首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clonally related cortical cells show several migration patterns   总被引:19,自引:0,他引:19  
C Walsh  C L Cepko 《Science (New York, N.Y.)》1988,241(4871):1342-1345
The mammalian cerebral cortex is organized into columns of cells with common functional properties. During embryogenesis, cortical neurons are formed deep, near the lateral ventricles, and migrate radially to their final position. This observation led to the suggestion that the cortex consists of radial, ontogenetic units of clonally related neurons. In the experiments reported here, this hypothesis was tested by studying cell lineage in the rat cortex with a retroviral vector carrying the Escherichia coli beta-galactosidase gene, which can be easily visualized. Labeled, clonally related cortical neurons did not occur in simple columnar arrays. Instead, clonally related neurons entered several different radial columns, apparently by migrating along different radial glial fibers.  相似文献   

2.
The kinematic strategy encoded in motor cortical areas for classic straight-line reaching is remarkably simple and consistent across subjects, despite the complicated musculoskeletal dynamics that are involved. As tasks become more challenging, however, different conscious strategies may be used to improve perceived behavioral performance. We identified additional spatial information that appeared both in single neurons and in the population code of monkey dorsal premotor cortex when obstacles impeded direct reach paths. The neural correlate of movement planning varied between subjects in a manner consistent with the use of different strategies to optimize task completion. These distinct planning strategies were manifested in the timing and strength of the information contained in the neural population code.  相似文献   

3.
Peretz B 《Science (New York, N.Y.)》1969,166(3909):1167-1172
In Aplysia periodic spontaneous gill movements are controlled by activity endogenous to the abdominal ganglion. These movements were still observed when only the ctenidio-genital nerve was left intact between the ganglion and the gill. One kind of spontaneous gill movement (one per 5 minutes at 15 degrees C) was correlated with the expression of activity of interneuron II; others were not. With reference to this kind of spontaneous gill movement, four types of central neurons in the ganglion send processes to the gill via the nerve. Two cell types (ii, iii) are inhibited and the other two (i, iv) are excited. Two types (i, ii) elicited gill movement-one type activating large gill areas elicited spontaneous gill movements, and the other activating specific gill regions did not participate in the spontaneous gill movements. The value of this preparation in studying the role of central neurons eliciting specific patterned movements and the temporal organization of their activity is shown.  相似文献   

4.
The basal ganglia, of which the striatum is the major component, process inputs from virtually all cerebral cortical areas to affect motor, emotional, and cognitive behaviors. Insights into how these seemingly disparate functions may be integrated have emerged from studies that have demonstrated that the mammalian striatum is composed of two compartments arranged as a mosaic, the patches and the matrix, which differ in their neurochemical and neuroanatomical properties. In this study, projections from prefrontal, cingulate, and motor cortical areas to the striatal compartments were examined with the Phaseolus vulgaris-leucoagglutinin (PHA-L) anterograde axonal tracer in rats. Each cortical area projects to both the patches and the matrix of the striatum; however, deep layer V and layer VI corticostriatal neurons project principally to the patches, whereas superficial layer V and layer III and II corticostriatal neurons project principally to the matrix. The relative contribution of patch and matrix corticostriatal projections varies among the cortical areas examined such that allocortical areas provide a greater number of inputs to the patches than to the matrix, whereas the reverse obtains for neocortical areas. These results demonstrate that the compartmental organization of corticostriatal inputs is related to their laminar origin and secondarily to the cytoarchitectonic area of origin.  相似文献   

5.
Molecular genetics has revealed a precise stereotypy in the projection of primary olfactory sensory neurons onto secondary neurons. A major challenge is to understand how this mapping translates into odor responses in these second-order neurons. We investigated this question in Drosophila using whole-cell recordings in vivo. We observe that monomolecular odors generally elicit responses in large ensembles of antennal lobe neurons. Comparison of odor-evoked activity from afferents and postsynaptic neurons in the same glomerulus revealed that second-order neurons display broader tuning and more complex responses than their primary afferents. This indicates a major transformation of odor representations, implicating lateral interactions within the antennal lobe.  相似文献   

6.
Neuronal population coding of movement direction   总被引:41,自引:0,他引:41  
Although individual neurons in the arm area of the primate motor cortex are only broadly tuned to a particular direction in three-dimensional space, the animal can very precisely control the movement of its arm. The direction of movement was found to be uniquely predicted by the action of a population of motor cortical neurons. When individual cells were represented as vectors that make weighted contributions along the axis of their preferred direction (according to changes in their activity during the movement under consideration) the resulting vector sum of all cell vectors (population vector) was in a direction congruent with the direction of movement. This population vector can be monitored during various tasks, and similar measures in other neuronal populations could be of heuristic value where there is a neural representation of variables with vectorial attributes.  相似文献   

7.
A fundamental aspect of visuomotor behavior is deciding where to look or move next. Under certain conditions, the brain constructs an internal representation of stimulus location on the basis of previous knowledge and uses it to move the eyes or to make other movements. Neuronal responses in primary visual cortex were modulated when such an internal representation was acquired: Responses to a stimulus were affected progressively by sequential presentation of the stimulus at one location but not when the location was varied randomly. Responses of individual neurons were spatially tuned for gaze direction and tracked the Bayesian probability of stimulus appearance. We propose that the representation arises in a distributed cortical network and is associated with systematic changes in response selectivity and dynamics at the earliest stages of cortical visual processing.  相似文献   

8.
Human motor cortex: sensory input data from single neuron recordings   总被引:6,自引:0,他引:6  
Recordings were made from single neurons in the hand area of the human motor cortex while peripheral physiologic stimuli were applied. Such cells responded only to active and passive hand movements. Tactile and autditory (click) stimuli were itneffective. The majority of cells were activated only by movements of the contralateral hand, but a significant number (4 of 16) could be excited if a given movement was made by either hand. Of the cells responding to active movement, some showed an increased discharge before onset of the voluntary action. Such cells were excited by the same movement executed passively, a result that indicates sensory feedback from receptors activated by that movement.  相似文献   

9.
Neuronal correlates of subjective visual perception   总被引:10,自引:0,他引:10  
Neuronal activity in the superior temporal sulcus of monkeys, a cortical region that plays an important role in analyzing visual motion, was related to the subjective perception of movement during a visual task. Single neurons were recorded while monkeys (Macaca mulatta) discriminated the direction of motion of stimuli that could be seen moving in either of two directions during binocular rivalry. The activity of many neurons was dictated by the retinal stimulus. Other neurons, however, reflected the monkeys' reported perception of motion direction, indicating that these neurons in the superior temporal sulcus may mediate the perceptual experience of a moving object.  相似文献   

10.
This paper explores the movements, meanings and potential movements of men and women as they seek to secure food resources. Using a gendered mobilities framework, we draw on 66 in-depth interviews in the Kongwa district of rural Tanzania, illustrating how people move, their motivations and understandings of these movements, the taboos, rituals, and cultural characteristics of movement that hold implications for men and women and their food security needs. Results show that male potential mobility and female relative immobility is a critical factor in understanding how mobility affects food security differentially for men and women. We identify the links between mobilities and the development of social capital, particularly amongst men. We also illustrate problems with greater integration of women into the agricultural sector when these women risk stigma and censure from the increased physical movement that this integration requires. Implications from this study are examined in light of gender transformative approaches to agricultural interventions in sub-Saharan Africa.  相似文献   

11.
E Bizzi 《Science (New York, N.Y.)》1967,157(796):1588-1590
Single unit activity was recorded from the frontal eye fields (area 8) in unanesthetized monkeys seated in a primate chair with the head restrained. The frontal eye field units were identified by antidromic response to stimulation of the cerebral peduncle. The findings indicate that most of the neurons discharge only after initiation of eye movements. These cells showed steady discharge when the eyes were immobile and oriented in a specific direction.  相似文献   

12.
A goal in visual neuroscience is to reveal how the visual system reconstructs the three-dimensional (3D) representation of the world from two-dimensional retinal images. Although the importance of texture gradient cues in the process of 3D vision has been pointed out, most studies concentrate on the neural process based on binocular disparity. We report the neural correlates of depth perception from texture gradient in the cortex. In the caudal part of the lateral bank of intraparietal sulcus, many neurons were selective to 3D surface orientation defined by texture gradient, and their response was invariant over different types of texture pattern. Most of these neurons were also sensitive to a disparity gradient, suggesting that they integrate texture and disparity gradient signals to construct a generalized representation of 3D surface orientation.  相似文献   

13.
Specification of cerebral cortical areas   总被引:131,自引:0,他引:131  
P Rakic 《Science (New York, N.Y.)》1988,241(4862):170-176
How the immense population of neurons that constitute the human cerebral neocortex is generated from progenitors lining the cerebral ventricle and then distributed to appropriate layers of distinctive cytoarchitectonic areas can be explained by the radial unit hypothesis. According to this hypothesis, the ependymal layer of the embryonic cerebral ventricle consists of proliferative units that provide a proto-map of prospective cytoarchitectonic areas. The output of the proliferative units is translated via glial guides to the expanding cortex in the form of ontogenetic columns, whose final number for each area can be modified through interaction with afferent input. Data obtained through various advanced neurobiological techniques, including electron microscopy, immunocytochemistry, [3H]thymidine and receptor autoradiography, retrovirus gene transfer, neural transplants, and surgical or genetic manipulation of cortical development, furnish new details about the kinetics of cell proliferation, their lineage relationships, and phenotypic expression that favor this hypothesis. The radial unit model provides a framework for understanding cerebral evolution, epigenetic regulation of the parcellation of cytoarchitectonic areas, and insight into the pathogenesis of certain cortical disorders in humans.  相似文献   

14.
Reshaping the cortical motor map by unmasking latent intracortical connections   总被引:51,自引:0,他引:51  
The primary motor cortex (MI) contains a map organized so that contralateral limb or facial movements are elicited by electrical stimulation within separate medial to lateral MI regions. Within hours of a peripheral nerve transection in adult rats, movements represented in neighboring MI areas are evoked from the cortical territory of the affected body part. One potential mechanism for reorganization is that adjacent cortical regions expand when preexisting lateral excitatory connections are unmasked by decreased intracortical inhibition. During pharmacological blockade of cortical inhibition in one part of the MI representation, movements of neighboring representations were evoked by stimulation in adjacent MI areas. These results suggest that intracortical connections form a substrate for reorganization of cortical maps and that inhibitory circuits are critically placed to maintain or readjust the form of cortical motor representations.  相似文献   

15.
Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque.  相似文献   

16.
Electroconvulsive shock, administered for 5 to 7 days, reduced the daily rapid eye movement sleep time of seven cats to as little as 28 percent of base line levels. After day 4, eye movements during periods of cortical activation without tonic electromyographic activity were greatlyreduced. Although partially deprived of rapid eye movements for as long as 7 days, the cats showed no compensatory rise in rapid eye movement time during the recovery period, but controls equally deprived gave significant rebounds. Rapid eye movement time of anesthetized cats was not affected by current that usually produces con vulsions; it was lowered in animals convulsed with metrazol, but the same dosage of this drug, administered so as to avoid convulsions, had little eflect.It appears that some aspect of the convulsion is responsible for lowering the rapid eye movement time.  相似文献   

17.
为明确不同培养方法对新生大鼠大脑皮质神经元成熟时间、形态特征、纯度及活力等生物学特性的影响,采用DMEM培养基加Neurobasal无血清培养基法或Neurobasal无血清培养基法原代培养新生24h内SD大鼠大脑皮质神经元,倒置显微镜下观察细胞形态,MTT法检测细胞活力,免疫荧光细胞化学染色法检测神经元纯度及活性.结果显示,2种方法培养的神经元形态差异无统计学意义;但与DMEM培养基加Neurobasal无血清培养基法相比,Neurobasal无血清培养基法培养的神经元成熟更早,数目更多,纯度更高,活力更强(p0.05).结果提示,原代培养的大脑皮质神经元部分生物学特性受培养方法直接影响;Neurobasal无血清培养基法所得神经元纯度与活性较高,这为实验目的导向的神经元原代培养方法选择提供了借鉴.  相似文献   

18.
During development, formation of topographic maps in sensory cortex requires precise temporal binding in thalamocortical networks. However, the physiological substrate for such synchronization is unknown. We report that early gamma oscillations (EGOs) enable precise spatiotemporal thalamocortical synchronization in the neonatal rat whisker sensory system. Driven by a thalamic gamma oscillator and initially independent of cortical inhibition, EGOs synchronize neurons in a single thalamic barreloid and corresponding cortical barrel and support plasticity at developing thalamocortical synapses. We propose that the multiple replay of sensory input in thalamocortical circuits during EGOs allows thalamic and cortical neurons to be organized into vertical topographic functional units before the development of horizontal binding in adult brain.  相似文献   

19.
Schummers J  Yu H  Sur M 《Science (New York, N.Y.)》2008,320(5883):1638-1643
Astrocytes have long been thought to act as a support network for neurons, with little role in information representation or processing. We used two-photon imaging of calcium signals in the ferret visual cortex in vivo to discover that astrocytes, like neurons, respond to visual stimuli, with distinct spatial receptive fields and sharp tuning to visual stimulus features including orientation and spatial frequency. The stimulus-feature preferences of astrocytes were exquisitely mapped across the cortical surface, in close register with neuronal maps. The spatially restricted stimulus-specific component of the intrinsic hemodynamic mapping signal was highly sensitive to astrocyte activation, indicating that astrocytes have a key role in coupling neuronal organization to mapping signals critical for noninvasive brain imaging. Furthermore, blocking astrocyte glutamate transporters influenced the magnitude and duration of adjacent visually driven neuronal responses.  相似文献   

20.
We report the development of a pseudorabies virus that can be used for retrograde tracing from selected neurons. This virus encodes a green fluorescent protein marker and replicates only in neurons that express the Cre recombinase and in neurons in synaptic contact with the originally infected cells. The virus was injected into the arcuate nucleus of mice that express Cre only in those neurons that express neuropeptide Y or the leptin receptor. Sectioning of the brains revealed that these neurons receive inputs from neurons in other regions of the hypothalamus, as well as the amygdala, cortex, and other brain regions. These data suggest that higher cortical centers modulate leptin signaling in the hypothalamus. This method of neural tracing may prove useful in studies of other complex neural circuits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号