首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The aim of the study was the assessment of rise and persistence of neutralizing antibodies (nAb) to bovine viral diarrhea virus (BVDV) and border disease virus (BDV) after a two step vaccination using an inactivated BVDV/BDV (Mucobovin) and a modified live BVDV vaccine (Vacoviron). In a first experiment eight heifers were kept in isolation and were serologically surveyed regularly over a three year period after vaccination. The same experiment was done with 80 vaccinated cattle kept under field conditions. Neutralizing antibody titres were monitored using homologous as well as heterologous BVDV and one BDV strain, respectively. Maximum titres were obtained two to three months after vaccination. During the three years of monitoring the antibody titres decreased but never fell below the detection limit. This slow antibody regression demonstrates that a single two step vaccination elicited high nAb titres which persist over at least three years. These results might serve as a decision tool when considering the necessity and time of revaccination of cattle, which have been vaccinated using the two step method.  相似文献   

2.
Several Aujeszky's disease virus (ADV) vaccination protocols of sows were evaluated with regard to the passive protection conferred on piglets in a recently built commercial farm. Three different groups of sows were vaccinated using a Bartha K-61 strain. One group received an inactivated vaccine during pregnancy and the other two groups received attenuated vaccines, either during pregnancy (day 65) or on the seventh day of lactation. At farrowing, sows vaccinated during lactation had lower seroneutralization titres than those vaccinated during pregnancy either with inactivated or attenuated vaccines. Accordingly, their piglets were the ones with lower levels of maternally transferred neutralizing antibodies. At 4 weeks of age, five piglets born of each group of sows were challenged intranasally with a neurotropic strain of ADV. Piglets born of sows vaccinated during pregnancy with inactivated and attenuated vaccines gained 1.50 kg bodyweight and 2.50 kg bodyweight during 7 days, respectively, and did not show clinical signs, while piglets from sows vaccinated during the previous lactation lost 0.60 kg and presented moderate to severe clinical signs of ADV. Vaccination of sows during pregnancy provided more protection against ADV for piglets than sow vaccination before mating. Piglets born from sows vaccinated with attenuated or inactivated vaccines did not present remarkable differences on protection.  相似文献   

3.
Protection of the Swiss national cattle herd against foot-and mouth disease is attempted by annual vaccination with inactivated trivalent (O, A, C) vaccines. With the serotype A5 as an example, this paper demonstrates the procedure of potency testing. Serological data obtained with two vaccines in primovaccinated feeder bulls showed that neutralizing antibodies developed within 7 to 14 days post vaccination. There was no statistically significant difference in the anti-serotype antibody titers induced by each of the vaccines; differences were seen between anti-O serotype and anti-A serotype antibody titers, regardless of which vaccine was used. Epidemiological analyses with about 3000 cattle demonstrated that single-vaccinated, and to a lesser degree twice-vaccinated, animals often had short lived immunity; that is, the antibody titers waned within a few months. In contrast, the majority of thrice and multiple vaccinated animals maintained relatively high antibody titers throughout the twelve month period of observation.  相似文献   

4.
A lymphocyte transformation microassay was used to study cell mediated immunity (CMI) in chickens following primary and secondary vaccination with inactivated oil emulsion infectious bronchitis (IB) vaccine and subsequent challenge with Massachusetts-41 (M-41). Humoral immunity was monitored for comparison, using the haemagglutination inhibition (HI) microassay. Positive stimulation indices (2 to 2.7 after primary and 2 to 4.8 after secondary vaccination) were lower and HI titres were higher than those previously reported following primary and secondary vaccination with live IB vaccines. The highest HI titres appeared in birds which had received the inactivated vaccine as a secondary vaccination. Challenge of vaccinated and revaccinated birds resulted in strong HI and weak CMI secondary responses. There was no correlation between CMI and HI antibody production. Monitoring egg production and clinical signs showed that a high level of protection against challenge resulted from revaccination with an inactivated oil adjuvant vaccine.  相似文献   

5.
The saponin adjuvant Quil A has been investigated in the vaccination of cattle against foot-and-mouth disease. Using a Frenkel type vaccine a dose-response relationship has been established between Quil A and neutralizing antibody titres. Ten ml of vaccine was combined with 0, 50, 200, 800, and 3200 µg of Quil A. The combinations were each injected into 4 animals. The local reaction on the site of injection produced by injection of the vaccine alone and in combination with different doses of Quil A has been estimated. On this basis a therapeutical dose at 1 mg of Quil A has been estimated to combine maximum adjuvant effect with a minimum of adverse reactions. This dose has been tested in the vaccination of cattle with FMD vaccines derived from BHK suspension cell virus of type O and A respectively. The vaccines were tested in 10 ml and 5 ml doses with or without Quil A, and each in 4 animals. It is concluded that Quil A is a valuable adjuvant for use in the induction of neutralizing antibodies against foot-and-mouth disease in cattle.  相似文献   

6.
Intranasal (IN) vaccination of pigs with low levels of maternally-derived antibody (MDA) has previously been shown to confer good protection against challenge with virulent Aujeszky's disease virus (ADV). The objective of the present study was to determine the efficacy of IN vaccination with an attenuated ADV, in comparison with that of an inactivated vaccine given parenterally, in pigs with higher MDA titres at the time of vaccination. In one experiment, vaccinations were done at 6 weeks of age, and in another experiment pigs were vaccinated at 4 and/or 9 weeks of age. Two months after (the last) vaccination pigs were challenged intranasally with a virulent ADV. Protection was evaluated on the basis of mortality, periods of growth arrest, fever and virus shedding after challenge. The presence of MDA markedly depressed the serum-neutralizing antibody response after vaccination. Sensitisation occurred after parenteral vaccination with an inactivated vaccine despite high MDA levels. Although the intranasally-vaccinated pigs had lower levels of neutralizing antibody at the time of challenge, they were significantly better protected than pigs given 1 or 2 doses of the inactivated vaccine. Comparing the present results with those of a previous study, it appears that the efficacy of parenteral as well as intranasal ADV vaccination decreases with increasing levels of MDA at the time of vaccination.  相似文献   

7.
In order to develop a safe vaccine against bovine ephemeral fever (BEF) which could be used in areas normally free of the disease, studies were carried out on inactivated virus vaccines. Initial experiments were carried out in cattle using virus vaccines that had been inactivated with β-propiolactone or formalin and then made-up in aluminium phosphate gel or Freund's incomplete adjuvant. A minimum inactivated virus dose of 106 PFU was necessary to stimulate a serum neutralizing antibody response in cattle. β-propiolactone inactivated BEF virus vaccines in Freund's incomplete adjuvant gave the best serum neutralizing antibody responses, producing high levels of neutralizing antibody with both high and low passage level virus. However, the magnitude of the antibody response bore little relationship to resistance of vaccinated animals to challenge with virulent BEF virus. A number of animals with high neutralizing antibody titres to BEF virus did not resist challenge. Using 500-fold less live virus at equivalent passage level to the low passage inactivated vaccine, similar or slightly lower antibody levels were attained, but most of the animals resisted challenge. It is suggested that the nature of the immune response and resistance to BEF infection may be complex and that reliance on serum neutralizing antibody as an indicator of resistance may give misleading results.  相似文献   

8.
Conventional equine influenza vaccination schedules consist of a primary course of two vaccinations given 4-6 weeks apart followed by a third vaccination (booster) given approximately 5 months later. In between the primary course and the third vaccination, horses are generally considered not to be adequately protected against influenza. This study aimed to investigate whether Thoroughbred foals would benefit from a vaccination schedule in which the third vaccination was given earlier than in conventional vaccination schedules. The vaccines used were an inactivated whole virus equine influenza vaccine and an inactivated whole virus combination vaccine containing equine influenza and equine herpesvirus antigens. Four groups of foals were vaccinated with the two vaccines according to a conventional and an accelerated vaccination schedule in which the third vaccination was given 14 weeks after the first administration. In both groups, the fourth vaccination was given at the normally recommended interval of 26 weeks after the third vaccination for the combination vaccine and 52 weeks after the third vaccination with the influenza only vaccine. The horses were 4-11 months of age and seronegative for influenza. Immunological responses after vaccination were monitored for several months using the single radial haemolysis test. The results indicated that 28 weeks after the first vaccination, antibody levels in horses vaccinated according to the accelerated schedule were not significantly higher than in horses vaccinated according to the conventional schedule. In addition, the total level of antibody production (area under the curve) was not significantly different at that point although antibody titres were slightly higher (but not significantly so) between 16-30 weeks in the accelerated schedule. Between the third and fourth doses, horses vaccinated according to the accelerated schedule had antibodies against influenza below the level required for clinical protection for 39 and 18 weeks for the influenza only and the combination vaccine, respectively, whereas those vaccinated according to the conventional schedule had antibody titres below the level for clinical protection for 9-15 weeks in the corresponding period for both vaccines. Horses vaccinated according to the accelerated schedule with the combination vaccine had lower antibody titres after the fourth vaccination than those vaccinated according to the conventional schedule after the third vaccination, although antibody titres prior to vaccination were similar. For the influenza only vaccine, titres after the accelerated fourth administration were not different to those after the conventional third vaccination. There was no benefit from early booster vaccinations with the vaccines used in this study, so for these vaccines the conventional schedule provided better protection than the selected accelerated alternative. This may contrast with some other vaccine formulations, although a direct comparison using similar protocols has not been made.  相似文献   

9.
The adjuvant vaccine against infectious bovine rhinotracheitis (IBR) was tested as to its innocuousness and immunogenicity. The immunity response induced by a single or double application of different vaccine doses was evaluated according to the content of neutralization antibodies (NP) in the blood serum. A direct dependence was revealed between the size of the inoculum and NP content in the blood serum, with NP titres of 1 : 9.3; 1 : 26.6, 1 : 80 and 1 : 149 after doubled application of 1, 2, 5, and 10 ml of the vaccine. The calves inoculated at an age of one week produced antibodies in the same titres as one- to five-month-old calves. Singly inoculated animals mostly showed zero-level or low antibody titres, but revaccination induced general serum-positivity with NP titres 1 : 4 to 1 : 128. The animals which had been in contact with the IBR virus and were serologically negative during inoculation or had an NP content in the blood serum at a titre of 1 : 4 or less, gave an anamnestic response to inoculation, but revaccination did not lead to a significant rise in antibody content. Double administration of 2 ml of vaccine in four production charges induced the production of antibodies with average titres of 1 : 36, 1 : 25; 1 : 31 and 1 : 24. Inoculation of susceptible animals in non-infected herds and of clinically healthy animals in infected herds did not cause any health disorders. IBR; inactivated adjuvant vaccine; different age; different doses; immunity response; neutralization antibodies.  相似文献   

10.
After the incursion of bluetongue virus (BTV) into European Mediterranean countries in 1998, vaccination was used in an effort to minimize direct economic losses to animal production, reduce virus circulation and allow safe movements of animals from endemic areas. Vaccination strategies in different countries were developed according to their individual policies, the geographic distribution of the incurring serotypes of BTV and the availability of appropriate vaccines. Four monovalent modified live virus (MLV) vaccines were imported from South Africa and subsequently used extensively in both cattle and sheep. MLVs were found to be immunogenic and capable of generating strong protective immunity in vaccinated ruminants. Adverse side effects were principally evident in sheep. Specifically, some vaccinated sheep developed signs of clinical bluetongue with fever, facial oedema and lameness. Lactating sheep that developed fever also had reduced milk production. More severe clinical signs occurred in large numbers of sheep that were vaccinated with vaccine combinations containing the BTV-16 MLV, and the use of the monovalent BTV-16 MLV was discontinued as a consequence. Abortion occurred in <0.5% of vaccinated animals. The length of viraemia in sheep and cattle that received MLVs did not exceed 35 days, with the single notable exception of a cow vaccinated with a multivalent BTV-2, -4, -9 and -16 vaccine in which viraemia persisted at least 78 days. Viraemia of sufficient titre to infect Culicoides insects was observed transiently in MLV-vaccinated ruminants, and natural transmission of MLV strains has been confirmed. An inactivated vaccine was first developed against BTV-2 and used in the field. An inactivated vaccine against BTV-4 as well as a bivalent vaccine against serotypes 2 and 4 were subsequently developed and used in Corsica, Spain, Portugal and Italy. These inactivated vaccines were generally safe although on few occasions reactions occurred at the site of inoculation. Two doses of these BTV inactivated vaccines provided complete, long-lasting immunity against both clinical signs and viraemia, whereas a single immunization with the BTV-4 inactivated vaccine gave only partial reduction of viraemia in vaccinated cattle when challenged with the homologous BTV serotype. Additional BTV inactivated vaccines are currently under development, as well as new generation vaccines including recombinant vaccines.  相似文献   

11.
The efficacy of a bivalent inactivated vaccine against bluetongue virus (BTV) serotypes 2 (BTV-2) and 4 (BTV-4) was evaluated in cattle by general and local examination, serological follow-up, and challenge. Thirty-two 4-month-old calves were randomly allocated into 2 groups of 16 animals each. One group was vaccinated subcutaneously (s/c) with two injections of bivalent inactivated vaccine at a 28-day interval, and the second group was left unvaccinated and used as control. Sixty-five days after first vaccination, 8 vaccinated and 8 unvaccinated calves were s/c challenged with 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 2, while the remaining 8 vaccinated and 8 unvaccinated animals were challenged by 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 4. Three additional calves were included in the study and used as sentinels to confirm that no BTV was circulating locally. At the time of the challenge, only one vaccinated animal did not have neutralizing antibodies against BTV-4, while the remaining 15 showed titres of at least 1:10 for either BTV-2 or BTV-4. However, the BTV-2 component of the inactivated vaccine elicited a stronger immune response in terms of both the number of virus neutralization (VN) positive animals and antibody titres. After challenge, no animal showed signs of disease. Similarly, none of the vaccinated animals developed detectable viraemia while bluetongue virus serotype 2 and 4 titres were detected in the circulating blood of all unvaccinated animals, commencing on day 3 post-challenge and lasting 16 days. It is concluded that administration of the bivalent BTV-2 and BTV-4 inactivated vaccine resulted in a complete prevention of detectable viraemia in all calves when challenged with high doses of BTV-2 or BTV-4.  相似文献   

12.
Commercially-reared laying chickens were challenged at 31 weeks of age with a virulent infectious bronchitis (IB) virus. They showed a sharp drop in egg production, despite having been vaccinated at four and eight weeks old with live attenuated IB vaccines to a recommended schedule. In contrast, similar birds that had been further immunised at point-of-lay with inactivated oil emulsion IB vaccine, or with a combined IB/Newcastle disease (ND) emulsion vaccine, showed no detectable fall in egg production after the same challenge. Unvaccinated susceptible specific pathogen-free birds challenged at the same time stopped laying almost completely. In the birds revaccinated with emulsion vaccine, measurement of haemagglutination inhibition antibody levels to IB showed their geometric mean titres to be raised from less than 5 log2 at the time of vaccination to over 10 log2 four weeks later. Their antibody levels did not rise further followining the IB challenge whereas in the birds that had not been revaccinated antibody rises to nearly 10 log2 were detected after the same challenge. For pullets vaccinated earlier with live IB vaccine, revaccination with inactivated IB or IB/ND oil emulsion vaccine at point-of-lay provides a safe and effective way of protecting their egg production against IB infection.  相似文献   

13.
Ten-week-old pigs with high levels of maternally derived antibody (MDA) against Aujeszky's disease virus (ADV) were given either a single intranasal vaccination or one or two doses (with an interval of three weeks) of commercially available attenuated ADV vaccines intramuscularly. The pigs did not produce a clear neutralising antibody response to ADV. However, pigs vaccinated intranasally and pigs given two doses of attenuated ADV vaccines were protected against intranasal challenge with virulent ADV two months after the first vaccination. Pigs given one parenteral dose of attenuated ADV vaccine were insufficiently protected. Protection was shown by shorter periods of growth arrest and fever and a greater reduction of virulent virus shedding after challenge in vaccinated pigs than in unvaccinated control pigs. Although intranasal vaccination conferred protection comparable to two parenteral doses of attenuated vaccines, it reduced shedding of virulent virus much more effectively. These results, together with those of other studies, show that intranasal vaccination confers better protection against Aujeszky's disease in pigs with MDA than parenteral vaccination. However, the efficacy of intranasal vaccination also decreases with increasing levels of MDA at the time of vaccination.  相似文献   

14.
This article presents the results of a study of captive tigers (Panthera tigris) and lions (Panthera leo) vaccinated with a recombinant vaccine against feline leukemia virus; an inactivated adjuvanted vaccine against rabies virus; and a multivalent modified live vaccine against feline herpesvirus, calicivirus, and panleukopenia virus. The aim of the study was to assess the immune response and safety of the vaccines and to compare the effects of the administration of single (1 ml) and double (2 ml) doses. The animals were separated into two groups and received either single or double doses of vaccines, followed by blood collection for serologic response for 400 days. No serious adverse event was observed, with the exception of abortion in one lioness, potentially caused by the incorrect use of the feline panleukopenia virus modified live vaccine. There was no significant difference between single and double doses for all vaccines. The recombinant vaccine against feline leukemia virus did not induce any serologic response. The vaccines against rabies and feline herpesvirus induced a significant immune response in the tigers and lions. The vaccine against calicivirus did not induce a significant increase in antibody titers in either tigers or lions. The vaccine against feline panleukopenia virus induced a significant immune response in tigers but not in lions. This report demonstrates the value of antibody titer determination after vaccination of nondomestic felids.  相似文献   

15.
Twenty-one heads of cattle were vaccinated with Madibovin, 31 with Rabdomun and 127 with Rabisin on 4 different farms. Rabies neutralizing antibody titre (≥0.5 IU/ml) was detected in 80% of 163 animals tested about 1 month and in 42% of 133 animals tested about 1 year after primary vaccination. On 3 of the farms 86 animals received booster vaccination about 1 year after primary vaccination. All these animals had antibody titre (≥0.5 IU/ml) about 1 month after booster and antibody levels were higher than after the primary vaccination. Rabies antibody titres (≥0.5 IU/ml) were detected in 96% of 50 animals tested 1 year after the booster. No significant differences (p>0.05) in antibody levels were detected between animals vaccinated with Madibovin or Rabisin (farm C) respectively with Rabisin or Rabdomun (farm D) at any collection time. Responses to rabies vaccines varied considerably between the farms. After primary vaccination of the animals on 2 farms with the same batch of Rabisin, the antibody levels clearly differed (p<0.0001) between the farms.Our results indicate that booster is always necessary after primary vaccination to ensure that all animals are protected.  相似文献   

16.
One dose of inactivated, adjuvanted rabies vaccine of cell culture origin (Rabisin) induced good but short-duration immunity in close to 100% of the 50 semi-domesticated reindeer (Rangifer tarandus tarandus L.) vaccinated. Most of the animals (44) had rabies virus antibody titre ≥1.5 IU/ml at 38 days after vaccination. Five animals had titre 0.5 IU. Antibody titres were not, however, present 1 year after primary vaccination in most animals. About 1 year (360-413 days) after primary vaccination, 22 of the 39 reindeer that could be sampled had rabies virus antibody titre <0.5 IU/ml.  相似文献   

17.
In order to compare the effect of the route of immunization on the efficacy of a modified live Aujeszky's disease (AD) vaccine, which had deletions in both thymidine kinase (TK-) and glycoprotein gIII genes (gpIII-), 20 six-week-old pigs were vaccinated by either the intramuscular (IM) (n = 10) or subcutaneous (SC) (n = 10) route. All the animals, including five non-vaccinated control animals, were challenged with virulent AD virus 22 days after vaccination. Four of five non-vaccinated animals died within 12 days after challenge. Although none of vaccinated animals died, three of animals in the SC group exhibited clinical signs, and average daily gains in the SC group were depressed. The animals in the IM group were not found to shed challenge virus, but those in the SC group shed the virus up to 9 days. Virus neutralizing antibody titers in the vaccinated animals were low or non-detectable by 21 days after vaccination. A glycoprotein gII (gpII) screening ELISA detected gpII antibody in all animals in the IM group. While, only 30% of animals in the SC group were positive by the same test. The results of this study indicate that TK-, gpIII modified live AD virus vaccine is effective against challenge with virulent AD virus; however, vaccination by the SC route reduced vaccine efficacy in comparison with IM route.  相似文献   

18.
It has been recommended that modern equine influenza vaccines should contain an A/equi-1 strain and A/equi-2 strains of the American and European-like subtype. We describe here the efficacy of a modern updated inactivated equine influenza-herpesvirus combination vaccine against challenge with a recent American-like isolate of equine influenza (A/equine-2/Kentucky/95 (H3N8). The vaccine contains inactivated Influenza strains A-equine-1/Prague'56, A-equine-2/Newmarket-1/'93 (American lineage) and A-equine-2/ Newmarket-2/93 (Eurasian lineage) and inactivated EHV-1 strain RacH and EHV-4 strain V2252. It is adjuvanted with alhydrogel and an immunostim. Horses were vaccinated at the start of the study and 4 weeks later. Four, six and eight weeks after the first vaccination high anti-influenza antibody titres were found in vaccinated horses, whereas at the start of the study all horses were seronegative. After the challenge, carried out at 8 weeks after the first vaccination, nasal swabs were taken, rectal temperatures were measured and clinical signs were monitored for 14 days. In contrast to unvaccinated control horses, vaccinated animals shed hardly any virus after challenge, and the appearance of clinical signs of influenza such as nasal discharge, coughing and fever were reduced in the vaccinated animals. Based on these observations, it was concluded that the vaccine protected against clinical signs of influenza and, more importantly, against virus excretion induced by an American-like challenge virus strain. In a second experiment the duration of the immunity induced by this vaccine was assessed serologically. Horses were vaccinated at the start of the study and 6 and 32 weeks later. Anti-influenza antibody titres were determined in bloodsamples taken at the first vaccination, and 2, 6, 8, 14, 19, 28, 32, 37, 41, 45 and 58 weeks after the first vaccination. Vaccinated horses had high anti-influenza antibody titres, above the level for clinical protection against influenza, against all strains present in the vaccine until 26 weeks after the third vaccination.  相似文献   

19.
Although captive elephants are commonly vaccinated annually against tetanus using commercially available tetanus toxoid vaccines marketed for use in horses and livestock, no data exists to prove that tetanus toxoid vaccination produces measurable antibody titers in elephants. An ELISA test was created to measure antibody responses to tetanus toxoid vaccinations in 22 Asian elephants ranging in age from 24 to 56 years (mean age 39 years) over a 7-month period. All animals had been previously vaccinated with tetanus toxoid vaccine, with the last booster administered 4 years before the start of the study. The great majority of elephants had titers prior to booster vaccination, and following revaccination all elephants demonstrated anamnestic increases in titers, indicating that this species does respond to tetanus vaccination. Surprisingly older animals mounted a significantly higher response to revaccination than did younger animals.  相似文献   

20.
The authors vaccinated 152 cattle divided into three groups against rabies. The first group received the ERA strain and the second group an inactivated vaccine. The third group received the inactivated vaccine on two occasions with an interval of 60 days between the two doses. Their antibody response was surveyed with the fluorescent foci-inhibition test carried out on blood samples collected during a 10-month period. All animals developed an almost identical antibody response. However, at the sixth and tenth months, there was a higher number of seropositive animals in the groups vaccinated with the killed vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号