首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The results of a survey conducted during 1993-2000 to study the spread of bovine viral diarrhoeal virus (BVDV) among Estonian cattle are presented. The BVDV infection status of a representative random sample of cattle herds housing 20 or more dairy cows was established to estimate the prevalence of herds with active BVDV infection [potentially having persistently infected (PI) cattle--suspect PI herds]. The herds investigated comprised approximately 70% of all Estonian dairy cows. The BVDV infection status was established in 315-350 herds (making the sampling fraction about 20%) during three sampling periods: 1993-95, 1997-98, 1999-2000. BVDV antibodies were detected in herd bulk milk samples and/or sera from young stock by a liquid-phase-blocking enzyme-linked immunosorbent assay developed in the Danish Veterinary Institute for Virus Research. The results of the survey demonstrate the reduction in the prevalence of herds with active BVDV infection in the studied fraction of the Estonian cattle population. During the first sampling period (1993-95) a prevalence of 46% (+/- 5%) for suspect PI herds was observed, during the second sampling period this prevalence was 16% (+/- 3%) and in the third period it was 18% (+/- 3%). As there is no control programme for BVDV in Estonia, the observed changes reflect the natural course of the infection in the study population. A possible cause for these changes is the decreased trade in breeding animals as a result of the economic difficulties present in cattle farming during the study period. The farming practices (most large herds are managed as closed herds) and the low density of cattle farms have obviously facilitated the self-clearance of herds from the BVDV infection, diminishing the new introduction of infection into the herds.  相似文献   

3.
This brief review describes types and quality (efficacy and safety) of bovine viral diarrhoea virus (BVDV) vaccines that are in the market or under development. Both conventional live and killed vaccines are available. The primary aim of vaccination is to prevent congenital infection, but the few vaccines tested are not highly efficacious in this respect, as shown in vaccination-challenge experiments. Vaccination to prevent severe postnatal infections may be indicated when virulent BVDV strains are prevalent. Live BVDV vaccines have given rise to safety problems. A complication for the development of BVDV vaccines is the wide antigenic diversity among wild-type BVDV. There is ample room for improvement of both the efficacy and safety of BVDV vaccines, and it may be expected that better vaccines, among which marker vaccines, will be launched in the future.  相似文献   

4.
5.
Models have been developed to represent the spread of bovine viral diarrhoea virus (BVDV) in cattle herds. Whereas the herd dynamics is well known, biological data are missing to estimate the parameters of the infection process. Our objective was to identify the parameters of the infection process that highly influence the spread of BVDV in a dairy herd. A stochastic compartmental model in discrete time represented BVDV infection in a typical Holstein dairy herd structured into five groups (calves, young versus older heifers, lactating versus dry cows). Model sensitivity was analysed for variations in the probability of birth of persistently infected (P) calves (b(P)), mortality of P animals (m(P)), within- and between-group transmission rates for P and transiently infected (T) animals (respectively, beta(w)(P),beta(b)(P),beta(w)(T),beta(b)(T)). Three to five values were tested per parameter. All possible combinations of parameter values were explored, representing 3840 scenarios with 200 runs for each. Outputs were: virus persistence 1 year after introduction, time needed to reach a probability of 80% for the herd to be virus-free, epidemic size, mean numbers of immune dams carrying a P foetus, of P and of T animals in infected herds. When considered together, m(P) and beta(b)(P) accounted for 40-80% of variance of all outputs; b(P) and beta(w)(T) accounted each for less than 20% of variance; beta(b)(T) and beta(w)(P) accounted for almost no percent of variance of the outputs. Parameters beta(w)(T) and b(P) needed to be more precisely estimated. The influence of m(P) indicated the effectiveness of culling P calves, the influence of beta(b)(P) indicated the role of the herd structure in BVDV spread, whereas the influence of b(P) indicated the possible role of vaccination programs in controlling within-herd BVDV spread.  相似文献   

6.
Isolation of bovine viral diarrhoea viruses from bison   总被引:2,自引:0,他引:2  
  相似文献   

7.
Review of bovine viral diarrhoea virus-related disease, 1996 to 2009. Diverse range of respiratory diseases diagnosed in cattle. Caseous lymphadenitis confirmed in a Suffolk ram lamb aged only four months. Extramedullary haematopoiesis of unknown cause in a pig. Coccidiosis diagnosed frequently in pheasants and partridges. These are among matters discussed in the disease surveillance report for July from SAC Consulting: Veterinary Services (SAC C VS).  相似文献   

8.
9.
Eighty-nine bovine viral diarrhoea viruses (BVDV) from Australia have been genetically typed by sequencing of the 5' untranslated region (5'-UTR) and for selected isolates the N(pro) region of the viral genome. Phylogenetic reconstructions indicated that all of the samples examined clustered within the BVDV type 1 genotype. Of the 11 previously described genetic groups of BVDV-1, 87 of the samples examined in this study clustered with the BVDV-1c, while two samples clustered with the BVDV-1a. Based on these analyses there appears to be limited genetic variation within the Australian BVDV field isolates. In addition, the phylogenetic reconstructions indicate that the clustering of Australian BVDV in the phylogenetic trees is not a result of geographic isolation.  相似文献   

10.
11.
Extract

The following is a report of an outbreak of bovine viral diarrhoea/mucosal disease affecting a mob of 13 Hereford yearling bulls.  相似文献   

12.
Infection of cattle with bovine viral diarrhoea virus (BVD virus) is common throughout the world(1) and the prevalence of neutralising antibodies to the virus reported from surveys ranges from about 40% to 90%(2)(3)(4). The first isolation of BVD virus in New Zealand was reported in 1967(5) and, since that time, evidence of widespread infection in dairy cattle has been presented(6). Whilst the diseases associated with BVD viral infection have been well recognised in dairy herds, there has been a belief that infection of beef herds is less common. Based on this belief has been the fear that the growth of the dairy beef industry could lead to the introduction of BVD virus into an essentially naive beef population with disastrous results such as those reported by MacNeil and van der Oord(7). We decided therefore to sample beef cattle submitted to abattoirs throughout New Zealand for serological evidence of prior exposure to BVD virus.  相似文献   

13.
14.
Concurrent bovine viral diarrhoea (BVD) and systemic infectious bovine rhinotracheitis (IBR) are reported from two neonatal (11 and 15 days old) calves. The diseases occurred sporadically in a large-scale herd which may have been due to the calves' heterogeneous immunobiological status. Gross pathological and histopathological examinations revealed focal interstitial pneumonia with acidophilic intranuclear inclusions in the alveolar epithelial cells and necrotic foci in the liver with a few intranuclear inclusions in the hepatocytes. There were subserous haemorrhages in the forestomachs and intestine, necrotic changes in the rumen, enteritis, lymphocytic necrosis in the Peyer's patches, and fibrinoid necrosis in the wall of some of the neighbouring blood vessels. BVD virus was demonstrated by immunofluorescence (IF), whereas IBR virus by electron microscopy, immunofluorescence and virus isolation.  相似文献   

15.
16.
17.
18.
Thirteen BVDV isolates collected in four geographic regions of India between 2000 and 2002 were typed in 5'-UTR. To confirm results of genetic typing, selected viruses were also analysed in the N(pro) region. Phylogenetic analysis revealed that all Indian BVDV isolates belong to BVDV-1b (Osloss-like group). Despite a long distance between the farms from which the viruses were isolated there was no correlation between the origin of viral isolates and their position in a phylogenetic tree. Higher genetic similarity of Indian BVDV isolates was observed most probably due to the uncontrolled movement of cattle as well as the uncontrolled use of semen from bulls for breeding of local and farm cattle in different states of India.  相似文献   

19.
20.
A herd is a population structured into groups not all equally in contact, which may influence within-herd spread of pathogens. Herd structure varies among cattle herds. However, published models of the spread of bovine viral diarrhoea virus (BVDV) assume no herd structure or a unique structure chosen as a representative. Our objective was to identify--for different index cases introduced into an initially BVDV--free dairy herd - risky (favourable) herd structures, which increased (decreased) BVDV spread and persistence compared to a reference structure. Classically, dairy herds are divided into calves, young heifers, bred heifers, lactating cows and dry cows. In the reference scenario, groups are all equally in contact. We evaluated the effect of isolating or merging groups. Three index cases were tested: an open persistently-infected (PI) heifer, an open transiently-infected heifer, an immune heifer carrying a PI foetus. Merging all groups and merging calves and lactating cows were risky scenarios. Isolating each group, isolating lactating cows from other groups, and merging calves and young heifers were favourable scenarios. In most structures, the most risky index cases were the following: first, the entry of a PI heifer; second, the birth of a PI calf; last, the entry of a transiently-infected heifer. Recommendations for dairy herds are to raise young animals together before breeding and to isolate lactating cows from others as much as possible. These recommendations will be less efficient if a PI adult enters into the herd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号