首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary In two experiments, using different testing methods, the number of newly formed cysts was determined on nine potato genotypes with resistance from various sources. Ten potato cyst nematode (PCN) populations were used in these experiments. Rank correlation between numbers of cysts over potato genotype-PCN population combinations for both experiments was high (rs = 0.90). Dendrograms for PCN populations and potato genotypes were constructed, based on a simultaneous hierarchical clustering procedure for potato genotype-PCN population interaction terms. Several virulence groups could be identified within Globodera rostochiensis as well as within G. pallida. Host genotypes, derived from the same sources of resistance, were clustered in different resistance groups.  相似文献   

2.
Summary Dihaploids were produced from tetraploids resistant to potato cyst nematode (Globodera pallida (Stone)). High levels of resistance were found in the dihaploids and three were used to produce tetraploid progenies by crossing them with susceptible tetraploid cultivars. One dihaploid, PDH505, produced more highly resistant offspring than the other two, PDHs 417 and 418. The latter gave progenies whose levels of resistance were similar to those obtained from susceptible dihaploids crossed with resistant tetraploids.The differences between the progenies of the resistant dihaploids were probably due to different modes of unreduced gamete formation (PDH505 producing gametes by first division restitution (FDR) and PDHs 417 and 418 by second division restitution (SDR)) although cytological studies would be necessary to confirm this. The methods by which dihaploids could be utilised in a tetraploid potato breeding programme are discussed in relation to the mode of unreduced gamete formation.  相似文献   

3.
Summary The progress of a backcross breeding programme to introduce resistance against the cereal cyst nematode into wheat is described. Methods of resistance screening and criteria for selection are detailed and the results discussed with reference to alternative procedures for the introduction of new resistance genes into major breeding programmes.  相似文献   

4.
Summary Seven wild diploid potato species, Series Tuberosa, representing 1023 clones were screened for resistance to the potato cyst nematode, Globodera pallida. Over 25% of the clones were resistant to pathotype P4A and almost 30% were resistant to pathotype P5A. The resistance in hybrid progenies of these and other resistant species with cultivated potatoes was evaluated, and over 2200 seedlings were screened. High frequencies of resistance (>50%) to P4A were found in progenies with Solanum leptophyes, S. vernei, S. gourlayi and S. capsicibaccatum, whereas resistance to P5A was found in these species as well as S. sparsipilum. The importance of nematode resistant wild species for potato breeding is discussed.  相似文献   

5.
Summary Over 2400 pollinations were made to investigate the crossability relationships between cultivated potatoes, and wild diploid species from Series Tuberosa and Circaeifolia, as well as wild polyploid species in Series Tuberosa and Longipedicellata resistant to potato cyst nematode, Globodera pallida pathotypes P4A and P5A. Wild diploids in Series Tuberosa crossed easily with cultivated diploid species, except with Solanum lignicaule where most pollinations failed, and seed set was extremely low (0.2 seeds per pollination or less). It is suggested that this species is 1EBN. S. capsicibaccatum is clearly isolated from Series Tuberosa, but can form hybrids with S. lignicaule, which can act as a bridging species to S. tuberosum haploids. S. gourlayi and S. oplocense can be crossed with both subspecies of S. tuberosum, but S. papita, Series Longipedicellata is reproductively isolated from the tetraploid cultigens. The crossability data are discussed in the light of germplasm utilisation for breeding potato varieties resistant to potato cyst nematode.  相似文献   

6.
The genetic base for soybean cultivars is narrow compared to most other crop species. Twenty-seven wild perennial Glycine species comprise the tertiary gene pool to soybean that may contain many genes of economic importance for soybean improvement. We evaluated 16 accessions of G. argyrea, G. clandestina, G. dolichocarpa, and G. tomentella for resistance to Heterodera glycines (HG), also known as the soybean cyst nematode, and to multiple isolates of Phakopsora pachyrhizi, the causal fungus of soybean rust. All 16 accessions were classified as resistant to H. glycines HG Type 2.5.7, based on number of cysts per root mass with plant introductions (PIs) 483227, 509501, 563892, and 573064 (all G. tomentella) void of any cysts indicating no reproduction by this pest. All 16 accessions had an immune reaction to one isolate of P. pachyrhizi. Regardless of isolate, no sporulating uredinia were observed on G. argyrea (PI 505151) and G. tomentella (PIs 483227, 509501, and 573064). These results demonstrate that some accessions within the perennial Glycine species harbour resistance to both H. glycines and P. pachyrhizi and would be good candidates for wide hybridization programs seeking to transfer potentially unique multiple resistance genes into soybean.  相似文献   

7.
Summary The use of soil. naturally infested with Heterodera avenae, to select resistant heterozygotes in backcross progenies of wheat, was tested for reliability. Selfed progenies from plants selected as resistant were cultured monoxenically in test tubes with nematodes hatched from single cysts, while backcross progenies from the same parent plants were grown in pots of naturally infested soil. Cyst counts were made after two months' growth. The results showed that over 50% of the backcross lines, screened in previous generations with naturally infested soil, had been erroneously selected as resistant. The test tube cultures clearly differentiated lines carrying resistance from those which were susceptible and corroborated results from pot tests.  相似文献   

8.
Genetic resistance to potato cyst nematode is considered as one of the most effective means of increasing yield and reducing nematode infestation levels in potato fields. In this study, resistance to this nematode was successfully transferred from diploid tuber-bearing Solanums to the tetraploid gene pool using a 4x-2x breeding approach. More specifically, resistance from Solanum vernei, S. sparsipilum and haploids of S. tuberosum group Andigena was introgressed into conventional tetraploid clones, using first division restitution (FDR) 2n gametes. Furthermore, some of the FDR diploid parents had similar breeding values as advanced resistant tetraploid clones which were developed only after several cycles of selection against the potato cyst nematode. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Potato cyst nematodes (PCN) collected in six localities in the Leningrad region of North West Russia were identified as Globodera rostochiensis pathotype Ro1 and were used for subsequent resistance tests. Seventy‐nine accessions of cultivated and closely related wild potato species from the VIR collection in Russia were screened on resistance to G. rostochiensis pathotype Ro1 and on the presence of molecular markers for H1 and Gro1‐4 resistance genes. No associations were detected between the resistance level of diploid and tetraploid Andean and tetraploid Chilean potato landraces (indigenous cultivars) and their related wild species and their geographical distribution or presence of PCR‐based markers that are associated with the H1 and Gro1‐4 genes. At the same time, all susceptible genotypes lacked such markers. New sources of resistance were found and could be used in breeding.  相似文献   

10.
11.
Occurrence of pale potato cyst nematode, Globodera pallida (Stone) Behrens, was first recorded in Japan in 2015. Among several control measures, cultivation of resistant potato (Solanum tuberosum L.) varieties is the most effective in cost and environmental impact. As no G. pallida-resistant varieties have yet been developed in Japan, great emphasis is being placed on screening of germplasm possessing the resistance and development of the resistant varieties. In this study, we first improved previously reported DNA markers linked to the G. pallida resistance loci (GpaIVsadg and Gpa5) and then used these to screen more than 1,000 germplasms to select several candidate germplasms with resistance. We performed inoculation testing on the selected candidates and identified several resistant germplasms to the Japanese G. pallida population. Furthermore, we developed a simultaneous detection method combining three DNA markers linked to G. pallida and Globodera rostochiensis (Wollenweber) Behrens resistance loci. We validated the ability of C237-I marker to select resistant allele of GpaIVsadg and predict the presence of resistance in a Japanese breeding population. Resistant germplasms identified in this study could potentially be used to develop G. pallida-resistant varieties. The marker evaluation methods developed in this study will contribute to the efficient development of resistant varieties.  相似文献   

12.
Summary An automated system of data capture and summarisation is described. Although it is of widespread applicability, it is illustrated by a specific example involving the screening of potato tubers for resistance to potato cyst nematode.  相似文献   

13.
Summary Monosomic additions of Beta vulgaris x B. procumbens with resistance to beet cyst nematode (Heterodera schachtii Schm.) were used for the production of resistant diploids through incorporation of the B. procumbens chromosome fragment bearing the resistance gene(s) into one of the sugar beet chromosomes. The heterozygotes obtained accordingly were selfed for producing homozygotes. These homozygotes differed morphologically from commercial sugar beet varieties, but produced reasonable amounts of pollen. Female transmission of resistance was 100%, whereas male transmission, apart from some exceptions, was more than 90%. The number of hypersensitivity reactions to penetrated larvae was related to the degree of susceptibility. Larval development was severely retarded in the resistant plants, preventing most of them to produce cysts. If cysts were formed, their content was considerably less as compared to those in the susceptible plants.  相似文献   

14.
Summary Resistance toMeliodogyne chitwoodi races 1 (MC1) and 2 (MC2) andM. hapla (MH) derived fromSolanum bulbocastanum was introduced into the cultivated potato gene pool through somatic fusion. The initial F1 hybrids showed resistance to the three nematodes. Resistance to reproduction on roots by MC1 was accompanied by resistance to tuber damage in F1 clones. Tuber damage sometimes occurred, however, in hybrids of BC1 progeny resistant to reproduction on roots when MC2 and MH were the challenging nematodes. Resistance to reproduction was transferred into BC1 individuals, but a greater proportion of BC1 progeny was resistant to MC1 than to MC2 or MH. Resistance to MC1 appears to be dominant and discretely inherited. F1 and BC1 progeny were pollen sterile, but seed were produced from crosses using cultivated tetraploid pollen sources. Approximately 11 and 33 per cent of pollinations produced berries on F1 and BC1 pistillate parents, respectively. Seed yield increased fourfold overall in crosses with F1 compared to BC1 individuals.Abbreviations MC1 Meloidogyne chitwoodi race 1 - MC2 Meloidogyne chitwoodi race 2 - MH Meloidogyne hapla - Rf Reproductive factor  相似文献   

15.
Late blight is the most devastating disease of the potato crop that can be effectively managed by growing resistant cultivars. Introgression of resistance (R) genes/quantitative trait loci (QTLs) from the Solanum germplasm into common potato is one of the plausible approaches to breed resistant cultivars. Although the conventional method of breeding will continue to play a primary role in potato improvement, molecular marker technology is becoming one of its integral components. To achieve rapid success, from the past to recent years, several R genes/QTLs that originated from wild/cultivated Solanum species were mapped on the potato genome and a few genes were cloned using molecular approaches. As a result, molecular markers closely linked to resistance genes or QTLs offer a quicker potato breeding option through marker‐assisted selection (MAS). However, limited progress has been achieved so far through MAS in potato breeding. In near future, new resistance genes/QTLs are expected to be discovered from wild Solanum gene pools and linked molecular markers would be available for MAS. This article presents an update on the development of molecular markers linked to late blight resistance genes or QTLs by utilization of Solanum species for MAS in potato.  相似文献   

16.
To identify excellent cultivars resistant to Fusarium head blight (FHB), 104 wheat cultivars were tested by single-flower inoculation using two prevalent pathogens from 2018 to 2020. Agronomic traits were also investigated. Six FHB-resistance quantitative trait loci (QTL), Fhb1, Fhb2, Fhb4, Fhb5, Fhb7 and Qfhb.crc-2D, have been assessed using previously reported DNA markers. A diagnostic marker has been used for Fhb1, and indicative markers linked to the other QTL were used. Results showed that (i) 12 (11.5%) cultivars were resistant to two pathogens in 3 years; among them, ‘Shengxuan 6’, ‘Wanhongbian 759’, ‘Yunong 903’ and ‘Yunong 901’ had good agronomic traits. (ii) Among cultivars with one resistance QTL, the severities of cultivars carrying Fhb1 and Qfhb.crc-2D were 2.2 and 2.8, respectively, whereas those of cultivars with Fhb2 or Fhb7 were 3.6. Among cultivars with two resistance QTL, the severities of cultivars with Fhb1 + Fhb4, Fhb1 + Fhb7 and Fhb4 + Fhb5 were 2.2, 3.0 and 3.6, respectively. The severity of five cultivars possessing three or four resistance QTL was below 2.5. Fhb1 and Qfhb.crc-2D showed better resistance effects than other resistance QTL.  相似文献   

17.
J. Jahier    A. M. Tanguy    P. Abelard  R. Rivoal 《Plant Breeding》1996,115(4):282-284
A previous RFLP analysis showed that the Aegilops ventricosa chromosome 6MV which compensates for the absence of 6D in 6MV (6D) wheat substitution lines was a 2/6 translocated chromosome, either 2S–6S.6L or 2S–6L.6S. The distal part of its long arm consists of a translocated segment belonging to homoeologous group 2. Chromosome 6MV carries a gene(s) for resistance to cereal cyst nematode. In order to define the part of 6MV (2S or 6S or 6L) involved in this resistance, addition lines with a 6MV deleted either for its short arm or for the distal part of its long arm were evaluated. It was shown that the gene(s) is carried by the group 2 translocated segment. The hypothesis that the gene(s) could be allelic to Cre2, another gene conferring resistance to the nematode introduced into the wheat complement from Ae. ventricosa is discussed.  相似文献   

18.
C. Halldén    T. Säll    K. Olsson    N.-O. Nilsson  A. Hjerdin 《Plant Breeding》1997,116(1):18-22
Bulked segregant analysis (BSA) was used to accumulate RAPD markers near the beet cyst nematode resistance locus Hslpro-1 of sugar beet (Beta vulgaris L.). Graphical genotypes constructed from RFLP data were utilized to select F2 individuals in (1) the construction of pools of plants used in the initial screening for polymorphisms, and (2) the selection of individual plants used to confirm the potential linkage. The pooled DNA samples were screened for polymorphisms using 668 RAPD primers. Forty-four candidate markers potentially linked to the region were analysed further using 14 segregating individuals. Close linkage was confirmed for 17 of the markers. Four of the RAPD markers were assigned map coordinates within the RFLP map. Three of these markers extended the RFLP map by 3cM. Altogether, the 8cM target interval contains 10 RFLP and 17 RAPD markers, corresponding to an average marker density of 0.3cM in the Hslpro-1 region.  相似文献   

19.
Potato virus Y (PVY) and Potato mop-top virus (PMTV) are viruses whose geographical distribution is expanding and economic losses are increasing, in contrast to most of other viruses infecting potato crops. Most potato cultivars lack broad-spectrum resistance to the new, genetically complex strains of PVY, and no efficient resistance to PMTV is known in potato. Control of the vectors of these viruses is not an efficient or possible strategy to prevent infections. Studies on molecular virus-host interactions can discover plant genes that are important to viral infection or antiviral defence. Both types of genes may be utilized in resistance breeding, which is discussed in this paper. The advanced gene technologies provide means to fortify potato cultivars with effective virus resistance genes or mutated, non-functional host factors that interfere with virus infection.  相似文献   

20.
Root‐knot nematode disease, caused by Meloidogyne species, is an important soil‐borne disease of peach (Prunus persica L.) worldwide. To identify a major locus of genetic resistance to M. incognita, PkMi, in a wild peach species, we reconstructed a linkage group in a BC1 population of 187 lines using resistance gene analogue markers surrounding the PkMi locus. A resistance gene analogue marker, ppa021062m, co‐segregated with the PkMi locus and was therefore considered a strong candidate for PkMi. Phylogenetic analysis of the deduced protein sequences of ppa021062m, together with the other seven genes for nematode resistance, allowed ppa021062m to be assigned to the Toll/Interleukin1 Receptor‐Nucleotide Binding Site‐Leucine Rich Repeat class, similar to Ma in myrobalan plum (P. cerasifera). Comparative analysis of the candidate gene sequence in four genotypes that had different levels of resistance to root‐knot nematode disease showed that most non‐synonymous SNPs in the genic region were distributed in the TIR and NBS motifs. This study enhances our understanding of the genetic and molecular control of resistance to root‐knot nematode disease in peach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号