首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
本文研究了MS-222和丁香酚两种麻醉剂在不同浓度下对多鳞四指马(鲅)幼鱼的麻醉效果,观测了其不同麻醉阶段的表现,探讨了麻醉时间和温度对其入麻和复苏的影响.结果表明 MS-222、丁香酚分别在55 mg/L、10 mg/L以上才对幼鱼有麻醉效果,最适麻醉剂浓度分别为20±5 mg/L和80±10 mg/L;随着浓度的上升,入麻时间缩短,复苏时间增加.随着温度的上升,入麻时间缩短,复苏时间增加.  相似文献   

2.
通过测定不同质量浓度MS-222对细鳞鲑和美洲红点鲑的麻醉效果,检测麻醉时鱼的呼吸频率以及空气暴露时长对鱼体复苏的影响,探究两种鱼类在渔业生产和科研实验中的最适麻醉剂浓度。结果显示:当MS-222质量浓度为80、100 mg/L时,细鳞鲑麻醉所需的时间显著少于40、60 mg/L浓度组,而显著多于其余浓度组(P<0.05)。当MS-222质量浓度为100 mg/L时,细鳞鲑的复苏时长最短(P<0.05)。当MS-222质量浓度为80 mg/L时,美洲红点鲑麻醉所需的时间显著少于40、60 mg/L浓度组,而显著多于其余浓度组(P<0.05)。当MS-222质量浓度为100 mg/L时,美洲红点鲑的复苏时长显著大于40、60和80 mg/L浓度组,而显著小于其余浓度组(P<0.05)。比较MS-222对两种鱼的麻醉效果,美洲红点鲑对MS-222更为敏感。两种鱼的呼吸频率总体上都随着麻醉程度的加深而下降,当空气暴露时长少于5 min时,细鳞鲑的复苏时长先减少后增加,美洲红点鲑的复苏时长则呈逐渐减少趋势。  相似文献   

3.
Abstract.— The present study investigated the use of benzocaine as an anesthetic for juvenile Colossoma macropomum (tambaqui). In the first experiment, fish were exposed to various doses of benzocaine for 10 min at 24 C. The second experiment examined the effects of duration of exposure to 100 mg/L of benzocaine. In the third experiment, fish were exposed to 100 mg/L at temperatures of 24, 27, and 30 C. Benzocaine concentrations of 100–150 mg/L were considered ideal for quickly inducing total immobilization and fast recovery. Fish exposed to 350 mg/L benzocaine exhibited 30% mortality. No changes in hemat-ocrit were recorded in fish exposed to different concentrations of benzocaine. Plasma glucose increased significantly when fish were exposed to benzocaine concentrations greater than 200 mg/L. Recovery time after a 30-min exposure to 100 mg/L benzocaine was significantly greater than after an exposure for 10 and 20 min. No mortality was observed 96 h after exposure to 100 mg/L benzocaine for 10, 20, and 30 min. Dosages in the 100–150 mg/L range were effective for periods of up to 20 min of anesthesia. There was no effect of temperature on the time required for fish to lose equilibrium. However, recovery was significantly faster for fish anesthetized at 30 C. Benzocaine is an effective anesthetic agent for tambaqui juveniles, providing rapid immobilization and rapid recovery. Benzocaine is also less expensive than other available anesthetic compounds.  相似文献   

4.
Abstract— The freshwater prawn Macrobrachiurn rosenbergii is a commercially important culture species in the South Central United States. Two major constraints in the commercial culture of the freshwater prawn in the U.S. are poor survival during live transportation of seed‐stock to growout ponds, and live transportation of pond harvested prawn to distant live markets due to the territorial and cannibalistic nature of prawn. The use of anesthetics could possibly improve transport survival; however, to date anesthetic agents have not been evaluated for use with prawn. Two trials were conducted with juvenile freshwater prawn to compare the efficacy of anesthetics commonly used on fish. The first trial was designed to identify the most promising candidates. In Study 1, tricaine methanesulfonate (MS‐222), 2‐phenoxyethanol, quinaldine sulfate (quinaldine), clove oil, and Aqui‐STM were evaluated at 25 and 100 mg/L for 1 h in three replicate 10‐L glass containers, containing five juvenile prawn each. Relative sedation level was determined every 3 min for 1 h, then recovery time and survival were measured. In Study 1, MS‐222 and 2‐phenoxyethanol were determined to be ineffective on prawn at all rates tested. Based on their performance in Study 1, quinaldine, clove oil, and AquiSTM were evaluated at 100, 200, and 300 mg/L in Study 2. Observations were determined as in Study 1. Clove oil and Aqui‐STM induced anesthesia faster and at lower concentrations than quinaldine. At the highest treatment rate (300 mg/L) prawn suffered 60% mortality in the Aqui‐STM treatment, 13% mortality in the quinaldine treatment, and 0% mortality in the clove oil treatment and control following a 1‐h exposure to these concentrations. Based on these data, Aqui‐STM and clove oil applied at 100 mg/L may be suitable anesthetic treatments for prawn. Additional research is needed to determine optimal time and dose relationships to minimize stress during holding, handling, and transportation of prawn.  相似文献   

5.
MS-222对牙鲆麻醉效果   总被引:2,自引:0,他引:2       下载免费PDF全文
以MS-222为麻醉剂,在13~14℃水温条件下,用浸浴麻醉方法测试了不同麻醉剂浓度和不同麻醉时间对牙鲆复苏时间、复苏率和24h存活率及长时间麻醉对复苏率的影响以及超有效浓度麻醉剂(60mg/L)麻醉后的抗露干能力。预备实验证明,本试验条件下麻醉剂的有效浓度为50mg/L。实验表明,将麻醉剂浓度从50mg/L提高到200mg/L,供试鱼被麻醉的时间由288s缩短至50s,复苏时间由94s延长至106s;用60、100和200mg/L的麻醉液持续麻醉后,可获得100%复苏率的最长麻醉时间分别为64、32和32min,牙鲆经MS-222麻醉后抗露干时间延长。牙鲆麻醉后复苏过程中存在较大的个体差异,但一旦复苏,牙鲆24h内的存活率可达100%。实验表明,MS-222的合理麻醉浓度为60mg/L,此浓度下最长麻醉时间为64min,麻醉露干时间应低于60min。  相似文献   

6.
MS-222对中华鲟和施氏鲟的麻醉试验   总被引:22,自引:0,他引:22  
以20~100 mg/L的MS-222(Tricaine M ethanesu lphonate)在水温15~25℃条件下对中华鲟(Acipensersinensis)和施氏鲟(A.schrenckii)的麻醉效果进行试验,中华鲟或施氏鲟分别达到不同程度的麻醉状态甚至出现死亡。30~40 mg/L的MS-222具有较好的麻醉效果,鱼的活动量明显下降,可保持镇静并维持身体平衡和正常体位,麻醉48 h后,在清水中数分钟内可恢复正常游动状态,适合于长途运输。50~100 mg/L的MS-222对中华鲟和施氏鲟具有较强的麻醉作用,适合于进行短时间的操作,如捉拿、称重、测量、外科手术、体外标记等。中华鲟和施氏鲟在高剂量MS-222的作用下,在进入生物学死亡阶段前,存在一个临床死亡阶段,这个阶段长达1h左右,在这个阶段,对它们进行“人工呼吸”是行之有效的。  相似文献   

7.
Two anaesthetics, clove oil and methane sulphonate (MS-222), were examined for their effects on the olfactory nerve response of masu salmon ( Oncorhynchus masou Brevoort) and rainbow trout ( O. mykiss Walbaum). Exposing both species to clove oil for 3 min at concentrations of 50 and 100 mg L−1, or for 10 min at 50 mg L−1, did not significantly reduce their olfactory response. Directly applying clove oil anaesthesia to the olfactory epithelium significantly reduced olfactory response though after 20 min, olfactory response recovered to 70% and 52% of pre-treatment levels in masu salmon and rainbow trout respectively. Compared with the post-anaesthetic recovery of responses after clove oil (50 mg L−1), buffered MS-222 (100 mg L−1) with NaHCO3 (100 mg L−1), and unbuffered MS-222 (100 mg L−1) treatment for 3 min, the response after MS-222 treatment declined gradually and significantly, but not after clove oil and MS-222+NaHCO3 treatments. Clove oil appears to be an effective and relatively safe anaesthetic for salmonids with little long-term impact on their olfactory response, which plays a crucial role in their life history.  相似文献   

8.
The effect of two anesthetics, 2‐phenoxyethanol (2‐PE) and clove oil (COil) were studied in meagre, Argyrosomus regius. This study aimed to determine the adequate dose of anesthesia for different aquaculture procedures, to assess a sedative or stressor effect of low anesthetic concentrations, and to assess the effect of low anesthetic doses at high fish densities for longer periods of time on fish survival and behavior. Anesthetics were tested at different concentrations: 2‐PE at 100, 250, 400, 550, and 700 mg/L; COil at 25, 40, 55, 70, and 85 mg/L. Meagre became anesthetized within 10 min when using concentrations above 250 mg/L for 2‐PE and above 40 mg/L for COil. Deep anesthesia was achieved at 700 and 85 mg/L, for 2‐PE and COil, respectively. The fish did not react when blood was collected at these concentrations. Plasma cortisol and glucose levels were similar between sedated meagre with both 2‐PE – 100 mg/L and COil – 10 mg/L, and the control (not sedated; P > 0.05). This suggests that low concentrations of these anesthetics induce similar stress response as handling without anesthesia during routine activities. No mortality was registered when meagre was maintained at high densities with low concentrations of each anesthetic for 2 h.  相似文献   

9.
The effects of 60‐mg L?1 clove oil and 60‐mg L?1 tricaine methanesulphonate (MS‐222) on the blood chemistry of rainbow trout were compared after exposure to handling stress via caudal puncture blood sampling. Fish sampled by caudal puncture and subsequently exposed to anaesthetics showed a typical handling stress response over a 48‐h period. There were no significant differences between the responses of fish exposed to equal concentrations of clove oil and MS‐222, with the following exceptions: the blood glucose at full anaesthesia, and lactate at full recovery increased significantly in the clove oil‐exposed fish. In a subsequent experiment, the stress response observed in fish sampled by caudal puncture and exposed to clove oil and MS‐222 was compared with a non‐anaesthetized control group. The increases in plasma cortisol levels were significantly lower at recovery in fish treated with either anaesthetic compared with the control fish. Fish exposed to MS‐222 had significantly higher cortisol levels at 1 h. These findings show that few differences exist between the anaesthetic effects of clove oil and MS‐222 on the physiological response of fish to stress. However, clove oil is more effective at reducing the short‐term stress response induced by handling and blood sampling, and is recommended as an alternative fish anaesthetic.  相似文献   

10.
We examined the effects tricaine methanesulfonate (MS-222), clove oil and CO2 on feed intake and cortisol response in steelhead trout, Oncorhynchus mykiss. Even though a body of literature exists about the effects of different anaesthetics on fish, no comparative information seems to be available about their effects on feed intake after anaesthesia, which would be important to know especially in aquaculture research. We anaesthetised juvenile steelhead trout with these three anaesthetics, and then sampled them 4, 24 and 48 h later. Fish in all groups ate relatively well already 4 h after anaesthesia. However, feed intake in fish treated with clove oil or MS-222 was lower than in the controls. There were no differences in feed intake among anaesthetised groups. Plasma cortisol concentrations were elevated 48 h after anaesthetisation, but the treatment means were equal throughout the experiment. Our results support previous findings that clove oil is a reasonable alternative to MS-222.  相似文献   

11.
在室养条件下观察了MS-222、苯佐卡因和乌拉坦对稀有鮈鲫(Gobiocypris rarus)的麻醉效果。结果表明,乌拉坦不宜作为稀有鮈鲫的麻醉剂,而一定浓度的MS-222或苯佐卡因可导致稀有鮈鲫的快速麻醉;不同麻醉剂浓度、不同的作用时间下,稀有鮈鲫在行为上呈现不同的反应,据此可分为轻度镇静、深度镇静、轻度麻醉、中度麻醉、深度麻醉和髓质麻醉阶段;根据反应时间、恢复时间、维持时间和存活率等,建议使用60mg/L的苯佐卡因或100~110mg/L的MS-222作为深度麻醉剂量。  相似文献   

12.
在室养条件下观察了MS-222、苯佐卡因和乌拉坦对稀有鮈鲫(Gobiocypris rarus)的麻醉效果。结果表明,乌拉坦不宜作为稀有鮈鲫的麻醉剂,而一定浓度的MS-222或苯佐卡因可导致稀有鮈鲫的快速麻醉;不同麻醉剂浓度、不同的作用时间下,稀有鮈鲫在行为上呈现不同的反应,据此可分为轻度镇静、深度镇静、轻度麻醉、中度麻醉、深度麻醉和髓质麻醉阶段;根据反应时间、恢复时间、维持时间和存活率等,建议使用60mg/L的苯佐卡因或100~110mg/L的MS-222作为深度麻醉剂量。  相似文献   

13.
This study investigated the feasibility of using clove oil, 2-phenoxyethanol, or Propiscin as an alternative to tricaine methane sulphonate (MS 222) as a fish anaesthetic, particularly in regard to reducing fish stress. The biochemical blood profiles of perch Perca fluviatilis L. anaesthetized with either MS 222 (100 mg L−1), clove oil (33 mg L−1), 2-phenoxyethanol (0.40 mL L−1) or Propiscin (1.0 mL L−1), and a non-anaesthetized control group were compared. Biochemical profiles were determined from blood samples collected before treatment in controls. For each anaesthetic tested, fish were divided into two groups, one sampled immediately after 10-min anaesthesia and a second, sampled 24 h after 10-min anaesthesia. The values determined in the present study suggested that internal organs and tissues of perch were slightly altered by MS 222, clove oil and 2-phenoxyethanol anaesthesia, but not by Propiscin anaesthesia.  相似文献   

14.
为研究丁香酚对花鲈(Lateolabrax maculatus)幼鱼的麻醉效果。采用静水方法在水温(27±1)℃下研究不同质量浓度丁香酚(20、25、30、40、50、60、80 mg/L和100 mg/L)对规格为(21.6±2.75)cm长和(110.3±30.67)g重的花鲈麻醉效果和呼吸频率的影响。25~100 mg/L质量浓度的丁香酚均能使花鲈进入深度麻醉期,且麻醉浓度与平均入麻时间呈负相关,与平均复苏时间成正相关;丁香酚质量浓度为50 mg/L时,麻醉效果较好。低浓度丁香酚20 mg/L对花鲈呼吸频率影响不明显。在质量浓度达到40~100 mg/L时,鱼体由麻醉期(A3)进入深度麻醉期(A4),呼吸频率迅速降低。以50 mg/L丁香酚将花鲈麻醉后再在空气中进行暴露,暴露时间与复苏时间呈正相关。暴露时间在2~30 min范围内的复苏率为100%。当时间增加至35、40和45 min时,复苏率降低至66%,33%和0。且暴露时间大于20 min花鲈只能进入恢复期3期(R3)。因此,50 mg/L的丁香酚麻醉液是花鲈幼鱼的理想麻醉浓度。  相似文献   

15.
Anesthetics are commonly used in the aquaculture industry to reduce stress and prevent mortality of fish during transportation, handling, and surgical procedures. This study assessed the efficacy of four anesthetic agents (clove oil, propofol, 2‐phenoxyethanol [2‐PE], and ketamine hydrochloride) on Persian sturgeon, Acipenser persicus, juveniles. In addition, results of the first experiment were used to evaluate sedation concentrations suitable for transportation of Persian sturgeon. The concentrations of anesthetics or sedatives evaluated in the first experiment were: 25, 50, 75, and 100 mg/L for clove oil; 1, 1.25, 2.5, and 5 mg/L for propofol; 110, 330, 550, and 770 mg/L for 2‐PE; and 1250, 2500, 3750, and 5000 mg/L for ketamine hydrochloride. Results show significant reduction in time to anesthesia and significant increase in recovery time with increase in concentration of all anesthetics. The most clinically useful concentrations of anesthetics tested were between 25 and 50 mg/L for clove oil, less than 1 mg/L for propofol, 330 mg/L for 2‐PE, and none of the tested concentrations for ketamine hydrochloride. In the second experiment, juveniles were placed in low concentrations of anesthetic solutions for 24 h and survival assessed. The four anesthetics tested are suitable for light sedation during transportation of A. persicus juveniles. Results are helpful to scientists working with Persian sturgeon aquaculture and restocking programs.  相似文献   

16.
Although tricaine methanesulfonate (MS-222) is often used to tranquilize fish, the guidelines for its use in sea bass, a brackish species, have not been established. The aim of the study reported here was to establish the tranquilizing concentration of MS-222, based on the time required for MS-222 residue elimination and withdrawal. Thirty-six fish (6/group) were immersed in different concentrations of MS-222 (0, 30, 50, 60, 70 and 90 mg/l) to evaluate the fish physiological behavior. After 200 fish were anesthetized at 90 mg/l, the fish achieved a healthy recovery within 72 h after the administration of saline. The 10 fish in the control group were subject to the same treatment without anesthesia, 3 out of 10 died. After 108 fish (54/group) were immersed in 30 or 60 mg/l of MS-222, the sedated fish were healthy during and after the 8 h of transport. However, all the 10 fish in the control group died within 3 days. By high-performance liquid chromatography, the residue of MS-222 was assessed. In the skinned muscle and liver, the elimination half-life was 5.54 and 5.27 h (30 mg/l) and 8.72 and 7.15 (60 mg/l), respectively, and the withdrawal time was at least 4.5 days at 30 mg/l and 7.5 days at 60 mg/l.  相似文献   

17.
The present study determined the effective concentrations of clove oil and MS‐222 in juvenile rohu Labeo rohita for quick induction and recovery. The immune‐biochemical responses due to 0, 1 and 24 hr exposure to those anaesthetics were also evaluated. Of four concentrations of the anaesthetics examined, the lowest effective concentration of clove oil and MS‐222 were 50 µl/L and 125 mg/L respectively. Clove oil and MS‐222 significantly increased the myeloperoxidase, total protein and alkaline phosphatase activity at some of the holding durations. However, superoxide anion production (after 0 and 1 hr) and antiprotease activity (after 24 hr) were significantly reduced in fish exposed to clove oil. Serum glucose content was significantly elevated in the MS‐222‐treated group. Furthermore, the clove oil‐treated group showed significantly higher levels of serum Na+ and K+, while the aspartate and alanine aminotransferase activities were significantly enhanced in the MS‐222 group. The use of both clove oil and MS‐222 is advised as an anaesthetic agent for rohu with a bias towards clove oil, considering its economic and operational feasibility.  相似文献   

18.
We studied the simultaneous effect of sex and dose on anaesthesia efficacy to estimate, if possible, the lowest effective dose (LED) for clove oil, tricaine methanesulphonate (MS‐222), 2‐phenoxyethanol (2‐PE) and propofol in mature guppies. LED is the lowest dose needed to reach A5 stage in a mean time of 3 min, with mean recovery (R5) time of 5 min. We used four doses/anaesthetic: 25, 50, 75 and 100 mg/L for clove oil; 120,140,160 and 180 mg/L for MS‐222; 800, 1,000, 1,200 and 1,400 mg/L for 2‐PE, and 7.50, 8.25, 10.00 and 11.25 mg/L for propofol. Each dose was tested on 10 females and 10 males. Morbidity, mortality and behavioural changes were checked on two control groups (10 males and 10 females/group). Sedation (A3), A5 and R5 times were recorded. Significant interactive effect dose*sex on A5 time was found for each anaesthetic agent (pdose*sex < .05). Except for MS‐222 (pdose*sex = .284), significant interactive effect dose * sex on R5 time was found (pdose*sex < .05). A5 time in females tended to be greater than in males, but, in general, R5 times were longer in males. Body size differences between males and females could explain these differences in MS‐222 on A5 time and for clove oil, 2‐PE and propofol on R5 time. No dose simultaneous meet LED′s conditions relating to both A5 and R5 times; therefore the lowest doses inducing A5 in a mean time of 3 min could be a safe guideline for anaesthetic procedure in both male and females.  相似文献   

19.
美国鲥鱼的麻醉运输试验   总被引:1,自引:0,他引:1       下载免费PDF全文
以美国的 Sedate及 MS-222、丁香酚等三种不同的药物作麻醉剂,分别配制成不同的梯度质量分数,采用充氧密闭药液浸泡法,进行美国鲥鱼的活体运输试验。结果表明,采用质量分数为 200mg/L的美国 Sedate,质量分数为 20~25mg/L的 MS-222以及质量分数为 12mg/L的丁香酚作麻醉剂,运输时间 3 h,美国鲥鱼的运输成活率均可达到 100%。  相似文献   

20.
The aim of the study was to determine the optimum concentration of MS‐222 for given size groups of pikeperch and water temperatures. The study considered three size groups of pikeperch (body weight [BW] 8.56, 15.72, 52.91 g), an MS‐222 water solution (50, 100, and 150 mg/L), and two temperatures (20 or 23°C). It was revealed that the optimum MS‐222 concentration depended largely on the size of the pikeperch and on water temperature. For fish with a BW <10 g the recommended concentration is 100 mg/L but only at 23°C. For fish with a BW of 10–40 g at an immersion temperature of 20°C the safe MS‐222 concentration ranges from 100 to 150 mg/L. However, at a temperature of 23°C the recommended concentration of the anesthetic is 100 mg/L. Similarly for larger fish, that is, fish with a BW >40 g, the optimum MS‐222 concentration at a water temperature of 20°C is in the range of 100–150 mg/L, but at a temperature of 23°C is it approximately 100 mg/L. Additionally, when exposure to the anesthetic is shorter (several min), a concentration of 150 mg/L is also safe for juvenile pikeperch of this size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号