首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
夏正俊 《作物学报》2013,39(4):571-579
20世纪20年代,植物学家Garner与Allard在研究大豆与烟草等植物的光反应时发现了植物光周期现象。大豆作为模式植物对光周期现象的理论形成起了重要作用。但大豆基因组的复杂性及与相关功能基因关系的不明确性严重阻碍了学者对大豆光周期现象本质的认识。近年来,随着控制大豆生育期主要QTL基因的相继克隆,特别是对大豆生育期贡献最大的E1基因的成功破译,学者们逐步认识到大豆光周期调控开花的独特性。遗传学及分子生物学研究表明,大豆中具有拮抗关系的E1和FT基因位于大豆光周期调控开花主要通路的中心节点(integrator),但两者间的作用机制及相关的调节因子尚待明晰。对大豆光周期反应及生育期基因的深入研究,在生产实践上可为大豆品种的栽培区划、合理布局及分子育种等提供理论依据。  相似文献   

2.
The family Brassicaceae is one of the major groups of the plant kingdom and comprises diverse species of great economic, agronomic and scientific importance, including the model plant Arabidopsis. The sequencing of the Arabidopsis genome has revolutionized our knowledge in the field of plant biology and provides a foundation in genomics and comparative biology. Genomic resources have been utilized in Brassica for diversity analyses, construction of genetic maps and identification of agronomic traits. In Brassicaceae, comparative sequence analysis across the species has been utilized to understand genome structure, evolution and the detection of conserved genomic segments. In this review, we focus on the progress made in genetic resource development, genome sequencing and comparative mapping in Brassica and related species. The utilization of genomic resources and next-generation sequencing approaches in improvement of Brassica crops is also discussed.  相似文献   

3.
Development of soybean cultivars with high seed yield is a major focus in soybean breeding programs. This study was conducted to identify genetic loci associated with seed yield-related traits in soybean and also to clarify consistency of the detected QTLs with QTLs found by previous researchers. A population of 135 F2:3 lines was developed from a cross between a vegetable soybean line (MJ0004-6) and a landrace cultivar from Myanmar (R18500). They were evaluated in the experimental field of Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand in a randomized complete block design with two replications each in 2011 and 2012 growing seasons. The two parents exhibited contrasting characteristics for most of the traits that were mapped. Analysis of variance showed that the main effects of genotype and environment (year) were significant for all studied traits. Genotype by environment interaction was also highly significant for all the traits. The population was genotyped by 149 polymorphic SSR markers and the genetic map consisted of 129 SSR loci which converged into 38 linkage groups covering 1156 cM of soybean genome. There were 10 QTLs significantly associated with seed yield-related traits across two seasons with single QTLs explaining between 5.0% to 21.9% of the phenotypic variation. Three of these QTLs were detected in both years for days to flowering, days to maturity and 100 seed weight. Most of the detected QTLs in our research were consistent with earlier QTLs reported by previous researchers. However, four novel QTLs including SF1, SF2 and SF3 on linkage groups L and N for seed filling period and PN1 on linkage group D1b for pod number were identified in the present study.  相似文献   

4.
Water deficit imposed by either drought or salinity brings about severe growth retardation and yield loss of crops. Since Brassica crops are important contributors to total oilseed production, it is urgently needed to develop tolerant cultivars to ensure yields under such adverse conditions. There are various physiochemical mechanisms for dealing with drought and salinity in plants at different developmental stages. Accordingly, different indicators of tolerance to drought or salinity at the germination, seedling, flowering and mature stages have been developed and used for germplasm screening and selection in breeding practices. Classical genetic and modern genomic approaches coupled with precise phenotyping have boosted the unravelling of genes and metabolic pathways conferring drought or salt tolerance in crops. QTL mapping of drought and salt tolerance has provided several dozen target QTLs in Brassica and the closely related Arabidopsis. Many drought- or salt-tolerant genes have also been isolated, some of which have been confirmed to have great potential for genetic improvement of plant tolerance. It has been suggested that molecular breeding approaches, such as marker-assisted selection and gene transformation, that will enhance oil product security under a changing climate be integrated in the development of drought- and salt-tolerant Brassica crops.  相似文献   

5.
It has long been known that formation of symbiotic root nodules in soybean (Glycine max (L.) Merr.) is controlled by several host genes referred to as Rj (rj) genes, but molecular cloning of these genes has been hampered by soybean’s complicated genome structure and large genome size. Progress in molecular identification of legume genes involved in root nodule symbiosis have been mostly achieved by using two model legumes, Lotus japonicus and Medicago truncatula, that have relatively simple and small genomes and are capable of molecular transfection. However, recent development of resources for soybean molecular genetic research, such as genome sequencing, large EST databases, and high-density linkage maps, have enabled us to isolate several Rj genes. This progress has been achieved in connection with systematic utilization of the information obtained from molecular genetics of the model legumes. In this review, we summarize the current status of knowledge of host-controlled nodulation in soybean based on information from recent studies on Rj genes, and discuss the future research prospects.  相似文献   

6.
The mineral content of plant seeds depends on both environmental and genetic factors. The aim of this study was to detect quantitative trait loci (QTLs), and their candidate genes, for the accumulation of phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) in seeds of Brassica napus under normal and low P conditions using an F 10 recombinant inbred line (RIL) population. Two-year field trials were conducted to investigate seed mineral accumulation. The results showed a significant decrease in most of the minerals in the BE RIL population, as well as in two parental lines, when grown in a low P environment compared to a normal P environment. In total, 60 putative QTLs were identified, 33 of which overlapped with each other in nine genomic regions in seven linkage groups. Twenty-one of the 60 significant QTLs co-located with eight seed weight QTLs, and only five overlapped with three seed yield QTLs. Moreover, only six QTLs for the same minerals were identified both in normal and low P levels. By comparative mapping of Arabidopsis and B. napus, 148 orthologs of 97 genes involved in the homeostasis of the seven minerals in Arabidopsis were associated with 47 QTLs corresponding to 24 chromosomal regions. These results offer insight into the genetic basis of mineral accumulation across different P conditions in seeds of B. napus and allow the potential utilization of QTLs in biofortification.  相似文献   

7.
Wheat is one of the most widely cultivated crops and, being the staple diet of more than 40 countries, it plays an imperative role in food security. Wheat has remarkable genetic potential to synchronize its flowering time with favourable environmental conditions. This ability to time its flowering is a key factor for its global adaptability and enables wheat plant to produce satisfactory grain yield under very diverse temperature and soil moisture conditions. Vernalization (Vrn), photoperiod (Ppd) and earliness per se (Eps) are the three genetic systems controlling flowering time in wheat. The objective of this review is to provide comprehensive information on the physiological, molecular and biological aspects of the three genetic constituents of flowering and maturity time in wheat. Reviews written in the past have covered either one of the aspects; and generally focused on one of the three genetic constituents of the flowering time. The current review provides (a) a detailed overview of all three gene systems (vernalization, photoperiod and earliness per se) controlling flowering time, (b) details of the primer sequences, their annealing temperatures and expected amplicon sizes for all known markers of detecting vernalization and photoperiod alleles, and (c) an up to date list of QTLs affecting flowering and/or maturity time in wheat.  相似文献   

8.
Flowering time is a key trait in the plant life cycle and an important selection criterion for soybean. Here, we combine the advantages of genome-wide association and linkage mapping to identify and fine map quantitative trait loci (QTLs) associated with flowering time. Linkage mapping was performed using 152 recombinant inbred lines and a major QTL, qFT6, affecting flowering time was found on chromosome 6. To refine the qFT6, the 192 natural accessions were genotyped using eight new simple sequence repeats and 10 single nucleotide polymorphisms markers covering the qFT6 region Haplotype analysis showed that the haplotype between markers BARC-014947-01929 and Satt365 could explain more phenotypic variation (26.5 %) than any other combination of markers. These results suggested that the target flowering time gene was located in ~300 kb between BARC-014947-01929 and Satt365, including three predicted genes. High-resolution map in qFT6 region will be useful not only for marker-assisted selection of flowering time but also for further positional cloning of the target gene. These results indicate that combining association and linkage mapping provides an efficient approach for fine mapping of soybean genes.  相似文献   

9.
The inheritance of flowering time trait in spring-type rapeseed (Brassica napus L.) is poorly understood, and the investigations on mapping of quantitative trait loci (QTL) for the trait are only few. We identified QTL underlying variation for flowering time in a doubled haploid (DH) mapping population of nonvernalization-responsive canola (B. napus L.) cultivar 465 and line 86 containing introgressions from Houyou11, a Chinese early-flowering cultivar in Brassica rapa L. Significant genetic variation in flowering time and response to photoperiod were observed among the DH lines from 465/86. A molecular linkage map was generated comprising three types of markers loci. QTL analysis indicated that flowering time is a complex trait and is controlled by at least 4 major loci, localized on four different linkage groups A6, A7, C8 and C9. These loci each accounted for between 9.2 and 12.56 % of the total genotypic variation for first flowering. The published high-density maps for flowering time mapping used different marker systems, and the parents of our crosses have different genetic origins, with either spring-type B. napus or B. rapa. So we cannot determine whether the QTL on the same linkage groups were in the same region or not. There was evidence of additive × additive epistatic effects for flowering time in the DH population. Epistasis existed not only between main-effect QTLs, but also between QTLs with minor effects. Four pair of epistasis effects between minor QTLs explained about 20 % of the genetic variance observed in the DH population. The results indicated that minor QTLs for flowering time should not be ignored. Significant genotypes × environment interactions were also found for the quantitative traits, and with significant change in the ranking of the DH lines in different environments. The results implied that FQ3 was a non-environment-specific QTL and may control flowering time by autonomous pathway. FQ4 were winter-environment-specific QTL and may control flowering time by photoperiod-pathway. Identification of the chromosomal location and effect of the genes influencing flowering time may hasten the development of canola varieties having an optimal time for flowering in target environments such as for high altitude areas, via marker-assisted selection.  相似文献   

10.
11.
Two soybean recombinant inbred line populations, Jinpumkong 2 × SS2-2 (J × S) and Iksannamulkong × SS2-2 (I x S) showed population-specific quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) and these were closely correlated within population. In the present study, we identified QTLs for six yield-related traits with simple sequence repeat markers, and biological correlations between flowering traits and yield-related traits. The yield-related traits included plant height (PH), node numbers of main stem (NNMS), pod numbers per plant (PNPP), seed numbers per pod (SNPP), 100-seed weight (SW), and seed yield per plant (SYPP). Eighteen QTLs for six yield-related traits were detected on nine chromosomes (Chrs), containing four QTLs for PH, two for NNMS, two for PNPP, three for SNPP, five for SW, and two for SYPP. Two highly significant QTLs for PH and NNMS were identified on Chr 6 (LG C2) in both populations where the major flowering gene, E1, and two DF and DM QTLs were located. One other PNPP QTL was also located on this region, explaining 12.9% of phenotypic variation. Other QTLs for yield-related traits showed population-specificity. Two significant SYPP QTLs potentially related with QTLs for SNPP and PNPP were found on the same loci of Chrs 8 (Satt390) and 10 (Sat_108). Also, highly significant positive phenotypic correlations (P < 0.01) were found between DF with PH, NNMS, PNPP, and SYPP in both populations, while flowering was negatively correlated with SNPP and SW in the J × S (P < 0.05) and I × S (P < 0.01) populations. Similar results were also shown between DM and yield-related traits, except for one SW. These QTLs identified may be useful for marker-assisted selection by soybean breeders.  相似文献   

12.
Understanding the genetic basis underlying domestication-related traits (DRTs) of cowpea (Vigna unguiculata (L.) Walp.) is important since the genome has experienced divergent domestication and in addition it is also useful to utilize the wild germplasm efficiently for improving different traits of the cultivated cowpea. Quantitative trait loci (QTLs) for DRTs were identified in a population of 159 F7 recombinant inbred lines derived from a cross between a domesticated cowpea (V. unguiculata (L.) Walp.) variety, 524B, and a wild accession, 219. Using the constructed linkage map, QTLs for 10 DRTs were analysed and mapped. QTLs for seed, pod and flower related traits were detected. Subsequently, QTL for ovule number was also identified. To our knowledge, this is the first time a QTL for this trait has been observed. QTLs for DRTs show co-localization on three linkage groups and pleiotropy or close linkage of genes for the traits is suggested in these chromosome regions. The information gained in this study can be used for marker-assisted selection of domestication-related QTLs in cowpea and enhance understanding of domestication in the genus Vigna.  相似文献   

13.
14.
Late blight is the most devastating disease of the potato crop that can be effectively managed by growing resistant cultivars. Introgression of resistance (R) genes/quantitative trait loci (QTLs) from the Solanum germplasm into common potato is one of the plausible approaches to breed resistant cultivars. Although the conventional method of breeding will continue to play a primary role in potato improvement, molecular marker technology is becoming one of its integral components. To achieve rapid success, from the past to recent years, several R genes/QTLs that originated from wild/cultivated Solanum species were mapped on the potato genome and a few genes were cloned using molecular approaches. As a result, molecular markers closely linked to resistance genes or QTLs offer a quicker potato breeding option through marker‐assisted selection (MAS). However, limited progress has been achieved so far through MAS in potato breeding. In near future, new resistance genes/QTLs are expected to be discovered from wild Solanum gene pools and linked molecular markers would be available for MAS. This article presents an update on the development of molecular markers linked to late blight resistance genes or QTLs by utilization of Solanum species for MAS in potato.  相似文献   

15.
Traits related to the number of pods and seeds are important yield factors on soybean. The relationships between phenotype and quantitative trait loci (QTLs) of these traits may reveal the mechanisms underlying productivity. Our study objectives were to analyse phenotypic correlations, detect stable QTLs and identify candidate genes useful for marker‐assisted selection. Phenotypic analyses revealed that NThSP (number of three‐seeded pods) was positively correlated with NPPP (number of pods per plant) and SNPP (number of seeds per plant). Seventy‐five QTLs were identified based on the mean phenotypic data for at least 2 years. We detected two to 15 and one to three significant QTLs identified at the same location, respectively. Six consensus QTLs associated with at least two NPS‐related (number of pods and seeds related) traits were identified. Two of these were verified in another population. The QTLs for NPPP, SNPP and NThSP formed a consensus QTL cluster on GM02. Another 27 QTLs also formed clusters in five regions. Fifteen candidate genes were mined and discussed. The results will provide more information to soybean breeding.  相似文献   

16.
Flowering is an important stage in plant development and crucial for adaptation of plant species to different environments. Two soybean mapping populations were used to identify quantitative trait loci (QTLs) for days to flowering (DF) and days to maturity (DM) by genotyping simple sequence repeat (SSR) markers. Single-factor analysis of variance detected association of phenotypic data with SSR markers in each population. DF QTLs were identified on four chromosomes (chrs.); two QTLs located on chrs. 2 and 13 with Satt041 and Satt206 in the Jinpumkong 2 × SS2-2 population and other two DF QTLs were detected on chrs. 6 and 19 with Satt100 and Satt373 in the Iksannamulkong × SS2-2 population. The major QTLs associated with Satt100 explained 30.3% of maximum phenotypic variation. Especially, all DF QTLs included QTLs for DM, except Satt206 on chr. 13. Moreover, two additional DM QTLs were mapped on chrs. 10 and 11 with Satt243 and Satt359, respectively. DF QTL on chr. 2 with Satt041 was the newly identified QTL only in the Jinpumkong 2 × SS2-2 population and explained 10.3% of the phenotypic variation. The single locus of Satt100 on chr. 6 and Satt373 on chr. 19 were located on soybean genomic regions of the known flowering gene loci E1 and E3, respectively. These population-specific QTLs (Satt100 and Satt373) are the major QTLs for flowering time, putatively, they may be related to maturity QTLs with large effect. Additionally, these QTLs are valuable for marker-assisted approaches and could be widely adopted by soybean breeders.  相似文献   

17.
Genome evolution is a continuous process and genomic rearrangement occurs both within and between species. With the sequencing of the Arabidopsis thaliana genome, comparative genetics and genomics offer new insights into plant biology. The genus Brassica offers excellent opportunities with which to compare genomic synteny so as to reveal genome evolution. During a previous genetic analysis of clubroot resistance in Brassica rapa, we identified a genetic region that is highly collinear with Arabidopsis chromosome 4. This region corresponds to a disease resistance gene cluster in the A. thaliana genome. Relying on synteny with Arabidopsis, we fine-mapped the region and found that the location and order of the markers showed good correspondence with those in Arabidopsis. Microsynteny on a physical map indicated an almost parallel correspondence, with a few rearrangements such as inversions and insertions. The results show that this genomic region of Brassica is conserved extensively with that of Arabidopsis and has potential as a disease resistance gene cluster, although the genera diverged 20 million years ago.  相似文献   

18.
Soybean originated in ancient China has been quickly extended globally as a major protein and oil crop. The QTL–allele constitution of seed protein content (SPC) in the Chinese soybean landrace population (CSLRP) was studied using a representative sample composed of 365 accessions tested under multiple environments and analysed under the novel restricted two-stage multi-locus genome-wide association study (RTM-GWAS) procedure based on 29,121 SNPLDB (single nucleotide polymorphism linkage disequilibrium blocks) markers. The SPC varied from 37.51 to 50.46% among accessions, for which 89 QTLs, each with 2–9 alleles in a total of 255 alleles were identified, accounting for 83.16% of the phenotypic variation covering most of the genetic variation (h2?=?84.31%). The QTL–alleles of the 365 landraces were organized into a 255?×?365 QTL–allele matrix as the compact form of SPC genetic constitution in CSLRP. Of the 89 QTLs, 53 showed significantly differentiated allele frequency distribution patterns among geographic eco-regions (sub-populations). There were 32.09% alleles not common among sub-populations but found only in some sub-populations; new allele(s) emerged on some loci in some respective sub-populations, with Eco-region III showing less but Eco-region VI more emergence. The QTL–allele matrix was also used for prediction of optimal crosses for breeding purpose to reach a 99th percentile potential of up to 54.81%, more than the highest accession (50.46%). From the 89 QTLs, 59 SPC candidate genes involving biological processes, cellular components and molecular functions were annotated. Among them, Glyma18g13574 and Glyma20g21370 were inferred as two of the major SPC genes in the whole genome.  相似文献   

19.
Boiled seed hardness is an important factor in the processing of soybean food products such as nimame and natto. Little information is available on the genetic basis for boiled seed hardness, despite the wide variation in this trait. DNA markers linked to the gene controlling this trait should be useful in soybean breeding programs because of the difficulty of its evaluation. In this report, quantitative trait locus (QTL) analysis was performed to reveal the genetic factors associated with boiled seed hardness using a recombinant inbred line population developed from a cross between two Japanese cultivars, ‘Natto-shoryu’ and ‘Hyoukei-kuro 3’, which differ largely in boiled seed hardness, which in ‘Natto-shoryu’ is about twice that of ‘Hyoukei-kuro 3’. Two significantly stable QTLs, qHbs3-1 and qHbs6-1, were identified on chromosomes 3 and 6, for which the ‘Hyoukei-kuro 3’ alleles contribute to decrease boiled seed hardness for both QTLs. qHbs3-1 also showed significant effects in progeny of a residual heterozygous line and in a different segregating population. Given its substantial effect on boiled seed hardness, SSR markers closely linked to qHbs3-1, such as BARCSOYSSR_03_0165 and BARCSOYSSR_03_0185, could be useful for marker-assisted selection in soybean breeding.  相似文献   

20.
Soybean is a primary source of plant oil and protein and has a high nutritional value. Plant height (PH) and flowering time (FT) are two important agronomic traits in breeding programs for soybean. In this study, we mapped QTLs associated with PH and FT in three environments using a population with determinate growth including 236 recombinant inbred lines (NJZY-RIL) derived from a cross between two summer planting varieties, ZXD and NN1138-2. A high-density genetic map with 3255 SLAF-markers was constructed that spanned 2144.85 cM of the soybean genome with an average marker distance of 0.66 cM. Altogether, six QTLs controlling PH and eleven QTLs controlling FT were mapped using mixed-model-based composite interval mapping and composite interval mapping methods. qPH-1-1 and qFT-15-2 were two novel main effect QTLs identified in this study; qFT-6-2, qFT-15-2, qFT-16-1, qPH-1-1, qPH-15-1 and qPH-16-1 were consistently detected across environments and by the two mapping methods. Two pairs of QTLs, qFT-15-2 and qPH-15-1 as well as qFT-16-1 and qPH-16-1, which were located in the same marker interval on chromosomes 15 and 16, respectively, were found to have close linkage or pleiotropy. These results may increase our understanding of the genetic control of PH and FT in soybean and provide support for implementing marker-assisted selection in developing soybean cultivars with high yield and early maturity in summer planting regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号