首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triticale is the intergeneric hybrid between wheat and rye. With the expansion of the triticale growing area, powdery mildew has emerged and become a significant disease on this new host. Recent research demonstrated that this ‘new’ powdery mildew on triticale has emerged through a host range expansion of powdery mildew of wheat. Moreover, isolates sampled from triticale still infect their previous host, wheat, but isolates sampled from wheat hardly infect triticale. Race‐specific and adult‐plant resistance have been identified in triticale cultivars. The main objective of this study was to characterize the cellular basis of powdery mildew resistance in triticale. Commonalities with resistance responses in other cereals such as wheat, barley and oat are discussed. A detailed comparative histological study of various resistance responses during cross‐inoculation of either virulent or avirulent wheat and triticale isolates on both hosts was carried out. The present data provide evidence that for incompatible interactions, the formation of non‐penetrated papillae is the predominant resistance response, while the hypersensitive response (HR) acts as a second line of defence, to cut the fungus off from nutrients, if penetration resistance fails. It is not clear yet what causes the slower growth and reduced colony size of triticale isolates when inoculated on wheat. Possibly, post‐penetration resistance mechanisms, other than HR, are switched on during these (semi‐) compatible interactions. Molecular studies on gene expression and gene function of defence‐related genes might reveal further insights into the genetic basis of these resistance responses.  相似文献   

2.
Powdery mildew (Blumeria graminis f. sp. tritici) results in serious economic loss in wheat production. Exploration of plant resistance to wheat powdery mildew over several decades has led to the discovery of a wealth of resistance genes and quantitative trait loci (QTLs). We have provided a comprehensive summary of over 200 powdery mildew genes (permanently and temporarily designated genes) and QTLs reported in common bread wheat. This highlights the diverse and rich resistance sources that exist across all 21 chromosomes. To manage different data for breeders, here we also present a bridged mapping result from previously reported powdery mildew resistance genes and QTLs with the application of a published integrated wheat map. This will provide important insights to empower further breeding of powdery mildew resistant wheat via marker-assisted selection (MAS).  相似文献   

3.
 利用cDNA-AFLP技术, 对甜瓜抗白粉病品种‘云甜-930’在接种Podosphaera xanthii生理小种2F.后的基因表达谱进行分析。256对引物共产生188个具良好多态性的转录本(TDF), 其中109个上调表达, 79个下调表达。经过对差异片段的回收、克隆、测序分析, 最终得到60个EST。Blastx比对和功能分类分析表明, 参与物质合成与代谢的属第一大类, 占48%, 其他主要涉及物质运输(12%)、防御系统(12%)、转录调控(8%)、能量代谢(8%)、信号转导(4%)等, 7条EST(8%) 与未知功能蛋白同源性较高。选取与代谢、抗病防御、信号转导及蛋白转运等相关的4个差异基因TDF12(SEH)、TDF67(SAMDC)、TDF76(CDPK)和TDF82(PDR8)进行qRT-PCR验证, 结果显示其表达模式符合cDNA-AFLP表达谱, 同时表明这些基因可能参与了甜瓜与白粉病菌的互作过程。  相似文献   

4.
In 2002, a powdery mildew with catenate conidia lacking fibrosin bodies was found on cucumber in a greenhouse in Kanagawa Prefecture, Japan. Morphological observation revealed that the fungus belongs to Oidium subgenus Reticuloidium, anamorph of the genus Golovinomyces. Molecular phylogenetic analyses of the nucleotide sequences of the rDNA ITS regions and D1/D2 domains of the 28S rDNA indicated that the fungus belongs to the clade of G. orontii with other Golovinomyces fungi from a wide range of host plants, suggesting that the fungus was newly transported from abroad. Because there has been no prior report of cucumber powdery mildew caused by Reticuloidium, further research on the physiology, epidemiology, control and resistant cucumber varieties is required.  相似文献   

5.
Wheat (Triticum aestivum L.) powdery mildew has direct effects on photosynthesis- and energy-related pathways. Because it is prevalent in Sichuan Province, China, knowledge concerning Pm40-mediated wheat powdery mildew resistance is important for understanding host–pathogen interactions. The aim of this study was to understand physiological changes during the host–pathogen interaction, including gene expression, photosynthetic and chlorophyll fluorescence parameters, chlorophyll content, and antioxidant activity, specific to the resistance response to powdery mildew. The Pm40-expressing L693 and Pm40-deficient L1095 wheat lines were employed for comparison analyses. Fifty-eight and 26 expressed sequence tags (ESTs) were obtained from forward and reverse suppression subtractive hybridization cDNA libraries constructed from Bgt-infected L693 and L1095 leaves, respectively, and 69% of the ESTs in the forward library were related to photosynthesis- and energy metabolism-related pathways. Our data indicate that photosynthesis and carbon metabolism as well as nitrogen metabolism related to photosynthesis are the main pathways involved in Pm40-mediated wheat powdery mildew resistance and that an acetyl CoA-like gene might be a key regulatory factor in these pathways. This study provides new insight into the physiological and genetic mechanisms of resistance to wheat powdery mildew.  相似文献   

6.
On wheat seedlings systemically protected by root application of procaine-hydrochloride, griseofulvin or 6-azauracil, germination of oidia ofErysiphe graminis f. sp.tritici and penetration of this fungus into the epidermal cell wall was as high as on control plants. Inhibition of powdery mildew development became apparent only after the penetration process had started. About 85% of the infections were halted within 24 hours after the inoculation, and did not result in the formation of a haustorium. In the other cases usually not more than one haustorium per infection court was formed, which often showed anomalies, characteristic for each compound used. Development of mycelium was scanty or absent and no sporulation occurred. Similarly, on plants of a resistant wheat variety, powdery mildew inhibition became apparent only after penetration of the host had started. There was no development of mycelium or sporulation. A severe reaction of certain epidermal cells to penetration by powdery mildew was observed on resistant as well as on treated and untreated susceptible plants. However, in relation to the total number of infections, the percentage of this type of reaction was low.  相似文献   

7.
This work is a detailed study of the infection of fungal biotrophic pathogens causing powdery mildew diseases on introgression lines originating from the intergeneric hybridisation between wheat and barley (Triticum aestivum L. × Hordeum vulgare L.). Powdery mildew fungi are among the most widespread biotrophic pathogens of plants also and infect dicot and monocot species. Most powdery mildew species are strictly host specific. They colonize only a narrow range of species or one particular host species. The intergeneric hybridisation between wheat and barley could result in expansions of host ranges of the barley powdery mildew. Our experiments covered natural infections in the field and artificial infections under greenhouse conditions. Formae speciales of powdery mildew were identified on the basis of the sequencing results of ribosomal internal transcribed spacer sequences (rDNA-ITS). We identified Blumeria graminis f.sp. tritici isolate 14 (HM484334) on the wheat parent and all wheat-barley introgression lines and B. g. f. sp. hordei isolate MUMH1723 (AB 273556) on the barley parent, respectively. The wheat-barley introgression lines were inoculated with barley powdery mildew under greenhouse conditions. According to our results the added barley chromosomes (or segments) do not cause host range expansion of barley powdery mildew.  相似文献   

8.
9.
This study aimed to determine whether powdery mildew caused by Blumeria graminis is an endemic pathogen of triticale (×Triticosecale: Triticum × Secale), emerging as a result of recent changes in its pathogenicity, or whether it is a new pathogen, possibly resulting from hybridization between ff. spp. tritici and secalis. A secondary aim was to consider breeding practices that may have favoured this emergence. Phylogenetic analyses based upon six genes revealed the close relatedness of the novel entity and the ff. spp. tritici and secalis, but the IGS marker finally grouped together the isolates collected on triticale and on wheat, supporting the scenario of a recent host‐range expansion from wheat to triticale. Pathotype analyses concluded that virulence spectra of B. graminis infecting triticale were new in comparison to those observed for other reference formae speciales, and lack of fungicide resistance in triticale isolates strengthens the hypothesis of no or little genetic exchange between wheat and triticale populations of powdery mildew. This adaptation may follow the breakdown of plant resistance genes, which are probably not very diverse in current triticale cultivars since this criterion was not considered as a major one until recent years. Moreover, the complex selection and genetics of this hybrid cereal makes it difficult to predict the transmission of powdery mildew resistance genes.  相似文献   

10.
During the past years, nrDNA ITS sequences have supported the identification of many powdery mildew fungi because comprehensive analyses showed that differences in these sequences have always correlated with the delimitation of different species and formae speciales of the Erysiphales. Published data, obtained using direct sequencing of the PCR products, suggested that even one to five nucleotide differences in the ITS sequences delimit different, albeit closely related, species, and/or indicate differences in host range patterns. Here we show that such differences in the ITS sequences can be detected even in a single sample of a powdery mildew fungus. We sequenced the ITS region in 17 samples, representing six powdery mildew species, both directly and after cloning the PCR products. Among these, samples of O. longipes exhibited two or three, samples of O. neolycopersici three or four, those of an Oidium sp. from Chelidonium majus up to seven, and a sample of another Oidium sp. from Passiflora caerulea two different ITS types determined after cloning. No ITS nucleotide polymorphisms were found in samples of O. lycopersici and Erysiphe aquilegiae. This suggests that some powdery mildew taxa are more variable at the ITS level than others. Thus, although the ITS sequences determined by direct sequencing represent robust data useful in delimitation and phylogenetic analysis of distinct species of the Erysiphales, these need to be used with precaution, and preferably determined after cloning, especially when dealing with closely related taxa at species and sub-species levels. With this method a hitherto undetected genetic diversity of powdery mildews can be revealed.  相似文献   

11.
Since 2001, several isolates of Blumeria graminis, the causal agent of cereal powdery mildew, maintained on detached leaves at the John Innes Centre, Norwich, UK, have spontaneously become infected with an unknown filamentous fungus whose mycelia have quickly overgrown the powdery mildew colonies and destroyed them completely. A total of five isolates of the contaminant were obtained and identified as Paecilomyces farinosus based on morphological characteristics and rDNA ITS sequence data. To determine whether these P. farinosus isolates can be considered as biocontrol agents (BCAs) of powdery mildews, we studied the interactions between P. farinosus and the following four powdery mildew species: B. graminis f.sp. hordei infecting barley, Oidium neolycopersici infecting tomato, Golovinomyces orontii infecting tobacco and Podosphaera fusca infecting cucumber. The powdery mildew colonies of all these four powdery mildew species were quickly destroyed by P. farinosus in leaf cultures but neither conidial suspensions nor cell-free culture filtrates of P. farinosus isolates could suppress the spread of powdery mildew infections on diseased barley, tomato, tobacco or cucumber plants in the greenhouse. It is concluded that P. farinosus cannot be considered as a promising BCA of powdery mildew infections although it can destroy powdery mildew colonies in detached leaf cultures and can be a menace during the maintenance of such cultures of cereal, apple, cucurbit and tomato powdery mildew isolates.  相似文献   

12.
Large-scale cDNA-AFLP profiling identified numerous genes with increased expression during the resistance response of wheat to the Septoria tritici blotch fungus, Mycosphaerella graminicola. To test whether these genes were associated with resistance responses, primers were designed for the 14 that were most strongly up-regulated, and their levels of expression were measured at 12 time points from 0 to 27 days after inoculation (DAI) in two resistant and two susceptible cultivars of wheat by real-time quantitative polymerase chain reaction. None of these genes was expressed constitutively in the resistant wheat cultivars. Instead, infection of wheat by M. graminicola induced changes in expression of each gene in both resistant and susceptible cultivars over time. The four genes chitinase, phenylalanine ammonia lyase, pathogenesis-related protein PR-1, and peroxidase were induced from about 10- to 60-fold at early stages (3 h–1 DAI) during the incompatible interactions but were not expressed at later time points. Nine other genes (ATPase, brassinosteroid-6-oxidase, peptidylprolyl isomerase, peroxidase 2, 40S ribosomal protein, ADP-glucose pyrophosphorylase, putative protease inhibitor, methionine sulfoxide reductase, and an RNase S-like protein precursor) had bimodal patterns with both early (1–3 DAI) and late (12–24 DAI) peaks of expression in at least one of the resistant cultivars, but low if any induction in the two susceptible cultivars. The remaining gene (a serine carboxypeptidase) had a trimodal pattern of expression in the resistant cultivar Tadinia. These results indicate that the resistance response of wheat to M. graminicola is not completed during the first 24 h after contact with the pathogen, as thought previously, but instead can extend into the period from 18 to 24 DAI when fungal growth increases dramatically in compatible interactions. Many of these genes have a possible function in signal transduction or possibly as regulatory elements. Expression of the PR-1 gene at 12 h after inoculation was much higher in resistant compared to susceptible recombinant-inbred lines (RILs) segregating for the Stb4 and Stb8 genes for resistance. Therefore, analysis of gene expression could provide a faster method for separating resistant from susceptible lines in research programs. Significant differential expression patterns of the defense-related genes between the resistant and susceptible wheat cultivars and RILs after inoculation with M. graminicola suggest that these genes may play a major role in the resistance mechanisms of wheat.  相似文献   

13.
14.
15.
16.
17.
细胞乳突的形成和小麦白粉菌成功侵染的关系   总被引:4,自引:0,他引:4  
 用一套己知抗白粉病单基因的小麦材料,研究了小麦白粉菌诱发寄主表皮细胞产生的乳突与成功侵染的关系。抗病小麦叶片上,诱发产生乳突的分生孢子占测定分生孢子数的58.8%,感病品种为63.8%。这表明抗性不同的小麦材料接种白粉菌之后,叶表皮细胞内形成乳突的百分率相近,然从在抗病材料和感病材料中形成的乳突阻止病原物发育和成功侵染的作用不相同,在抗病叶片上,诱发产生乳突的分生孢于中有88%停留在压力孢阶段,不继续发育,仅有12%能突破乳突形成吸器,使得侵染成功。与此对照,在感病叶片上只有32%诱发乳突的分生孢子不能穿透乳突,而68%则能突破乳突。成功地与寄主建立寄生关系。我们的研究表明,乳突能否成功地阻止白粉菌侵入可能与乳突形成的迟早有关。  相似文献   

18.
Since 2003, Torenia fournieri plants grown for experimental purposes were repeatedly infected by powdery mildew in a laboratory in Hungary. Based on morphological characteristics, the pathogen belonged to the mitosporic genus Oidium subgen. Reticuloidium, the anamorph stage of Golovinomyces. The rDNA ITS sequence was identical to that of two other powdery mildew fungi, infecting Arabidopsis and Veronica, respectively, in different parts of the world. According to a previous phylogenetic analysis of ITS and 28S rDNA sequences, those two powdery mildews belong to a recently evolved group of Golovinomyces characterized by multiple host range expansions during their evolution. Both the ITS sequence and the morphological data indicate that the powdery mildew anamorph infecting Torenia also belongs to this group. It is likely that the powdery mildew infections of the experimental T. fournieri plants, native to south-east Asia, were the result of a very recent host range expansion of a polyphagous Golovinomyces because (i) T. fournieri is absent from our region, except as an experimental plant grown in the laboratory, (ii) the powdery mildew fungus infecting this exotic plant belongs to a group of Golovinomyces where host range expansion is a frequent evolutionary scenario, (iii) cross-inoculation tests showed that this pathogen is also able to infect other plant species, notably A. thaliana and tobacco, and (iv) no Golovinomyces species are known to infect T. fournieri anywhere in the world. Although host range expansion has often been proposed as a common evolutionary process in the Erysiphales, and also in other biotrophic plant pathogens, this has not been clearly demonstrated in any case studies so far. To our knowledge, this is the first convincing case of a host range expansion event in the Erysiphales.  相似文献   

19.
Jasmonic acid (JA) signalling plays an important role in plant resistance to pathogens. Previously, JA has been found to play a role in induced disease resistance to necrotrophic pathogens in various plant species, but current researches showed that JA also enhanced resistance to biotrophic pathogens. However, its role in wheat (Triticum aestivum L.) powdery mildew (Blumeria graminis f. sp. tritici, Bgt) resistance reaction is largely unknown. To settle this issue, several typical powdery mildew resistant and susceptible wheat varieties were employed. The sensitivity to exogenous methyl jasmonate (MeJA) to wheat powdery mildew resistance, the concentration fluctuation of endogenous JAs after Bgt inoculation, and the expression profiles of nine pathogenesis-related protein genes (PR genes) after MeJA and Bgt treatments were studied systematically. Exogenous MeJA significantly enhanced the powdery mildew resistance of the susceptible varieties. After inoculation with Bgt, endogenous JAs accumulated rapidly, reached the maxima at 2 to 5 h post-inoculation (hpi), then decreased rapidly, and the concentration was almost the same as that of un-inoculated control at 96 hpi. The expression levels of the nine PRs were measured by real time quantitative RT-PCR (qRT-PCR) at different time points after MeJA application or Bgt inoculation respectively. The MeJA and Bgt strongly activated PR1, PR2, PR3, PR4, PR5, PR9, PR10 and Ta-JA2, but almost didn’t affect Ta-GLP2a. The induced powdery mildew resistance was positively correlated with the activated PR genes. JA plays a positive role in defence against Bgt. JA is a signalling molecule in wheat powdery mildew resistance and future manipulation of this pathway may improve powdery mildew resistance in wheat breeding.  相似文献   

20.
为西北农林科技大学小麦新育成品种(系)在黄淮麦区的大面积推广,该研究对83份西农新育成的小麦品种(系)进行苗期抗条锈病和白粉病鉴定,成株期抗条锈病、白粉病、叶锈病和赤霉病鉴定,并在田间自然环境下对其抗性进行鉴定及对相关抗病基因进行分子检测。结果显示,在苗期人工接种鉴定中,有63、29和16份小麦品种(系)分别对条锈菌Puccinia striiformis f.sp.tritici生理小种CYR32、CYR33和CYR34表现出抗性,9份小麦品种(系)对3个条锈菌生理小种均表现出抗性;有10、3和0份小麦品种(系)分别对白粉菌Blumeria graminis f.sp.tritici生理小种E15、E09和A13表现出抗性。在成株期人工接种鉴定中,有23、15、28和62份小麦品种(系)分别对条锈病、白粉病、叶锈病和赤霉病表现出抗性。在83份小麦品种(系)中有6份在苗期和成株期均对小麦条锈病表现出抗性。在田间抗性鉴定中,有57、6、65和40份小麦品种(系)分别对条锈病、白粉病、赤霉病及叶锈病表现出抗性。在83份小麦品种(系)中,3份含有Yr5基因,22份含有Yr9基因,3份含有Yr17基因,2份含有Pm24基因,14份含有Lr1基因,所占比例分别为3.6%、26.5%、3.6%、2.4%和16.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号