测叶片叶绿素含量和反射光谱反射率,对原始光谱进行变换并计算植被指数,通过相关性分析挑选特征波段,运用多元逐步线性回归和偏最小二乘回归建立叶绿素预测模型。结果表明:1)FDR的逐步线性回归模型和偏最小二乘模型优于R、1/R、LR、SDR;2)DNDVI(R645,R1 370)的指数函数模型为估算叶绿素含量的最佳单变量模型;3)DRI(R747,R1 464)与RI(R733,R944)的逐步线性回归模型精度最高,验证结果的决定系数R2为0.955,均方根误差RMSE为3.145。因此,该模型可以实现叶片叶绿素含量的准确估算,从而为实现高光谱技术监测植被叶绿素含量变化提供依据。  相似文献   

9.
基于高光谱特征参数的樟树叶绿素含量的估算模型研究   总被引:1,自引:0,他引:1  
叶绿素在植物的生理生态过程中非常重要,而高光谱遥感的快速发展使得定量估算植被叶绿素含量成为可能.采用美国ASD公司生产的野外光谱辐射仪测量樟树幼林的叶片光谱,对观测叶片进行了同步叶绿素含量的测定.利用基于光谱位置变量的分析方法,分析樟树叶片光谱与叶绿素含量之间的关系.结果表明:樟树幼林叶绿素含量与Db,Rg,Rg/Ro,(Rg-Ro)/(Rg+Ro)之间的相关程度很高,相关系数达到极显著检验水平;通过建立特征参数与叶绿素含量之间的估算模型,并进行精度检验,得出了叶绿素含量估算的高光谱模型为y=exp[1.356+(-361.973)Db].说明利用高光谱遥感数据可以估测樟树幼林的叶绿素含量.  相似文献   

10.
作物叶片氮含量的快速估算对于及时了解作物长势、病虫害监测以及产量评估具有重要意义。该文以经济作物生姜为研究对象,获取了2015年4月-9月不同品种、不同生育期和不同氮肥梯度下生姜叶片的高光谱和氮含量数据,对比分析了比值植被指数、归一化植被指数、植被指数组合形式对生姜叶片氮含量的估算效果。在此基础上,基于波段组合算法,筛选出了生姜叶片氮含量的敏感波段,并构建了两个新型光谱指数NDSI_((754,713))和RSI_((754,713))。结果表明,所选择的植被指数中,MCARI(705,750)/OSAVI(705,750)对生姜叶片氮含量估算效果最好,模型精度R~2、RMSE和RE分别为0.73、0.27、11.64%;利用波段组合算法构建的归一化光谱指数NDSI(754,713)对生姜叶片氮含量估算效果要优于MCARI(705,750)/OSAVI(705,750),模型估算精度R~2达0.83,使用的敏感波段713 nm与754 nm均位于植被的"红边"区域。对所建模型进行验证,叶片氮含量的预测值和实测值具有较好的一致性,验证样本R~2为0.78,RMSE为0.20,RE为9.81%。上述分析结果可为农业管理部门及时掌握生姜长势信息、制定施肥策略提供技术支持。  相似文献   

11.
为高效无损获得枸杞叶片叶绿素含量,基于无人机搭载高光谱成像仪实拍的宁夏枸杞叶片高光谱图像,结合手持叶绿素仪测定的叶片叶绿素含量,通过对高光谱图像进行特征波段选取并利用光谱微分技术处理,以反射率一阶导数为输入变量,设置不同训练集及数量,选用BP、Elman两种神经网络并分别用遗传算法(GA)、粒子群优化算法(PSO)进行优化,通过预测效果比较确定枸杞叶绿素含量预测的最优模型。结果表明,相比于传统的BP、Elman神经网络,优化后的模型预测结果更好,尤其PSO-Elman模型,预测模型变量为原始反射率与反射率一阶导数的R2分别为0.91408、0.98967。本研究结果可为宁夏枸杞的生产管理提供一定的技术支持。  相似文献   

12.
基于高光谱的苹果叶片叶绿素含量估算   总被引:1,自引:0,他引:1  
以2012、2013年山东省肥城市潮泉镇下寨村的苹果叶片为研究对象,分析叶片叶绿素含量与原始光谱反射率、连续统去除光谱之间的相关性,探索苹果叶片叶绿素含量的估算模型。结果显示:苹果叶片叶绿素含量与原始光谱相关性最好的波段在553、711和1 301 nm处,其中,以711 nm处的光谱所建立的模型最佳(R2=0.88);与连续统去除光谱相关性最好的波段在553、738和801 nm处,其中,以738 nm处的光谱所建立的模型最佳(R2=0.94)。根据相关性所选的敏感波段,利用随机森林(random forest,RF)建立基于以上6个波段的叶绿素含量预测模型(R2=0.94)。对所建立的711 nm、738 nm、RF算法估算模型进行检验,结果表明,利用RF建立的苹果叶片叶绿素含量模型最佳(R2=0.54)。  相似文献   

13.
为了研究不同水氮组合条件下叶片叶绿素含量与光谱反射率之间的相关性,从而进一步估算叶绿素含量,利用ASD Field Spec Pro Fr型光谱仪室外测量棉花叶片的光谱反射率,同时采收棉花叶片获得叶绿素含量值。计算光谱一阶微分、原始光谱反射率组成的植被指数,以及对"三边参数"与叶片叶绿素含量进行相关性分析,结果表明:"三边参数"中的红边内最大一阶微分值(D_r)与棉花叶绿素含量有很好的相关性,其决定系数r~2为0.530 5**,估测模型决定系数r~2为0.856 3**,均方根误差RMSE为0.366;植被指数中Bm SR705:(DR750-DR445)/(DR705-DR445)与棉花叶绿素含量有很好地相关性(r~2=0.696 3**),估测模型决定系数r2为0.815 7**,均方根误差RMSE为0.278。因此利用特定的植被指数和"红边参数"能够很好地预测叶绿素含量,从而为高光谱数据预测棉花叶片叶绿素含量提供理论基础。  相似文献   

14.
对高光谱数据进行预处理是提升高光谱建模精度十分必要且有效的途径。利用高光谱技术分析春小麦作物光谱及其叶绿素含量的变化,对原始光谱反射率及对应的对数、倒数、平方根、对数倒数等4种数学变换及其一阶、二阶微分进行预处理运算,分析春小麦叶片叶绿素含量与预处理后的光谱数据相关性,基于选取的敏感波段对春小麦抽穗期叶绿素含量进行偏最小二乘回归法、BP神经网络2种方法建模并进行模型验证及比较。结果表明:对原始光谱数据数学变换的微分预处理可以明显提高春小麦叶片叶绿素含量与光谱反射率的相关性;通过显著性检验的敏感波段数量经一阶、二阶微分预处理呈现明显增加趋势,对应数学变换的波段数量有所不同;对数变换的二阶微分处理所建立的PLSR模型为最优模型,该模型精度参数为决定系数R■=0.93,校正均方根误差RMSE_c=2.53,预测决定系数R~2_p=0.91,预测均方根误差RMSE_p=2.41,相对分析误差RPD=3.20。说明数学变换的微分预处理过后的模型精度和稳健性有了大幅度的提升,并且运用在高光谱遥感反演春小麦抽穗期叶片叶绿素含量上是可行的。  相似文献   

15.
无损、实时、精准地对核桃树冠层叶绿素含量进行高光谱估算,对核桃树生长监测、营养诊断具有重要的指导意义。本研究以连续2年测定126棵核桃树不同生育期冠层光谱反射率及叶绿素含量,分析果实膨大期、果实硬核期、油脂转化期和果实成熟期4个生育期冠层光谱变化规律及叶绿素含量变化特征;在冠层光谱反射率400~1 000 nm范围内计算任意两波段组合生成的RVI、DVI和NDVI指数与各生育期冠层叶绿素含量的相关性,确定各生育期最佳敏感波段组合;基于RVI、DVI和NDVI指数构建不同生育期冠层叶绿素含量估算模型,并用第2年监测数据对估算模型进行精度验证。结果表明:(1)核桃树冠层叶绿素含量随着生育期的推进,呈现先增加后降低的趋势,各生育期叶绿素含量的变异系数和标准偏差存在明显差异,冠层叶绿素含量在油脂转化期最大,果实膨大期最小;(2)从果实膨大期到果实成熟期,在可见光波段冠层光谱反射率与冠层叶绿素含量呈负相关关系,在760~1 000 nm的近红外波段由负相关变为正相关;(3)基于两波段组合生成的RVI、DVI和NDVI指数均在油脂转化期与叶绿素含量相关性最大,估算模型拟合效果更好,且精度更高。其中,RVI指数构建的模型在核桃树中后期估算精度较高,前期较低;DVI指数构建的模型在核桃早中期估算精度较高,后期较低;而基于NDVI指数构建的估算模型,在各生育期对叶绿素含量的估算效果均最为理想,验证精度最高。因此,基于两波段组合生成的NDVI指数构建的估算模型,适用于核桃树整个生育期冠层叶绿素含量的估算研究。  相似文献   

16.
以云南省香格里拉县建塘镇的高山松为研究对象,使用ASD Field Spec 3便携式野外地物光谱仪测定高山松叶片光谱,并在实验室测定叶片样本的叶绿素含量。经光谱分析技术及统计相关分析法进行光谱数据的分析处理,提取原始光谱及一阶微分光谱特征波段和光谱特征变量,建立与叶绿素含量间的单变量估测模型和双隐层BP神经网络预测模型,并采用决定系数(R~2)、均方根差(RMSE)和相对误差(RE)进行精度检验。结果表明,单变量模型以一阶微分光谱反射率的三次函数模型为最优模型,其R~2、RMSE、RE分别为0.511、1.297 6mg/g、10.06%,而基于双隐层BP神经网络最优模型的R~2、RMSE、RE分别为0.637、0.384 1mg/g、9.47%,精度达到90.53%,经比较得出其具有较优的预测能力,充分体现BP模型的可行性,为快速、准确的估测高山松叶绿素含量提供有利的理论依据。  相似文献   

17.
针对传统方法测定叶绿素含量存在的不足,采用高光谱技术建立了快速、准确、无损估测葡萄叶片叶绿素含量的方法。以采自泰安万吉山基地的葡萄叶片的高光谱反射率和SPAD值为数据源,在分析SPAD值与原始光谱反射率、原始光谱反射率一阶导数、高光谱特征变量间相关性的基础上,筛选敏感波段,建立了基于高光谱反射率的葡萄叶片叶绿素含量估测模型,即SPAD=59.352+44836.313R'601,其中R'601为601 nm波段原始光谱反射率一阶导数。  相似文献   

18.
基于高光谱数据的滴灌甜菜叶绿素含量估算   总被引:1,自引:0,他引:1  
为明确甜菜叶绿素含量与高光谱植被遥感的定量关系,探索建立干旱区甜菜叶绿素含量估测模型,即时监测甜菜生长状况,选取新疆滴灌甜菜(Beta356)为研究对象,利用ASD野外高光谱仪在甜菜叶丛快速生长期、块根膨大期与糖分积累期采集各处理反射光谱,并同时测定叶绿素含量,分析原始光谱反射率和一阶微分光谱反射率与叶绿素含量的相关关系,并进一步建立光谱特征参数和敏感波段植被指数叶绿素含量估算模型。结果表明:原始光谱反射率在近红外区(700~1 300 nm)随着氮素水平的增加呈先升高后降低趋势,红边(680~760 nm)也表现出相同趋势,原始光谱反射率在近红外区(700~1 300 nm)随着运筹管理的递进呈现升高趋势,红边(680~760 nm)也表现出相同趋势;原始光谱反射率和一阶微分反射率与叶绿素含量均具有较好的相关性,其最大正相关分别位于902 nm(r=0.574,P<0.01)和676 nm(r=0.843,P<0.01)附近,最大负相关分别位于611 nm(r=-0.664,P<0.01)和1 138 nm(r=-0.727,P<0.01)附近。对所建12个线性模型进行精度检验,其中差值植被指数DR676–DR446和DR676估算模型的预测值与实测值的决定系数分别达到0.774和0.781,以DR676所建立的估算模型最优。本研究为快速无损监测甜菜生长状况、制定氮素管理方案、指导甜菜氮肥管理提供支持。  相似文献   

19.
利用花生生物物理参数和冠层高光谱数据,基于光谱一阶微分技术,选取对生物量敏感的波段组成高光谱植被指数,建立花生叶鲜生物量的高光谱遥感估算模型。结果表明,花生叶鲜生物量在绿峰525~556 nm、红谷645~689 nm和近红外710~900 nm波段范围反射光谱与花生叶鲜生物量有极显著相关关系。高光谱反射率与叶鲜生物量在大部分可见光区和近红外波段呈显著相关,并且在可见光红光波段呈负相关,在近红外波段呈极显著正相关。花生光谱反射率与花生叶鲜生物量相关的近红外、红光波段的敏感波段分别为770、673 nm,用这2个波段构建植被指数,组成高光谱归一化植被指数(NDVI)、比值植被指数(RVI)、差值植被指数(DVI)和再次归一化植被指数(RDVI),并构建生物量反演模型;相对于NDVI、DVI、RDVI建立的简单线性函数估测模型,RVI所构建的花生叶鲜生物量估测模型的预测精度较高。  相似文献   

20.
【目的】建立并研究棉花冠层叶片叶绿素含量的高光谱估算模型,探讨合适的建模方法,以提高棉花叶绿素含量的高光谱遥感估算精度。【方法】以2016年种植的渭北旱塬区棉花鲁棉研28号为试验对象,用SPAD-502型手持式叶绿素仪和HR-1024i便携式地物光谱仪,分别测定棉花不同生育期冠层叶片SPAD值和对应的光谱反射率,分析SPAD值与光谱反射率的相关性。选取8个光谱参数,分析SPAD值与这8个光谱参数的相关性,并采用单因素回归、多元逐步回归和支持向量机(SVM)回归方法,构建棉花冠层叶片叶绿素含量的高光谱估算模型,比较各模型的决定系数(R2)、均方根误差(RMSE)以及相对误差(RE),评价模型的精度。【结果】(1)棉花冠层叶片光谱反射率在400~700nm波段随叶片SPAD值升高而降低,在700~1 000nm波段表现为SPAD值越高,叶片光谱反射率越高;(2)在530~570nm和680~730nm处叶绿素含量与光谱反射率呈极显著负相关(99.99%置信区间,n=144);(3)所选用的8个光谱参数与叶绿素含量均达到极显著相关,相关系数最高为0.686;(4)SVM回归模型验证R2达到了0.884,RMSE和RE最低,分别为2.186和3.419,比单因素回归模型中预测精度最高的SPAD-RVI1的RMSE和RE分别降低46.4%和46.3%,较多元逐步回归模型SPAD-MSR的RMSE和RE分别降低33.4%和32.1%,明显提高了棉花叶绿素含量的估算效果。采用8个光谱参数构建的SPAD-SVM8模型RMSE和RE比采用4个光谱参数构建的SPAD-SVM8模型分别降低了19.2%和23.5%。【结论】支持向量机(SVM)回归方法可以作为棉花冠层叶片叶绿素含量高光谱遥感估算的优选方法,且采用较多光谱参数构建的SVM模型估算精度更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号