首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
The effect of soil and foliar application of different iron (Fe) compounds (FeSO4, Fe‐EDTA, Fe‐EDDS, and Fe‐EDDHA) on nutrient concentrations in lettuce (Lactuca sativa cv. Australian gelber) and ryegrass (Lolium perenne cv. Prego) was investigated in a greenhouse pot experiment using quartz sand as growth medium. Soil application was performed in both the acidic and alkaline pH range, and foliar application to plants grown in the alkaline sand only. Lettuce growth was depressed by Fe deficiency in the alkaline sand, whereas the treatments had no effect on ryegrass growth. Soil‐applied Fe compounds raised the Fe concentrations in lettuce. This was especially true for the Fe chelates, which also increased yields. Soil‐applied Fe compounds had no statistically significant effect on Fe concentrations in ryegrass. Concentrations of manganese (Mn) in lettuce were equally decreased by all soil‐applied chelates. In the alkaline sand, soil application of Fe‐EDDHA elevated copper (Cu) and depressed zinc (Zn) concentrations in lettuce. The chelates increased Zn concentration in ryegrass. Foliar application of Fe‐EDDS increased Fe concentrations in lettuce and in ryegrass most. Fe‐EDDHA depressed Mn and Zn concentrations in lettuce more than other Fe compounds, suggesting the existence of another mechanism, in addition to Fe, that transmits a corresponding signal from shoot to roots with an impact on uptake of micronutrients.  相似文献   

2.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

3.
The effects of various P and Zn levels on iron nutrition of sunflower (Helianthus annuus L.c.v. Record) were studied in two separate experiments in nutrient solution under greenhouse conditions.

In the first experiment, sunflower was grown in nutrient solutions containing four levels of P(1.5, 2.5, 3.5 and 4.5 mM/l) and three levels of Fe(0.25, 0.75, and 1.5 ppm) as FeCl3 or FeEDDHA. In the second experiment (following the first experiment), the treatments were three P levels (0.75, 1.50 and 3.00 mM/l), three Fe levels (0.25, 0.75 and 1.5 ppm) as FeEDDHA and three Zn levels (0.1, 0.2 and 0.4 ppm).

The plants receiving Fe‐chelate, except for 0.25 ppm Fe, showed no symptoms of iron chlorosis. With inorganic Fe treatments, iron chlorosis appeared after 7–10 days depending on P level, but except for 0.25 ppm Fe which remained chlorotic, plants recovered completely within 3–4 days thereafter due to pH regulating mechanism of sunflower under iron stress condition. With both sources of Fe, chlorosis was associated with high P:Fe ratio.

Increased P and Fe levels in nutrient solution resulted in general increases in the dry weights of roots and shoots. The Fe concentration of shoots, except in few instances, was not affected by P levels, indicating that the sunflower cultivar used in this experiment could utilize inorganic Fe as well as Fe‐chelate under our experimental conditions.

Increasing P levels caused significant increases in Mn content of the shoots as 0.25 and 0.75 ppm inorganic Fe3+. Increased Fe levels increased shoot Mn content with inorganic Fe and decreased it with Fe‐chelate. The effects of P, Fe and Zn on sunflower indicated an antagonistic effect of Zn on 1.5 ppm Fe for all P levels. Increased Zn levels in nutrient solution generally increased Zn content of the shoots without having any marked effect on their Mn content.  相似文献   


4.
Effect of Fe- and Mo-deficiency on the ion content of monocotyledones and dicotyledones with different susceptibility to chlorosis. In pot experiments with maize, sunflower and gras the influence of Fe- and Mo-deficiency on the concentrations of inorganic cations (K, Ca, Mg), anions (NO3, PO4, SO4, Cl) and caboxylates (sum of citrate, malate, malonate, fumarate and aconitate) in the plants was studied. Fe-deficiency increased the excess of inorganic cations over anions (C-A) and the content of carboxylates, especially of citric acid, in sunflower and maize with the highest differences in sunflower plants. The increased C-A-values were due to higher K-, Ca- and Mg-concentrations and not to reduced concentrations of anions in the Fe-deficient plants. In the varieties of maize and sunflower with high susceptibility for Fe-chlorosis, mainly the K-content of the Fe-deficient plants was raised. Mo-deficiency lead to an increase of carboxylates in sunflower, although in some cases the cation excess (C-A) was lowered. But even in these cases, the K-, Ca and Mg-content of Mo-deficient plants was raised. Knaulgras, which was sensitive to Mo-deficiency, had higher C-A-values (K-, Ca-, and Mg-contents) and increased concentrations of carboxylate in Mo-deficient plants, similar to maize with Fe-deficiency. Both Fe- and Mo-deficient plants can be characterized by increased contents of K, Ca and Mg and a higher carboxylate concentration.  相似文献   

5.
Phytotoxicity of Thallium (Tl) in Culture Solution Part 1: Effects of Tl(I) on the Growth and Heavy Metal Contents of Pea and Field Bean Plants The effects of TlNO3 and Tl(I)EDTA on growth and heavy metal contents of pea plants (Pisum sativum L. cv. Aromata) and field bean plants (Vicia faba L. cv. Hangdown) were compared in hydroponic culture experiments. In the presence of TlNO3, the essential heavy metals were available to the plants in their ionic forms. When Tl(I)EDTA was present the essential heavy metals were available as chelated complexes. TIN03 content of each organ was increased. The highest TI content was found within the stems. The increased TI contents were accompanied by depressed Mn, Zn, and Cu contents of the roots and depressed Mn contents of the stems, but increased Fe contents of the stems. Substitution of TIN03 by TI(1)EDTA resulted in a stronger growth inhibition of the pea plants, and higher TI contents of each organ. The highest TI content was found within the stems. TI(1)EDTA depressed Mn in the roots, but increased Fe and Mn in the stems, and Fe, Zn and Cu in the leaves. The increases may due to concentration by growth inhibition. The growth of the field bean was not effected by TIN03 nor by TI(1)EDTA. The field bean contained most of the TI within the roots and translocated only relatively small amounts to the shoots. This pattern was independent of the TI compound. Increasing concentrations of TIN03 resulted in depressed Mn and Zn contents of the roots, and Mn contents of the stems. Chelation of Tl(1) resulted in a decrease of the TI content of each organ. TI(1)EDTA depressed only the Mn content of the roots.  相似文献   

6.
【目的】激光剥蚀?电感耦合等离子体质谱 (laser ablation inductively coupled plasma mass spectrometry,LA-ICP-MS) 法是一种利用聚焦激光扫描激发固体样品,并经电感耦合等离子体质谱离子化,以分析样品元素含量及分布的新兴技术。本文利用LA-ICP-MS技术研究缺锌 (Zn) 胁迫下玉米根尖铁 (Fe)、锰 (Mn)、铜 (Cu)、Zn元素的分布定位,以期从组织水平揭示作物中Zn的转运富集规律及缺Zn对微量金属元素吸收转运的影响。【方法】以玉米‘郑单958’为试材,用不同加锌浓度营养液进行培养,获得根系样品烘干后磨碎、混匀、压片,取适量混匀的根系样品消煮,利用液体进样系统ICP-MS检测得到样品中实际元素含量,并与样品压片LA-ICP-MS检测信号值间进行线性回归分析,标准曲线相关性良好 (R2 = 0.9995),从而获得可适用于LA-ICP-MS定量分析的自制根系标准样品。将此标准样品与待测根尖样品放入LA样品池中,13C作为内标元素,进行缺锌胁迫下玉米根尖中锌元素分布特征的定量成像研究。【结果】缺锌胁迫下玉米根系锌元素含量显著降低,仅为正常植株的27.78%;缺锌根系中Mn和Cu含量升高。LA-ICP-MS系统定量成像显示,玉米根尖顶端Zn含量较高,由表皮向内锌含量逐渐增加;缺Zn处理根系Zn含量降低,根尖顶端Zn分布明显减少。利用LA-ICP-MS检测信号强度值对Fe、Mn、Cu元素进行定性分布,成像显示在正常根系中Fe、Mn、Cu元素在根尖前端信号强度较高,由表向内逐渐增加;缺锌处理下,根系中Fe、Mn、Cu信号强度均有不同程度增加。【结论】正常施锌玉米根尖中锌、铁、锰、铜分布呈现由表皮向中柱增加的趋势;缺锌胁迫下根系锌含量显著降低,铁、锰、铜均有不同程度积累。  相似文献   

7.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

8.
Abstract

Due to continuous single nitrogen fertilization, we hypothesized a built-up deficiency of micronutrients in crops that would limit plant growth and crop quality. In 2-year field experiments using urea-N fertilized grain maize (Zea mays L.), hybrid KWS 2376 at 0, 120 and 240 kg N ha?1 crop uptake of Zn, Mn, Cu and Fe was studied at DC 32, DC 61 and in the grain harvested. Micronutrient contents at DC 32 stage – 1st node (aboveground phytomass) and DC 61 – flowering (ear leaf) were all at levels indicative of adequate micronutrient supply to the crop. At both sampling occasions the Fe:Zn and Fe:Mn ratios were adequate implying that Fe did not inhibit the uptake of Zn and Mn. The application of nitrogen increased the Fe content at the 1st sampling in both years; in the second year the same was also the case for the Zn content. Nitrogen nutrition increased the contents of Mn and Fe at the 2nd sampling only in year 2; in the other treatments no changes were observed in the micronutrient contents. Micronutrient correlations in the grain were discovered between Zn and Mn contents and between Fe and Mn contents. In the second year the highest N-rate significantly increased the Fe and Zn content of the grain compared with the lower rates of nitrogen fertilization. Grain yields were not affected by the rate of nitrogen and ranged between 13.65 and 14.34 t ha?1 (1st year) and between 13.68 and 14.18 t ha?1 (2nd year). Nitrogen fertilization did not reduce the content of micronutrients in the plant or grain of maize. It is evident that the continuous single use of N fertilization so far has not resulted in a micronutrient deficiency of the plants limiting the nutrient density of the grain or reducing its quality.  相似文献   

9.
【目的】 聚合度和聚合率是影响聚合态磷肥肥效的关键指标,本研究旨在明确聚合度和聚合率对聚磷酸盐在土壤中的转化、土壤磷有效性及磷肥肥效的影响。 【方法】 以灌耕灰漠土为供试土壤,玉米为供试作物进行了盆栽试验。试验共设5个处理:不施磷肥 (CK);磷酸二氢铵 (MAP);聚合度和聚合率不同的3种聚磷酸铵磷肥平均聚合度3,聚合率40% (APP-3-40%);平均聚合度3,聚合率90% (APP-3-90%);平均聚合度2.7,聚合率90% (APP-2.7-90%)。除对照不施磷肥外,每钵 (7kg 土) 施N 2.4 g、P2O5 1.1 g、K2O 0.7 g。于播种后第10、20、30、40、50、60、70、80、90 d采集土样,测定土壤水溶性磷和Olsen-P。并于第90 d测定土壤全磷,土壤有效态Fe、Mn、Zn含量和磷分级 (Guppy法)。分别于播种后第45和90 d取玉米植株样品,测定玉米干物质,含磷量与微量元素Fe、Mn与Zn含量。 【结果】 与MAP处理相比,不同聚合度与聚合率的聚磷酸磷肥处理均可显著提高土壤有效磷含量。聚合度均为3时,APP-3-90%处理土壤水溶性磷与有效磷比APP-3-40%分别提高了15.7%与7.9%,土壤Resin-P与NaHCO3-P分别提高了38.0%与22.8%,HCl-P则降低了6.2%。聚合率均为90%时,APP-3-90%处理的土壤有效磷比APP-2.7-90%提高了5.0%,Resin-P与NaHCO3-P分别提高了75.1%与34.2%,HCl-P降低了12.0%,APP-3-90%的玉米干物质与吸磷量比APP-2.7-90%处理的分别提高了14.3%与4.5%,聚合度相同的APP-3-90% 与APP-3-40%处理间差异不显著。聚磷酸磷肥可显著提高土壤微量元素 (Fe、Mn、Zn) 的有效性。在相同聚合率 (90%) 下,APP-3-90%处理的土壤有效Fe、Mn和Zn含量比APP-2.7-90%分别提高了5.7%、8.4%与29.9%。在相同聚合度 (n = 3) 下,APP-3-90%处理的土壤有效Fe和Zn含量比APP-3-40%分别提高了3.0%和29.0%。在相同聚合率 (90%) 下,APP-3-90%处理玉米的Fe和Zn吸收量比APP-2.7-90%分别提高了5.7%和19.5%,不同聚合率处理间差异不显著。 【结论】 聚磷酸磷肥可显著提高石灰性土壤磷及Fe、Mn和Zn的有效性,减少土壤对磷的固定;聚合度对土壤磷有效性与微量元素的活化作用显著大于聚合率。   相似文献   

10.
Soil and plant samples were collected from an ongoing long-term experiment (LTE) at the Indian Agricultural Research Institute farm, New Delhi, to study the distribution of various fractions of iron (Fe) and their contribution to availability and plant uptake in a maize–wheat sequence. The optimum dose-based treatments adopted for the study were nitrogen (N), nitrogen–phosphorus (NP), nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), NPK+ zinc (Zn), and control (no fertilizer or manure). Different fractions of Fe in the soil were sequentially extracted using different extractants. Diethylenetriaminepentaacetic acid (DTPA)–extractable Fe did not differ significantly among the treatments as a result of continuous cropping for more than three decades. The overall mean total iron (Fe) content varied from 2.36 to 2.61% under different treatments. Residual Fe constitutes a major portion of total Fe in all four layers of soil. The Fe associated with easily reducible Mn and organic matter contributed directly to DTPA-extractable Fe both in pre-maize and post-wheat soil. Residual Fe contributed directly to uptake Fe by maize and wheat crops.  相似文献   

11.
A pot experiment was conducted to investigate the effect of chromium compost (0, 10, 30, and 50%) on the growth and the concentrations of some trace elements in lettuce (Lactuca sativa L.) and in the amended soils. Compost addition to the soil (up to 30%) increased dry matter yield (DMY); more than 30% decreased DMY slightly. The application of compost increased soil pH; nitric acid (HNO3)–extractable copper (Cu), chromium (Cr), lead (Pb), and zinc (Zn); and diethylenetriaminepentaacetic acid (DTPA)–, Mehlich 3 (M3)–, and ammonium acetate (AAc)–extractable soil Cr and Zn. The addition of Cr compost to the soil increased tissue Cr and Zn but did not alter tissue cadmium (Cd), Cu, iron (Fe), manganese (Mn), nickel (Ni), and Pb. The Cr content in the lettuce tissue reached 5.6 mg kg?1 in the 50% compost (326 mg kg?1) treatment, which is less than the toxic level in plants. Our results imply that compost with high Cr could be used safely as a soil conditioner to agricultural crops.  相似文献   

12.
镉处理根表铁膜对水稻吸收镉锰铜锌的影响   总被引:2,自引:0,他引:2  
本试验利用营养液和土壤培养系统,研究不同Fe、 Cd处理下根表铁膜对水稻吸收Cd、 Mn、 Cu、 Zn的影响。土壤中Fe的水平为0、 1、 2 g/kg Fe(以FeSO47H2O的形式供应),Cd 的水平为0、 2、 10 mg/kg Cd(以3CdSO48H2O的形式供应)。营养液中Fe和Cd的水平分别为0、 10、 30、 50、 80、 100 mg/L Fe 和 0、 0.1、 1.0 mg/L Cd。收获后测定水稻根表、 根中和地上部Cd、 Fe、 Mn、 Cu、 Zn 含量。试验结果表明,两种培养方式下,随着介质中Fe浓度的增加,水稻根表铁膜(DCB-Fe)逐渐增多。土壤培养方式下,根表铁膜中Cd 和 Mn 含量随铁膜量增加而略有增加,所有元素含量均表现为根中大于铁膜中。营养液培养条件下,根表铁膜中Mn和Cu含量在高量 Fe 供应时有所增加, Mn、 Cu、 Zn表现为铁膜中大于根中。根表铁膜中Zn含量在两种培养方式下均未呈现一定规律性变化。根中和地上部 Cd、 Mn、 Cu、 Zn 含量一般都随介质中Fe浓度的增加而下降,Cu和Zn含量在加Cd处理中下降。以上结果证明,铁膜对Cd 的吸附阻挡能力有限,对Mn、 Cu、 Zn 的吸附作用因培养方式和元素种类不同而有所差异,植株体内微量元素含量的下降主要与它们之间的相互抑制作用有关。  相似文献   

13.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

14.
Abstract

Blackgram (Vigna mungo L.) plants were grown in glasshouse earthen pot experiment. Zinc (Zn) was applied to the soil at different concentrtions. Plant leaf samples were analysed at the age of 30, 45, and 65 days after sowing. The accumulation of Zn in the plant increased with the applied Zn concentration to the soil. Also a variation in the uptake of Zn by the plant with age has been observed. The excess accumulation of Zn in the plant induced a reduction in the content of some macro‐ [calcium (Ca), magnesium (Mg), potassium (K), and sodium (Na)] and micro‐elements [iron (Fe), manganese (Mn), and copper (Cu)] in the plant leaves. Furthermore, the Ca: Zn ratio decreased with increasing Zn concentration which clearly indicates a toxic Zn effect on blackgram plants.  相似文献   

15.
Influence of bicarbonate on the subcellular distribution of iron applied to roots or leaves of sunflower (Helianthus annuus L.) 18 days old sunflower seedlings were transferred and cultivated for 9 days ( untill chlorosis appeared) in nutrient solutions. After that Fe concentration of roots and shoots and the subcellular distribution of Fe in the cytoplasm of the young leaves was determined. Bicarbonate in the nutrient solution with Fe reduced the concentration of Fe and chlorophyll in the young leaves of the plants, also the concentration of Fe and protein in the chloroplast fraction of the cytoplasm, but the subcellular distribution for Fe remained unchanged compared with the control. Leaf spray with Fe-EDTA to plants in nutrient solution without Fe + bicarbonate resulted in higher Fe but unchanged chlorophyll concentrations in the young leaves, while the cytoplasm fractions of these leaves had higher concentrations of iron and protein compared with the control. An inactivation of leaf iron by bicarbonate in the nutrient medium could not be demonstrated. There was no significant lowering of the concentration of disolved Fe in the nutrient solution by bicarbonate, indicating a disturbance of Fe-up-take rather than an insufficient Fe-supply as a factor for iron chlorosis. The physiological activity of leaf applied Fe was not diminished by bicarbonate in the nutrient solution. This observation too points to a primary effect of bicarbonate in the root area. The pH of the cytoplasm from young leaves remained unchanged after leaf spraying with Fe-EDTA. In spite of this there might be a local effect of sprayed solution (with pH 5,1) on the pH of solutes in the apoplast, influencing the mobility of leaf applied Fe.  相似文献   

16.
XUMINGGANG  ZHANGYIPING 《土壤圈》1996,6(3):245-254
The pot experiments were conducted in the artificial climate laboratories to determine the relative importance of mass flow and diffusion in supplying ,Fe,Mn,Cu,and Zn to wheat,soybean and maize plants growing in loessal soil and lou soil.It was found that the calculated relative contribution of mass flow of iron,manganese,copper and zinc to plant uptake varied from 5% to more than 100%,depending on the crop species and soil types as well as plant growth stage,soil moisture,atmosphere humidity,etc.The results also showed that the major transportation mechanisms of these micronutrients in soil-root system varied with the crop and its growth,climate and soil,singnificantly,In general,mass flow was more important for Cu and Zn and diffusion was more significant for Fe and Mn at the seedling stage.  相似文献   

17.
The pot experiments were conducted in the artificial climate laboratories to determine the relative importance of mass flow and diffusion in supplying Fe, Mn, Cu and Zn to wheat, soybean and maize plants growing in loessal soil and lou soil. It was found that the calculated relative contribution of mass flow of iron, manganese, copper and zinc to plant uptake varied from 5% to more than 100%, depending on the crop species and soil types as well as plant growth stage, soil moisture, atmosphere humidity, etc. The results also showed that the major transportation mechanisms of these micronutrients in soil-root system varied with the crop and its growth, climate and soil, significantly. In general, mass flow was more important for Cu and Zn and diffusion was more significant for Fe and Mn at the seedling stage.  相似文献   

18.
Abstract

Municipal waste compost can improve the fertility status of tropical soils. The redistribution of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in tropical soils after amendment with solid municipal waste compost was investigated. Four tropical agricultural soils from Mali characterized by poor trace‐element status were amended with compost and incubated for 32 weeks at 35°C. The soil were analyzed at the beginning and the end of the incubation experiment for readily available fractions, organic fractions, and residual fractions as operationally defined by sequential extraction. Readily available Fe increased significantly with compost application in most soils. Readily available Mn was mostly unaffected by compost application. After 32 weeks, readily available Zn had increased, and readily available Cu had decreased. Readily available levels of the elements remained greater than deficiency levels in the compost‐amended soils. Organic fractions of the elements increased after compost addition. The organic fractions and residual forms, depending on the element and the soil, remained constant or increased within the duration of the experiment.  相似文献   

19.
长期施肥对潮土耕层土壤和作物籽粒微量元素动态的影响   总被引:4,自引:0,他引:4  
Micronutrient status in soils can be affected by long-term fertilization and intensive cropping.A 19-year experiment (1990-2008) was carried out to investigate the influence of different fertilization regimes on micronutrients in an Aquic Inceptisol and maize and wheat grains in Zhengzhou,China.The results showed that soil total Cu and Zn markedly declined after 19 years with application of N fertilizer alone.Soil total Fe and Mn were significantly increased mainly due to atmospheric deposition.Applications...  相似文献   

20.
Abstract

Two pot experiments under greenhouse condition were carried out to study the influence of vermicompost and zinc‐enriched compost with two levels of iron and zinc on the productivity of geranium (Pelargonium graveolens). Joint application of vermicompost and zinc‐enriched compost was effective in increasing the herb and oil yield over sole application of iron and zinc. Combined application of vermicompost and zinc‐enriched compost gave better herb and oil yield in both the experiments. With application of vermicompost and zinc‐enriched compost with two graded levels of iron, higher N, P, and K concentrations were observed with application of vermicompost (5 g kg?1), vermicompost (5 g kg?1), and Fe 12.5 ppm+Zn‐enriched compost 2.5 g kg?1 soil, respectively, over control. Highest reduction in soil pH was observed with an application of vermicompost at 5 g kg?1 soil; maximum soil organic carbon content was also recorded in the same treatment. In experiment II, joint application of vermicompost, zinc‐enriched compost, and graded levels of zinc recorded highest N, P, and K concentration with treatments of Zn (15 ppm)+vermicompost (2.5 g kg?1), vermicompost (5 g kg?1), and Zn (15 ppm)+vermicompost (2.5 g kg?1 soil), respectively. Nitrogen, P, and K content increased by 36, 125, and 305%, respectively, with these treatments over the control.

Chemical constituents of geranium oil such as cis‐rose oxide, isomenthone, linalool, citronellyl, geranylformate, geranyl, and epi‐γ‐eudesmol were significantly improved by combined application of Zn with vermicompost and Zn‐enriched compost as compared to sole application of Zn. Similar effects were observed with Fe in combination with vermicompost and Zn‐enriched compost on most of the chemical constituents of geranium oil. Physicochemical properties of the soil were also improved as macro‐ and micronutrient availability markedly increased in both the experiments because of combined application of vermicompost and Zn‐enriched compost with two levels of Zn and Fe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号