首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The goal of this laboratory study was to provide better knowledge about the treatment of ichthyophthiriasis (causative agent: Ichthyophthirius multifiliis, a ciliate bacteria) in rainbow trout Oncorhynchus mykiss and common carp Cyprinus carpio. The following questions were investigated: (1) the effectiveness of different chemicals (formalin, sodium chloride, hydrogen peroxide, Perotan, Virkon, Aquahumin, Baycox, and Ivomec) and at different concentrations and durations of application, (2) the number of treatments and the time intervals between treatments that were necessary to remove the parasite, and (3) how treatment effectiveness differed between the two species. The most effective treatment was a 37% stock solution of formalin at 110 μL/L of bath water for 1 h in rainbow trout and for 2 h in common carp. Aquahumin (150 μL/L for 2 h) was effective in slightly or moderately infected rainbow trout and at low water temperatures, but it was not effective for common carp. All other tested chemicals were ineffective. With formalin and Aquahumin, five treatments were necessary to remove I. multifiliis infestation. At 10 ± 1°C, the parasites were eradicated when the treatment was performed at 48-h intervals. At 18 ± 1°C the infestation was eliminated when treatment was performed at 24-h intervals but not at 48-h intervals. At 25 ± 1°C, treatment at 24-h intervals was ineffective; however, shorter intervals between treatments might improve treatment efficacy at this temperature. In contrast, the number of treatment repetitions played a minor role, and parasites were eliminated with five treatments in all experiments when the type of chemical and treatment interval were optimal.  相似文献   

2.
SUMMARY Experimental transmission of epizootic haematopoietic necrosis virus (EHNV) to adult redfin perch Perca fluviatilis and juvenile rainbow trout Oncorhynchus mykiss was undertaken at different water temperatures using intraperitoneal (IP) and bath inoculation. Redfin perch were highly susceptible to EHNV by both routes of infection. Bath inoculation with as few as 0.08 TCID50. mL-1 was lethal. The incubation period in redfin perch was about 11 days at a water temperature of 19–21°C but was longer at colder temperatures and disease did not occur at temperatures below 12°C. The longest incubation period recorded in redfin perch was 28 days. Rainbow trout were not susceptible to infection by bath inoculation but the disease was reproduced after IP inoculation with 105.6 TCID50 at water temperatures ranging from 8–21°C. The incubation period was 3–10 days at 19–21°C, but was up to 32 days at 8–10°C. Persistent infection with EHNV was detected by virus isolation in a clinically unaffected rainbow trout after 63 days. The implications of these findings in the understanding of the epidemiology of EHNV infection are discussed.  相似文献   

3.
Buprenorphine plasma concentrations were measured after administering buprenorphine (20 μg/kg) into the lumbosacral epidural space of conscious cats chronically instrumented with an epidural catheter. Blood was collected from a jugular vein before injection and 15, 30, 45 and 60 min and 2, 3, 4, 5, 6, 8, 12 and 24 h after administration. Plasma buprenorphine concentrations were measured using ELISA. Background concentration (before injection) was 1.27 ± 0.27 ng/mL (mean ± SD). Including background concentration, the mean peak plasma concentration was obtained 15 min after injection (5.82 ± 3.75 ng/mL), and ranged from 3.79 to 2.20 ng/mL (30 min–3 h), remaining between 1.93 and 1.77 ng/mL (4–12 h), and declined to 1.40 ± 0.62 ng/mL at 24 h. Elimination half-life was 58.8 ± 40.2 min and clearance 56.7 ± 21.5 mL/min. Results indicate early rapid systemic uptake of buprenorphine from epidural administration with plasma concentrations similar to using buccal or IM routes by 15 min postinjection.  相似文献   

4.
Background: Although rainbow trout (Oncorhynchus mykiss, Walbaum) are one of the most‐studied fish, electrophoretic techniques and classification of serum protein fractions have not been standardized, such that clinically useful values are lacking. Objective: The aim of the present study was to evaluate preliminarily the serum protein fractions of rainbow trout using automated cellulose acetate electrophoresis and densitometry. Methods: Serum samples from 25 rainbow trout (Oncorhynchus mykiss, Walbaum) were electrophoresed on cellulose acetate plates and quantified using densitometry. Results: A maximum of 6 fractions were identified and numbered, in order of decreasing mobility, as I, II, III, IV, V, and VI. In 3 of 25 (12%) samples, 6 fractions were identified; in 18 (72%) samples, 5 fractions were identified; and in 4 (16%) samples, 4 fractions were identified. Fractions I, V, and VI were always clearly identifiable, whereas fractions II and IV were frequently fused and indistinguishable from fraction III. The pattern with 5 fractions was the most probable type (χ2, P<.01). The mean (±SEM) protein concentrations of the 6 fractions were I, 0.8±0.1 g/dL; II, 0.3±0.0 g/dL; III, 1.6±0.1 g/dL; IV, 0.3±0.1 g/dL; V, 0.6±0.0 g/dL; and VI, 0.2±0.0 g/dL. Based on comparison of serum and plasma electrophoretic patterns from 8 fish, fibrinogen was found in fraction V. Conclusion: Automated cellulose acetate electrophoresis and densitometry appear to be a practical method for estimation of serum protein fractions in rainbow trout.  相似文献   

5.
The objective was to assess the effect of cooling to different subzero temperatures around ice formation (?5°C) on dog sperm cryosurvival and plasma membrane fluidity. Semen was centrifuged, and sperm were resuspended in a Tris‐egg yolk medium (3% glycerol). Diluted sperm were cooled from 22 to 5°C, and then, a Tris‐egg yolk medium containing 7% glycerol was added (final concentration of 5% glycerol and 200 × 106 cells/ml). Sperm were packaged in 0.5‐ml plastic straws, and equilibration was done 16 hr at 5°C before freezing. I. Straws (n = 47) at 5°C were exposed to nitrogen vapours to determine the freezing point. II. Other straws (from different ejaculates) processed as mentioned, were further cooled to ?3, ?5 or ?7°C and immediately rewarmed in a water bath at 37°C. Motility, plasma membrane functionality and acrosome integrity were assessed. III. Other straws (from different ejaculates) processed as mentioned were further cooled to ?3 or ?5°C, frozen over nitrogen vapours and stored in liquid nitrogen for one month. Straws were thawed in a water bath at 38°C for 30 s. Motility, plasma membrane functionality, plasma membrane integrity, acrosome integrity, capacitation status and plasma membrane fluidity were assessed. Ice nucleation temperature was ?14.3 ± 2.05°C (mean ± SD); cooling to +5, ?3, ?5 and ?7°C, without freezing, produces no differences on sperm quality between target temperatures; cooling to +5, ?3, and ?5°C produced no differences on sperm survival and plasma membrane fluidity after freeze–thawing. In conclusion, cooling of dog spermatozoa to different subzero temperatures did not improve sperm cryosurvival and had no effect on plasma membrane fluidity after thawing.  相似文献   

6.
Anaesthesia was induced in the common carp, Cyprinus carpio, tiiapia, Oreochromis mossambicus and rainbow trout, Salmo gairdneri, at concentrations of 25; 50; 75 and 100 mg/1 of benzocaine-hydrochloride as well as neutralized benzocaine-hydrochloride at water temperatures of 15; 20 and 25 °C. The results obtained indicated intra-and interspecific differences in the susceptibility of fish to anaesthesia due to metabolic, chemoreceptive and temperature tolerance differences in and amongst the three species.  相似文献   

7.
The purpose of this study was to evaluate the pharmacokinetics of morphine and morphine-6-glucuronide (M-6-G) following morphine administered intravenously and orally to dogs in a randomized crossover design. Six healthy 3–4-year-old Beagle dogs were administered morphine sulfate (0.5 mg/kg) as an i.v. bolus and extended release tablets were administered orally as whole tablets (1.6 ± 0.1 mg/kg) in a randomized crossover design. Plasma concentrations of morphine and M-6-G were determined using high-pressure liquid chromatography and electrochemical coulometric detection. Following i.v. administration all dogs exhibited dysphoria and sedation, and four or six dogs vomited. Mean ± SE values for half-life, apparent volume of distribution, and clearance after i.v. administration were 1.16 ± 0.15 h, 4.55 ± 0.17 L/kg, and 62.46 ± 10.44 mL/min/kg, respectively. One dog vomited following oral administration and was excluded from the oral analysis. Oral bioavailability was 5% as determined from naïve-averaged analysis. The M-6-G was not detected in any plasma samples following oral or i.v. administration of morphine at a 25 ng/mL the limit of quantification. Computer simulations concluded morphine sulfate administered 0.5 mg/kg intravenously every 2 h would maintain morphine plasma concentrations consistent with analgesic plasma concentrations in humans. Oral morphine is poorly and erratically absorbed in dogs.  相似文献   

8.
Abstract

The effect of water temperature on the progress of experimentally induced Cytophaga psychrophila infection was investigated in juveniles of coho salmon Oncorhynchus kisutch, chinook salmon O. tshawytscha, and rainbow trout O. mykiss (formerly Salmo gairdneri). A virulent strain of C. psychrophila was administered to fish by subcutaneous injection. Infected fish were held in tanks containing pathogen-free well water at temperatures ranging from 3 to 23°C. Mean times from infection to death of the fish were shortest at 12–15°C, which were the temperatures associated with the shortest time for doubling the population of this bacterium in vitro. Juvenile steelhead (anadromous rainbow trout) injected with viable C. psychrophila cells and held in 22°C water did not become diseased.  相似文献   

9.
A study was undertaken to compare the virulence and serum killing resistance properties of Atlantic salmon and rainbow trout Yersinia ruckeri isolates. Five isolates, covering heat-stable O-antigen O1, O2 and O5 serotypes, were tested for virulence towards fry and juveniles of both species by experimental bath challenge. The sensitivity of 15 diverse isolates to non-immune salmon and rainbow trout serum was also examined. All five isolates caused significant mortality in salmon fry. Serotype O1 isolate 06059 caused the highest mortality in salmon (74% and 70% in fry and juveniles, respectively). Isolate 06041, a typical ERM-causing serotype O1 UK rainbow trout strain, caused mortalities in both rainbow trout and salmon. None of the salmon isolates caused any mortalities in 150–250 g rainbow trout, and only serotype O2 isolate 06060 caused any significant mortality (10%) in rainbow trout fry. Disease progression and severity was affected by water temperature. Mortality in salmon caused by the isolates 06059 and 05094 was much higher at 16 °C (74% and 33%, respectively) than at 12 °C (30 and 4% respectively). Virulent rainbow trout isolates were generally resistant to sera from both species, whereas salmon isolates varied in their serum sensitivity. Convalescent serum from salmon and rainbow trout that had been infected by serotype O1 isolates mediated effective classical pathway complement killing of serotype O1 and O5 isolates that were resistant to normal sera. Overall, strains recovered from infected salmon possess a wider range of phenotypic properties (relative virulence, O serotype and possession of serum-resistance factors), compared to ERM-causing rainbow trout isolates.  相似文献   

10.
Flunixin meglumine (FM, 1.1 mg/kg) and phenylbutazone (PBZ, 4.4 mg/kg) were administered intravenously (i.v.) as a single dose to eight sheep prepared with subcutaneous (s.c.) tissue-cages in which an acute inflammatory reaction was stimulated with carrageenan. Pharmacokinetics of FM, PBZ and its active metabolite oxyphenbutazone (OPBZ) in plasma, exudate and transudate were investigated. Plasma kinetics showed that FM had an elimination half-life (t½β) of 2.48 ± 0.12 h and an area under the concentration – time curve (AUC) of 30.61 ± 3.41 μg/mL.h. Elimination of PBZ from plasma was slow (t½β = 17.92 ± 1.74 h, AUC = 968.04 ± μg/mL.h.). Both FM and PBZ distributed well into exudate and transudate although penetration was slow, indicated by maximal drug concentration (Cmax) for FM of 1.82 ± 0.22 μg/mL at 5.50 ± 0.73 h (exudate) and 1.58 ± 0.30 μg/mL at 8.00 h (transudate), and Cmax for PBZ of 22.32 ± 1.29 μg/mL at 9.50 ± 0.73 h (exudate) and 22.07 ± 1.57 μg/mL at 11.50 ± 1.92 h (transudate), and a high mean tissue-cage fluids:plasma AUClast ratio obtained in the FM and PBZ groups (80–98%). These values are higher than previous reports in horses and calves using the same or higher dose rates. Elimination of FM and PBZ from exudate and transudate was slower than from plasma. Consequently the drug concentrations in plasma were initially higher and subsequently lower than in exudate and transudate.  相似文献   

11.
The glomerular filtration rate (GFR) was estimated in eight full-term neonatal foals by the single injection inulin plasma clearance method at two days of age, the continuous infusion plasma and urinary clearance methods at three days of age, and the 12-hour endogenous creatinine clearance method at four days of age. The effective renal plasma flow (ERPF) was estimated simultaneously by the single injection para-aminohippuric acid (PAH) plasma clearance method in the eight two-day old foals and the continuous PAH infusion plasma and urinary clearance method in the eight three-day old foals. The GFR (+/- 1 SEM), as determined from the single injection plasma clearance method, was 2.30 +/- 0.34 mL/kg/min; by continuous infusion plasma clearance 2.56 +/- 0.30 mL/kg/min; by continuous infusion urinary clearance 2.82 +/- 0.32 mL/kg/min; and by 12-hour endogenous creatinine clearance 2.81 +/- 0.55 mL/kg/min. Effective renal plasma flow (+/- 1 SEM) measured by the single injection plasma clearance method was 15.22 +/- 1.5 mL/kg/min, by continuous infusion plasma clearance was 18.21 +/- 2.0 mL/kg/min. and by continuous infusion urinary clearance it was 11.95 +/- 1.9 mL/kg/min. The results of these methods were not statistically different. On a per kilogram body weight basis, the full-term neonatal foal's GFR and ERPF was determined to be comparable with adult equine GFR and ERPF.  相似文献   

12.
The pharmacokinetics of intravenously and orally administered enrofloxacin was determined in fingerling rainbow trout (Oncorhynchus mykiss). Doses of 5 or 10 mg enrofloxacin/kg body weight were administered intravenously to 26 fish for each dose and blood was sampled over a 60-h period at 15 degrees C. Two groups of fish were treated orally with 5, 10, or 50 mg/kg (80 fish/dose at each temperature) and held at 15 degrees C or 10 degrees C during the 60-h sampling period. Following intravenous administration, the serum concentration-time data of enrofloxacin in rainbow trout were best described by a two-compartment open model for both doses of 5 and 10 mg enrofloxacin/kg. The hybrid rate constants alpha and beta did not differ between doses. The distributional phase was rapid with a half-life of 6-7 min for both doses. Overall half-lives of elimination were 24.4 h (95% CI = 20.2-30.8) and 30.4 h (24.2-41.0), respectively, for the 5- and 10-mg/kg doses. A large Vd(area) was observed following dosing of either 5 or 10 mg enrofloxacin/kg,: 3.22 and 2.56 l/kg, respectively. Whole body clearance for 5 mg/kg was 92 ml/h.kg and 58 ml/h.kg at the 10-mg/kg dose. Following oral administration, the serum concentration-time data for enrofloxacin were best described as a one-compartment open model with first-order absorption and elimination. Apparent Ka over all doses at 10 degrees C averaged 62% less than apparent Ka at 15 degrees C. Estimates of the apparent t(1/2)e over both temperatures ranged from 29.5 h (18.4-73.4) to 56.3 h (38.3-106.6). Bioavailability averaged 42% over all doses at 15 degrees C and was decreased to an average of 25% at 10 degrees C. Peak serum concentrations appeared between 6 and 8 h following dosing. A dose of 5 mg/kg/day was estimated to provide average steady-state serum concentrations at 10 degrees C that are approximately 4.5 times the highest reported MIC values for Streptococcus spp., the fish pathogen least sensitive to enrofloxacin. Owing to the long apparent half-life of elimination of enrofloxacin in fingerling trout, it would take approximately 5 to 9 days to achieve these predicted steady-state serum concentrations; this estimate is important when considering the duration of therapy in clinical trials.  相似文献   

13.
Jones, S. G., Kamunde, C., Lemke, K., Stevens, E. D. The dose–response relation for the antinociceptive effect of morphine in a fish, rainbow trout. J. vet. Pharmacol. Therap.  35 , 563–570. There have been suggestions that analgesics be used by fish researchers. But in the absence of dose–response data for morphine, this suggestion seems imprudent. The purpose of the present study was to develop a dose–response relationship in fish using six doses of morphine. The response (movement of the fins or tail) to a noxious stimulus (electrical shock to the face region) was monitored before and after a dose of morphine intraperitoneally (i.p.). The i.p. dose of morphine ED50 in rainbow trout was 6.7 ± 0.8 mg/kg (n = 12 at each dose). The plasma morphine concentration EC50 was 4.1 ± 1.5 mg/L. In a second experiment, rainbow trout tested with equal amounts of morphine and naloxone (30 mg/kg) showed that the antinociceptive effect of morphine was blocked by naloxone. It has been suggested that stress‐induced analgesia has been a confounding factor in some fish studies. However, plasma cortisol levels in our study indicated that stress was not a confounding factor in the present experiments. The ED50 for morphine in fish was higher than that reported for humans or other mammals. Our observation showing a dose–response relation for morphine using a noxious stimulus supports arguments for its effectiveness as an antinociceptive drug in fish.  相似文献   

14.
This study described the pharmacokinetics of the intravenous fluorophore, fluorescein, and aimed to evaluate its utility for use in upper gastrointestinal confocal endomicroscopy (CEM). Six healthy, mature, mixed‐breed dogs were anesthetized and then dosed intravenously with fluorescein at 15 mg/kg. Blood samples were collected at predetermined time‐points. Dogs were examined by upper gastrointestinal confocal endomicroscopy and monitored for adverse effects. Plasma fluorescein concentrations were measured using high‐performance liquid chromatography (HPLC) with UV/Vis detection. Mean plasma concentration at 5 min was 57.6 ± 18.2 mg/L, and plasma concentrations decreased bi‐exponentially thereafter with a mean concentration of 2.5 mg/L ± 1.26 at 120 min. Mean terminal plasma elimination half‐life (t½β) was 34.8 ± 8.94 min, and clearance was 9.1 ± 3.0 mL/kg/min. Apparent volume of distribution at steady‐state was 0.3 ± 0.06 L/kg. Fluorescein provided optimal fluorescent contrast to enable in vivo histologically equivalent evaluation of topologic mucosal morphology within the first 30 min following intravenous administration. Adverse effects were not observed. Based upon the calculated clearance, a constant rate infusion at a rate of 0.18 mg/kg/min is predicted to be adequate, following an initial loading dose (2 mg/kg), to maintain plasma concentration at 20 mg/L for optimal CEM imaging during the study period.  相似文献   

15.
Abstract

The pharmacokinetic–pharmacodynamic predictor of antimicrobial activity for tetracyclines is reported to be the area under the concentration–time curve at steady state (AUCss) divided by the minimal inhibitory concentration of the targeted pathogen. Here, we estimate AUCss values for oxytetracycline (OTC) in serum of rainbow trout Oncorhynchus mykiss by using a destructive sampling study design. Seventy-two rainbow trout were fed OTC-medicated feed at 74.7 ± 1.5 mg/kg (mean ± SD) body weight (BW) by oral gavage for 10 consecutive days. Serum was collected from nine fish at 1, 3, 6, 8, 10, 12, 15, and 22 d after dosing began. Serum OTC concentrations were measured by high-performance liquid chromatography with a 0.01-μg/mL limit of detection. The average OTC AUCss was 29.2 μg × h/mL and was estimated using nonlinear mixed-effects modeling and bootstrap resampling techniques. The elimination half-life was estimated as 85.0 h, and the fraction of steady state achieved was estimated as 0.85. The calculated AUCss (24.8 μg × h/mL) following 10 d of oral dosing with 75 mg OTC/kg BW was less than the estimated AUCss. Results suggest that the pharmacokinetics of OTC exposure, including the AUCss, is better evaluated by using multiday dosimetry than by using a standard single-dose protocol.

Received September 29, 2011; accepted January 30, 2012  相似文献   

16.
A comparative pharmacokinetic study was conducted in rainbow trout (Salmo gairdneri) and African catfish (Clarias gariepinus) following intravenous (i.v.) and intramuscular (i.m.) administration of oxytetracycline (OTC) at a dose rate of 60 mg/kg body weight. Trout and catfish were kept in aerated tap water in tanks at constant temperatures of 12 degrees C and 25 degrees C, respectively. The two- and three-compartment open models adequately described plasma drug disposition in African catfish and rainbow trout respectively, following i.v. OTC administration. Compared to catfish (COP = 86 +/- 10 micrograms/ml) an eightfold higher extrapolated zero time concentration was obtained in trout (COP = 753 +/- 290 micrograms/ml). A significant difference was observed with respect to the relatively large apparent distribution volumes (Vd(area] after i.v. OTC administration (trout, mean value: 2.1 l/kg; catfish, mean value: 1.3 l/kg). The mean final elimination half-lives of both fish species were greater than previously reported in mammals (trout, 89.5 h; catfish, 80.3 h). A mean maximum plasma concentration (Cmax = 56.9 micrograms/ml) was obtained in trout at 4 h after i.m. administration of OTC. In catfish a lower Cmax of 43.4 micrograms/ml was determined at about 7 h. No significant difference was observed with respect to bioavailability following i.m. administration of OTC (trout, 85%; catfish, 86%).  相似文献   

17.
The pharmacokinetics and tissue residues of moroxydine hydrochloride were studied in gibel carp at water temperature of 15 and 25 °C. Samples (blood, skin, muscle, liver, and kidney) were collected over 10 days after the treatment and analyzed by high‐performance liquid chromatography with an ultraviolet detector. The results indicated that the influence of water temperature on the metabolism of the drug was significant. The plasma concentration–time data of moroxydine hydrochloride conformed to single‐compartment open model at the two water temperatures. There were higher absorption rate (t1/2ka) and longer elimination half‐lives (t1/2ke) at 15 °C (4.29 and 15.87 h, respectively) compared with those at 25 °C (3.02 and 4.22 h, respectively). The maximum plasma concentration (Cmax) and the time‐point of maximum plasma concentration (Tp) were 2.98 μg/mL and 10.35 h at 15 °C and 3.12 μg/mL and 4.03 h at 25 °C, respectively. The distribution volume (Vd/F) of moroxydine hydrochloride was estimated to be 4.55 L/kg at 15 °C and 2.89 L/kg at 25 °C. The total body clearance (CLb) of moroxydine hydrochloride was determined to be 0.25 and 0.49 L/(h·kg) at 15 °C and 25 °C, respectively; the areas under the concentration–time curve were 75.89 μg·h/mL at 15 °C and 42.33 μg·h/mL at 25 °C. The depletion of moroxydine hydrochloride in gibel carp was slower with a longer half‐life period, especially at lower water temperature that was tested.  相似文献   

18.
Abstract

A kit for a solid-phase enzyme immunoassay (SOPHEIA®) of cortisol in human sera was evaluated and validated for measuring cortisol in plasma of rainbow trout Oncorhynchus mykiss. The accuracy of the SOPHEIA was demonstrated by the recovery of exogenous cortisol concentrations of 25, 50, 100, and 250 ng/mL in charcoal-stripped fish plasma. The amounts (mean ± SE) recovered from triplicate samples were 29.9 ± 2.75, 47.5 ± 3.41, 101.7 ± 12.08, and 232.0 ± 11.06 ng/mL, respectively. The intra- and interassay coefficient of variation (CV = 100 × SD/mean) for cortisol levels in undisturbed fish (26.6 ± 1.18 ng/mL) were 14 and 10%, respectively. The intra- and interassay CV for elevated cortisol levels in stressed fish (330.8 ± 19.90 ng/mL) were 8 and 13%, respectively. Cross-reactivity determined for nine steroids in teleostean fish was negligible. Cortisol concentrations in serial dilutions of pooled fish plasma were parallel to the standard curve. Sensitivity (minimum detection limit) was 3.04 ng/mL. The SOPHEIA compared favorably to radioimmunoassay measurements of cortisol (r = 0.98; P < 0.001).  相似文献   

19.
The purpose of the study was to assess the pharmacokinetics of liposome‐encapsulated (DPPC‐C) hydromorphone administered intravenously (IV) or subcutaneously (SC) to dogs. A total of eight healthy Beagles aged 12.13 ± 1.2 months and weighing 11.72 ± 1.10 kg were used. Dogs randomly received liposome encapsulated hydromorphone, 0.5 mg/kg IV (n = 6), 1.0 mg/kg (n = 6), 2.0 mg/kg (n = 6), or 3.0 mg/kg (n = 7) SC with a 14–28 day washout between trials. Blood was sampled at serial intervals after drug administration. Serum hydromorphone concentrations were measured using liquid chromatography with mass spectrometry. Serum concentrations of hydromorphone decreased rapidly after IV administration of the DPPC‐C formulation (half‐life = 0.52 h, volume of distribution = 12.47 L/kg, serum clearance = 128.97 mL/min/kg). The half‐life of hydromorphone after SC administration of DPPC‐C formulation at 1.0, 2.0, and 3.0 mg/kg was 5.22, 31.48, and 24.05 h, respectively. The maximum serum concentration normalized for dose (CMAX/D) ranged between 19.41–24.96 ng/mL occurring at 0.18–0.27 h. Serum hydromorphone concentrations fluctuated around 4.0 ng/mL from 6–72 h after 2.0 mg/kg and mean concentrations remained above 4 ng/mL for 96 h after 3.0 mg/kg DPPC‐C hydromorphone. Liposome‐encapsulated hydromorphone (DPPC‐C) administered SC to healthy dogs provided a sustained duration of serum hydromorphone concentrations.  相似文献   

20.
Neonatal foals have unique pharmacokinetics, which may lead to accumulation of certain drugs when adult horse dosage regimens are used. Given its lipophilic nature and requirement for hepatic metabolism, metronidazole may be one of these drugs. The purpose of this study was to determine the pharmacokinetic profiles of metronidazole in twelve healthy foals at 1–2.5 days of age when administered as a single intravenous (IV) and intragastric (IG) dose of 15 mg/kg. Foals in the intravenous group were studied a second time at 10–12 days of age to evaluate the influence of age on pharmacokinetics within the neonatal period. Blood samples were collected at serial time points after metronidazole administration. Metronidazole concentration in plasma was measured using LC‐MS. Pharmacokinetic parameters were determined using noncompartmental analysis and compared between age groups. At 1–2.5 days of age, the mean peak plasma concentration after IV infusion was 18.79 ± 1.46 μg/mL, elimination half‐life was 11.8 ± 1.77 h, clearance was 0.84 ± 0.13 mL/min/kg and the volume of distribution (steady‐state) was 0.87 ± 0.07 L/kg. At 10–12 days of age, the mean peak plasma concentration after IV infusion was 18.17 ± 1.42 μg/mL, elimination half‐life was 9.07 ± 2.84 h, clearance was 1.14 ± 0.21 mL/min/kg and the volume of distribution (steady‐state) was 0.88 ± 0.06 L/kg. Oral approximated bioavailability was 100%. Cmax and Tmax after oral dosing were 14.85 ± 0.54 μg/mL and 1.75 (1–4) h, respectively. The elimination half‐life was longer and clearance was reduced in neonatal foals at 1–2.5 days as compared to 10–12 days of age (P = 0.006, P = 0.001, respectively). This study warrants consideration for altered dosing recommendations in foals, especially a longer interval (12 h).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号